The present invention relates to a hybrid laser, and in particular to a hybrid laser with reduced back reflection.
Conventional silicon photonics-based hybrid lasers are sensitive to external feedback. Large back refection leads to a degradation of relative intensity noise (RIN), linewidth broadening, mode hopping, etc.
Previous attempts at reducing back reflection include the use of an integrated isolator; however, integrated isolators on a chip are extremely difficult and expensive to implement and have large insertion loss and low isolation. Alternatively, the use of an angled coupling interface between the III-V gain chip and the silicon chip has been tried, but this increases the difficulty in aligning the III-V gain chip and the silicon chip, and the back reflection reduction is limited. Another solution includes the use of index-matching materials between the gain chip and the silicon chip, but the shortcomings include an increase in the packaging complexity and cost.
An object of the present invention is to overcome the shortcomings of the prior art by implementing an on-chip mode converter to reduce the accumulated back reflection as light travels back-and-forth within the PIC chip.
Accordingly, the present invention relates to a hybrid laser comprising:
a gain chip including a gain medium for generating and amplifying light;
a first reflector optically coupled to the gain medium for reflecting at least a portion of the light back through the gain medium;
a photonic integrated circuit (PIC) chip comprising:
an edge coupler for transmitting the light between the gain chip and a device layer on the PIC chip;
a mode converter for converting a mode of the light to a mode providing less back reflection to the gain chip;
a routing waveguide extending from the mode converter;
a second reflector coupled to the routing waveguide for reflecting at least a portion of the light back to the gain medium forming a laser cavity with the first reflector; and
an output port coupled to the first or second reflector for outputting a portion of the light.
The invention will be described in greater detail with reference to the accompanying drawings which represent preferred embodiments thereof, wherein:
While the present teachings are described in conjunction with various embodiments and examples, it is not intended that the present teachings be limited to such embodiments. On the contrary, the present teachings encompass various alternatives and equivalents, as will be appreciated by those of skill in the art.
The gain chip 2 includes a gain medium, which may comprise any suitable amplification material, e.g. a suitable group III-V gain material, such as InP, GaAs and GaN based materials, in particular a reflective semiconductor optical amplifier (RSOA), which may be based on bulk, quantum well or quantum dot material. The gain chip 2 may be provided on a photonic integrated circuit (PIC) chip 8 with the other elements of the hybrid laser 1b (
The first reflector 6 may comprise, but not limited to the following variations: a) single ring reflector, (b) a Sagnac loop mirror, (c) a Vernier ring reflector, (d) a distributed Bragg reflector, and (e) a distributed feedback reflector. The first reflector 6 may be a partial reflector with a reflectance of between 30% and 90% of the light in the desired wavelength range forming an output port 11 for amplified light at the desired wavelength. The reflectance of the first and second reflectors 6 and 7 may be reversed providing the output port 11 at the second reflector 7, i.e. proximate the gain chip 2.
The edge coupler 3 may include an angled mode converter, which may include be angled at a small acute angle to a normal from the output facet of the gain medium 2, e.g. by 5° to 15°, and may include an anti-reflection coating to reduce the back reflection at the output facet. The edge coupler 3 may also include an mode spot-size converter, which may include a tapering width and or height for expanding the mode reentering the gain chip 2 and for contracting the mode leaving the gain chip 2.
The routing waveguide 5 may comprise a wide ridge waveguide, a strip-loaded waveguide, or other low back-scattering waveguide, and may be comprised of any suitable material, for example semiconductor waveguides, such as silicon and silicon nitride, etc.
Light generated or amplified in the gain chip 2 is coupled through the edge coupler 3 onto a device layer on the PIC chip 8. The mode converter 4 formed in the device layer transforms the shape of the mode of the light to a mode shape providing less back reflection to the gain medium. For example, the mode converter 4 may comprise a polarization rotator, which rotates the TE0 mode leaving the gain chip 2 into the TM0 mode, or the mode converter 4 may comprise a waveguide converter, which converts the shape of the edge coupler 3, e.g. a ridge waveguide, into a less back-reflective form of waveguide, e.g. a bus waveguide or a rib waveguide. The adjusted mode travels through the routing waveguide 5, which may comprise a structure corresponding to the selected mode converter 4, e.g. ridge for polarization rotator, bus for ridge-to-bus waveguide converter, and rib for ridge-to-rib waveguide converter. Then at least a portion of the adjusted mode gets reflected by the first reflector 6 back through the routing waveguide 5 to the mode converter 4, which converts the mode shape back to the original mode shape, e.g. TE0 in a ridge waveguide, for reentry into the gain medium of the gain chip 2, via the edge coupler 3. Light bounces back and forth between the second reflector 7 and the first reflector 6, and becomes the wanted laser output at an output port 11 provided at the first or second reflector 6 or 7. To ensure only selective wavelength gets amplified in the gain medium a highly reflective reflector 6 or 7 may include a wavelength selective filter coating for passing unwanted wavelengths out of the laser cavity. Alternatively or in addition, an optical filter may be provided within the laser 1A or 1B to pass the desired wavelengths and filter out unwanted wavelengths.
The routing waveguide 5 may also include a phase shifter for adjusting and/or selecting the optical distance between the first and second reflectors 6 and 7, i.e. the laser cavity length, and therefore the wavelength of the output light. The phase shifter may comprise a special type of routing waveguide 5, because the phase shifter may be comprised of a doped waveguide, as opposed to the normal routing waveguide 5, which is not necessarily doped. Since the phase shifter is doped, the phase may be controlled by adding different biasing voltages via a control system to automatically maintain the same wavelength over time or to adjust to a different wavelength. A light detector, e.g. a <5% tap and a photodetector, positioned prior to the output port 11 may be used to provide information about wavelength and power of the output light to the control system. The phase shifter, or doped waveguide, may be important to the hybrid laser 1a or 1b, for wavelength selection and to avoid mode-hopping during the operation of laser.
According to an exemplary embodiment, illustrated in
With reference to
Accordingly, in an alternative exemplary embodiment illustrated in
According to another alternative exemplary embodiment illustrated in
The foregoing description of one or more embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
9746609 | Ma et al. | Aug 2017 | B2 |
9829632 | Ma | Nov 2017 | B2 |
20070133990 | Kim | Jun 2007 | A1 |
20100215309 | Shubin | Aug 2010 | A1 |
20160238860 | Liang | Aug 2016 | A1 |
20160301191 | Orcutt | Oct 2016 | A1 |
20180261978 | Kurczveil | Sep 2018 | A1 |
Entry |
---|
Bo Peng, Jessie Rosenberg, Wesley D. Sacher, Asger S. Jensen, Marwan Khater, William M. J. Green, and Tymon Barwicz, “Distributed backscattering in production O-band Si nanophotonic waveguides,” Opt. Express 25, 23477-23485 (2017). |
Klaus Petermann. “External optical feedback phenomena in semiconductor lasers.” Broadband Networks: Strategies and Technologies. vol. 2450. International Society for Optics and Photonics, 1995. |