Reducing cost of heating and air-conditioning

Abstract
1. In the heating system, air used in the combustion of fuel such as natural gas, propane or oil can be preheated by use of a heat exchanger and passing of flue gas through a heat exchanger to preheat the air. This method can also be used for dryers and ovens to reheat the air by use of heat exchanger. In the heating system, use of air sucked from the soil is preferred, which is warmer than the outside air during winter season. This air is further heated by circulating through a heat exchanger to recover heat from the existing flue gases. After warming the air, it is used in the combustion of natural gas, propane or oil. This method prevents suction of cold air from outside to replace air used in the combustion in a furnace in a home or a building, which exit through a stack or chimney as flue gas. When outside air is not used in the combustion process, the flue gas can be passed through the heat exchanger to recover heat and air from the room can be heated by means of a blower and can be introduced into a circulation air duct.
Description
REFERENCES














PATENT NO.
DATE
INVENTOR







4,765,149
August 1998
SHIGA et al.


4,920,757
May 1990
GAZES


4,694,662
September 1987
ADAMS


4,373,346
February 1983
HEBERT et al.


6,793,703
September 2004
SLEDGE et al


4,310,044
January 1982
SCHENKER


4,186,790
February 1980
SCHENKER


7,147,692
December 2006
FORNAI, et al.


7,132,086
November 2006
MICHALAKUS, et al.


7,062,930
June 2006
RAYBURN


6,494,053
December 2002
FORKOSH, et al.


5,964,101
October 1999
SCHULAK, et al.









BACKGROUND AND SUMMARY OF INVENTION
A. Heating

1. In the present method, a home or a building is heated by burning natural gas, propane or oil in a furnace. After combustion the flue gas is discharged through a chimney and mainly consists of carbon-di-oxide, water, nitrogen and unburned oxygen. As per the composition of air, for every mole of oxygen is burnt, almost 4 moles of nitrogen (unburned) needs to be included in the combustion. Moreover, excess air (almost 20%) needs to be used in the combustion. Therefore for every mole of oxygen used in combustion, approximately 5 moles of nitrogen exit through the stack. When natural gas is used to burn in a furnace (supplied by utility company) to heat a home or a commercial building in a furnace, heat is transferred through a heat exchanger to heat the air that is circulated in a home or a building. Flue gases exit through a chimney below 150 degree F.


When natural gas (or oil) is burned, for every 100 cubic feet of natural gas is burned, (which is approximately 1 therm of heat as calculated by the utility company) approximately 2,000 cubic feet of air is required to complete combustion. The burnt gases escape through a chimney. This air need to be replaced in a home or a building, therefore outside cold air is sucked into a home or a building. For example, if outside temperature is 0 degrees F., then 0 degree F. air is sucked in a home or a building. If a home or a building is maintained at 70 degree F., then the outside air is heated from 0 degree F. to 70 degree F. Therefore approximately 2,000 cubic feet of air is required to be heated from 0 degree F. to 70 degree F. to maintain the temperature of a home or a building at 70 degree F.


In this invention air is drawn from outside the building is passed through a heat exchanger to recover heat from flue gases and to preheat the cold air. Similarly, hot air that exit through the stack of a oven or dryer can be preheated to recover heat from the exit gases and passed through a heat exchanger of a furnace to obtain required temperature. Similarly, air is drawn by a soil air pump from the subsurface. The temperature of sub surface soil below 6 feet is generally constant around 50 degree F. through out the year. So the air is pumped from the ground pre-heated to between 50 degree F. and 150 degree F. by heat exchange mechanism, by recovering heat from the flue gases. This warm air is pumped into the furnace area to provide for combustion of natural gas or propane or oil. Therefore no outside cold air is sucked into a home or a building after the flue gas exit through the chimney. Use of this method will provide a saving up to 50% in energy cost. Consumption of natural gas or oil used for heating a home or a building depends on the outside temperature.


2. Additional saving can be achieved by installing a heat exchange system between dry wall and insulation so that entire home or a building beyond dry wall is maintained warm. This is achieved by recovery of heat from the flue gases by heat exchange and circulating water in a closed loop by a pump.


3. In this method, ground water or municipal tap water is used and outside air is pumped and warmed initially by water and then pre-heated to over 100 degree F. by heat exchange between flue gases and the air supplied to the furnace.


B. Air Conditioning and Cooling

1. Temperature inside a home or a building is maintained between 70 degree F. to 80 degree F. by air conditioning system during summer months when the outside temperatures are very high and unbearable. In this method cold air from ground is pumped and passed through heat exchanger to cool the air that is circulated in a home or a building. The temperature of a the air pumped from the ground can be as low as 50 degree F., and therefore will be ideal to cool the air that is circulated inside a home or a building.


2. Ground water or Municipal tap water can be used to run through heat exchanger to cool the air that is circulated in a heat exchanger as described above. This method is very efficient but costlier that one described in B (1).


3. In this method air pumped by soil air extraction unit. This air is passed through a humidifier and activated carbon to purify air before directly used for circulation inside a home or a building. This method is economical and suitable for commercial buildings.


PRIOR ART

Various methods used by other inventors for heating and air-conditioning/cooling were found during patent search. A method used for filter apparatus is described in earlier method of using geothermal energy for cooling of the heated refrigerant by circulating in a heat exchanger installed in the ground. Various types of devices were used by other inventors for cooling the refrigerant fluid or the pump.


In the heating of a home or a building various heat recovery systems were described after combustion of a natural gas, propane or oil.


In refrigeration system, removal of heat by circulating a fluid in compressor assembly system is described. The heat is removed from the system by circulating a fluid which is disposed off.





DRAWINGS

Diagram 1: SOIL AIR EXTRACTION SYSTEM WITH HEAT EXCHANGE shows systematically how air from ground is pumped and pre heated before combustion of natural gas, propane or oil in a furnace.


Diagram 2: HEAT RECOVERY FROM EXHAUST FLUE GASES shows systematically how air is pre heated by recapturing the heat from the exit flue gases.


Diagram 3: HEAT CIRCULATION BETWEEN DRY WALL AND INSULATION shows systematically how the area between dry wall and outside wall is heated during winter and cooled during summer.


Diagram 4: AIR COOLING BY USE OF WATER shows how systematically ground water or Municipal tap water can be used to cool the air that is circulated in a home or a building.


Diagram 5: AIR COOLING FOR HOUSE OR BUILDING shows how systematically air from the ground can be pumped and purified to directly circulate in a home or a building.


Diagram 6: REFRIGERATOR—HEAT DISCHARGE OUTSIDE THE BUILDING shows how systematically heat from compressor assembly can be recovered and discharged out side a home or a building.


Diagram 7: The diagram shows the recovery of heat from exit gases for various types of ovens and dryers used in industrial operations.


Diagram 8: The diagram shows the recovery of heat from flue gases to preheat the air in high efficiency furnaces or to recover the heat from flue gases by passing it through a heat exchanger and circulate hot air inside the building ducting by means of a blower.





SUMMARY OF PRESENT INVENTION
A. Heating

1. Diagram 1 shows Soil Air extraction pump (15) is connected to a soil air extraction well, which consists of a solid plastic pipe (12) and is installed at least 2 feet below sub surface and a soil air extraction screen (10) is connected. This screen has cuts or perforations to suck air from the soil. This pump (15) creates a negative pressure or vacuum in the pipe connected to a pump before air is discharged. The air is passed through a knock out tank or a dehumidifier (21) to remove any access water absorbed from soil and/or to dry the air as much as possible. The temperature of air at this point is as low as 50 degree F. The air is passed through a heat exchanger (25) to further heat the air up to 100 degree F. This is accomplished by recovering heat from the flue gases by another heat exchanger (Diagram 2—(35)). A fluid such as water can be circulated in a heat exchanger (35) to recover heat from the flue gases. The temperature of water can be as high as 125 degree F. This water is circulated through heat exchanger (25) and hot air is fed to air and water heater furnaces. The heated air (60) is introduced into the furnace at the rate required to burn natural gas, propane or oil. The burned gases that is the flue gases run through heat exchanger (35) for heat recovery before exit through a stack.


During winter air is heated to supply the furnace with warm air. During summer valve (90) is closed and valve (91) is opened so that the same cold air can be used for cooling.


Diagram 2 shows how heat is recovered from the exit flue gases. A heat exchanger (35) is installed in the stack (45) and water is circulated through the heat exchanger so that the temperature of exit water is over 100 degree F. This water is circulated by a water pump (32) to a heat exchanger (25) to heat the air that is received from heat exchanger (27). In order to recover most of the heat another heat exchanger (77) is installed in series and heat recovered by the fluid is circulated between the dry wall and out side of a home or a building as shown in diagram 3.


2. Another method is to use out side cold air and to be treated before using in the combustion furnace. In this method cold air from out side is pumped and cooled with water that is pumped from the ground or Municipal tap water. This will increase the temperature of water to approximately 50 degree F. The air will run through a soil air extraction pump (15) and knock out tank (21) before pre heated from the heat recovered by heat exchanger (25). The hot air is then sent to the furnace for combustion.


3. In the heating system in high efficiency furnaces, air is pumped from outside and passed through a heat exchanger (802) and preheated by extracting heat from the flue gas before used in the combustion in the furnace (801). The flue gases that exit sent through a heat exchanger (802) before exiting through the stack. In older type furnaces or heaters (805), air is sucked from inside the building. In this case heat can be recovered from the flue gases by passing through a heat exchanger (806) and the hot air can be pumped directly to the circulation ducts. In case of dryers and ovens, the exit air from this equipment can be passed through a heat exchanger (702) to recover heat and to preheat the air that is fed to the dryer or oven (701) so the heat load on the furnace (703) is minimum. In this type of equipment more than 90% of the heat can be recovered.


B. Air Conditioning and Cooling Operation

1. The temperature of air pumped by Soil Air Extraction pump (15) is very cool and close to the temperature of the ground water. Temperature of ground water/soil during summer months can be as cool as 50 degree F. Therefore this method is used to keep a home or a building cooler between 70 and 80 degree F. during summer months when outside air temperature can reach 120 degree F. or higher. The cool air is pumped by a soil air extraction pump (15) through a well installed in a ground as shown in diagram 1. This well consists of a screen (10) and a solid pipe (12) connected to the soil air extraction pump (15). The air is pumped through a knock out tank or a dehumidifier (21) to remove any excess water. During summer the valve to the furnace (90) is shut down and valve (91) is open for use of air for cooling. The air runs through a heat exchanger (68) to cool the air that is circulated through a home or a building. The air used for cooling pump by soil air extraction pump (15) is disposed off out side the building.


2. Alternate Method—In this method, cold water is circulated through the heat exchanger to cool the air circulated in a home or a building. Diagram 4 shows the use of water to cool the air. A well is installed to pump the water from the ground. Pump (105) is installed in a bored well inside a plastic pipe (101) to pump water (112) from the ground. The water is forced through a heat exchanger (135) to cool the air that is circulated to the house. Air from a home or a building is circulated (140) and cooled by water (112) and air is circulated (141) to a home or a building to keep the temperature at desired number. The water from the heat exchanger (135) can be used for watering the lawn or garden. As an alternative the valve (102) can be closed and (103) can be opened so that water can be cooled in the cooling tower (145) and recycled for reuse. Another method is to use the water from Municipal tap water and pumped through the system via heat exchanger (135) to cool the air that is circulated in a home or a building. Valves (104 and 105) are installed to either use a tap water or ground water or both. The cool water can also be circulated as shown in the diagram 3 to keep the walls of the building cool during the summer months. The water is pumped through a heat exchanger (77) that circulates cold water through heat exchanger (92) to keep the space between dry wall and outside of the building cool.


3. Direct use of Air: Diagram 5 shows how air can be directly pumped from the ground and circulated in a home or a building. In this method soil air extraction pump (215) is used to pump air from a soil air extraction well. This air is cold at the ground water temperature. In earlier method the air is not used directly but was disposed out side the building. When the air is directly used and introduced in side the building it should meet the air quality standards. After pumping the air from the ground by soil air extraction pump (215) the air is passed through a dehumidifier (225) and then through an activated carbon cell (235) to remove any impurities carried by the air from the ground. The air is regularly checked to make sure that it is clean and meets the air quality standards.


4. The Refrigeration System—For keeping the food items cool, to make ice and cold water in a refrigerator, the refrigeration system discharges hot air to the surroundings. During summer the use of refrigeration system is at a maximum and maximum amount of heat that is releases adds load to the air conditioning system in a home or a building. To reduce the additional burden on the air conditioning system, the compressor assembly (305) is cooled by air and disposed off out side the building. As shown in diagram 6, for a refrigerator (301) during summer the valve (311) is closed and valve (312) is opened and during winter valve (312) is closed and valve (311) is open to discharge heat inside a home and a building.

Claims
  • 1. Use of the cooler air pumped from the ground to be supplied to the furnace for the combustion of natural gas, propane, or oil for heating a home or a building.
  • 2. Use of soil air extraction pump to provide air for combustion of natural gas propane of oil for a home or a building.
  • 3. Use of heat exchange unit to recover heat from the exhaust gases to pre heat the air pumped from soil for the combustion of natural gas, propane or oil for heating a home or a building.
  • 4. Use of the cooler air from the ground to be supplied to the furnace for the combustion of natural gas, propane, or oil for heating a water furnace for use of hot water for a home or a building.
  • 5. Use of soil air extraction pump to provide air for combustion of natural gas propane or oil for heating a water furnace for use of hot water for a home or a building.
  • 6. Use of heat exchange unit to recover heat from the exhaust gases to pre heat the air pumped from soil for the combustion of natural gas, propane or oil for heating of a hot water furnace for use of a hot water for home or a building.
  • 7. Use of ground water for cooling air inside the building in a heat exchanger to reduce the cost of air conditioning.
  • 8. Use of Municipal tap water for cooling air inside the building in a heat exchanger to reduce the cost of air conditioning.
  • 9. Use of cooling tower to cool water pumped from the ground for cooling air circulated in a home or a building.
  • 10. Use of air to remove heat from the refrigeration system and to discharge it outside of a home or a building to reduce the load on air conditioning system.
  • 11. Use of ground water from the process for lawn sprinkling or garden use.
  • 12. Use of Municipal tap water from the process for lawn sprinkling or garden use.
  • 13. Use of direct use of air from soil air extraction pump to cool a home or a building after treatment.
  • 14. To cool space between dry wall and outside of the building by use of cool air from a soil air extraction pump.
  • 15. To cool space between dry wall and outside of the building by use of Municipal tap water.
  • 16. To cool space between dry wall and outside of the building by use of ground water.
  • 17. Heating the space between the dry wall and the outside of the building by heat recovery from exhaust flue gases by circulation of hot water in the space between dry wall and the outside of the building.
  • 18. Warming the space up to 50 degrees F. by pumping outside cold air and warming it to 50 degree F. or above by Municipal tap water or ground water between the space of dry wall and the outside of the building.
  • 19. Further warming of the air described in claim # 18 by running through a heat exchanger to recover the heat from the flue gases.
  • 20. To feed warm air by heating ground air by running through heat exchanger to recover heat from flue gases and feed this warm air to heating furnace.
  • 21. To feed warm air by heating ground air by running through heat exchanger to recover heat from flue gases and feed this warm air to hot water furnace.