Reducing execution times in an on-demand network code execution system using saved machine states

Information

  • Patent Grant
  • 11836516
  • Patent Number
    11,836,516
  • Date Filed
    Monday, August 23, 2021
    3 years ago
  • Date Issued
    Tuesday, December 5, 2023
    a year ago
Abstract
Systems and methods are described for reducing latency to service requests to execute code on an on-demand code execution system by maintaining snapshots of virtual machine instances in a ready state to execute such code. A user may submit code to the on-demand code execution system, which code depends on other software, such as an operating system or runtime. The on-demand code execution system can generate a virtual machine instance provisioned with the other software, and initialize the instance into a state at which it is ready to execute the code. The on-demand code execution system can then generate a snapshot of the state of the instance, and halt the instance. When a request to execute the code is received, the snapshot can be used to quickly restore the instance. The code can then be executed within the instance, reducing the need to initialize the instance or maintain the instance in an executing state.
Description
BACKGROUND

Computing devices can utilize communication networks to exchange data. Companies and organizations operate computer networks that interconnect a number of computing devices to support operations or to provide services to third parties. The computing systems can be located in a single geographic location or located in multiple, distinct geographic locations (e.g., interconnected via private or public communication networks). Specifically, data centers or data processing centers, herein generally referred to as a “data center,” may include a number of interconnected computing systems to provide computing resources to users of the data center. The data centers may be private data centers operated on behalf of an organization or public data centers operated on behalf, or for the benefit of, the general public.


To facilitate increased utilization of data center resources, virtualization technologies allow a single physical computing device to host one or more instances of virtual machines that appear and operate as independent computing devices to users of a data center. With virtualization, the single physical computing device can create, maintain, delete, or otherwise manage virtual machines in a dynamic manner. In turn, users can request computer resources from a data center, including single computing devices or a configuration of networked computing devices, and be provided with varying numbers of virtual machine resources.


In some scenarios, virtual machine instances may be configured according to a number of virtual machine instance types to provide specific functionality. For example, various computing devices may be associated with different combinations of operating systems or operating system configurations, virtualized hardware resources and software applications to enable a computing device to provide different desired functionalities, or to provide similar functionalities more efficiently. These virtual machine instance type configurations are often contained within a device image, which includes static data containing the software (e.g., the OS and applications together with their configuration and data files, etc.) that the virtual machine will run once started. The device image is typically stored on the disk used to create or initialize the instance. Thus, a computing device may process the device image in order to implement the desired software configuration.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram depicting an illustrative environment in which an on-demand code execution system can operate to execute tasks corresponding to code, which may be submitted by users of the on-demand code execution system, and to reduce times for executing code by generating snapshots of virtual machine instances initialized to execute the code;



FIG. 2 depicts a general architecture of a computing device providing a snapshot management system that may function to generate snapshots of virtual machine instances initialized to execute the code on the on-demand code execution system of FIG. 1;



FIG. 3 is a flow diagram depicting illustrative interactions for generating a snapshot of a virtual machine instance on the on-demand code execution system of FIG. 1 at a point in time that the virtual machine instance is initialized to execute user-submitted code;



FIG. 4 is a flow diagram depicting illustrative interactions for utilizing a snapshot of a virtual machine instance to support execution of user-submitted code on the on-demand code execution system of FIG. 1; and



FIG. 5 is a flow chart depicting an illustrative routine for generating task-specific snapshots on the on-demand code execution system of FIG. 1, which snapshots may be used to rapidly execute tasks on the system.





DETAILED DESCRIPTION

Generally described, aspects of the present disclosure relate to an on-demand code execution system enabling rapid execution of code, which may be supplied by users of the on-demand code execution system. An on-demand code execution system may also be known as a “serverless” execution system or a request-drive code execution system. More specifically, embodiments of the present disclosure relate to reducing the latency (or “cold start” time) for execution of code, by utilizing snapshots or other system images to save a state of a virtual machine instance at a point in time when the instance is initialized to execute code.


As described in detail herein, the on-demand code execution system may provide a network-accessible service enabling users to submit or designate computer-executable code to be executed by virtual machine instances on the on-demand code execution system. Each set of code on the on-demand code execution system may define a “task,” and implement specific functionality corresponding to that task when executed on a virtual machine instance of the on-demand code execution system. Individual implementations of the task on the on-demand code execution system may be referred to as an “execution” of the task (or a “task execution”). The on-demand code execution system can further enable users to trigger execution of a task based on a variety of potential events, such as detecting new data at a network-based storage system, transmission of an application programming interface (“API”) call to the on-demand code execution system, or transmission of a specially formatted hypertext transport protocol (“HTTP”) packet to the on-demand code execution system. Thus, users may utilize the on-demand code execution system to execute any specified executable code “on-demand,” without requiring configuration or maintenance of the underlying hardware or infrastructure on which the code is executed. Further, the on-demand code execution system may be configured to execute tasks in a rapid manner (e.g., in under 100 milliseconds [ms]), thus enabling execution of tasks in “real-time” (e.g., with little or no perceptible delay to an end user).


To maintain security on behalf of users, tasks executions are generally partitioned on the on-demand code execution system, such that code executing on behalf of one user executes independently of (and cannot without authorization access the data of) code executing on behalf of another user. One known mechanism for partitioning software executions is the use of virtual machine instances, which provide an operating-system level “barrier” between executions. Because each virtual machine instance is implemented as a separate machine, very high levels of security can be provided between code executions. However, virtual machine instances also impose overhead for task executions in terms of both time and computing resources used to execute tasks. Specifically, because virtual machine instances can represent an entire machine state (in a manner similar to a machine running on “bare metal” hardware), the virtual machine instance must generally be booted into its operating system and placed into an initialized state prior to executing code. This startup time can require seconds of time, significantly increasing the latency of the on-demand code execution system in executing code (e.g., as compared to a desired execution time of 50-100 milliseconds or less).


The on-demand code execution system may implement a variety of technologies to reduce this latency. Illustratively, the on-demand code execution system may be configured to maintain within a number virtual machine instances in an executing state, into which code of a task may be provisioned and executed. Because these execution environments are maintained as executing on the on-demand code execution system, the execution of a task may require little more than provisioning the execution environment with code and executing that code. While maintaining a virtual machine in an executing state can facilitate more rapid execution of a task, it also utilizes some amount of working computing resources of a host computing device, such as central processing unit (CPU) cycles and registers, random access memory (RAM), and the like. Moreover, different tasks may require different configurations of a virtual machine instance in order to execute code of the task, such as different operating systems, runtime environments, dependency objects, and the like. Thus, it may not be possible or practical of the on-demand code execution system to maintain executing virtual machine instances suitable for all tasks. In contrast, maintaining virtual machine instances in a completely halted state (e.g., shut down), can utilize fewer or no working resources, and can instead utilize non-working resources (e.g., resources not required for currently executing processes) such as long term memory storage provided by a hard disk drive (HDD). However, maintaining an environment in a non-executing state may require that the environment first be initialized prior to executing a task within the environment, thus potentially delaying execution of the task. The time to initialize the virtual machine from a shut down to initialized state is sometimes referred to as “cold start” time. Cold start times for virtual machine instances generally increase the latency required on the on-demand code execution system to execute code in response to a user request for that execution.


To address this trade-off, embodiments of the on-demand code execution system can be configured to reduce the latency to execute tasks by maintaining virtual machine instances for a task in an initialized but non-executing state. Specifically, the on-demand code execution system can be configured, on submission of a task, to generate a virtual machine instance for the task, and to initialize that virtual machine instance into a state at which the instance is prepared to execute the task. Initialization can include, for example, booting an operating system of the instance (e.g., a LINUX™ or MICROSOFT WINDOWS™ operating systems), provisioning the operating system with a runtime for code, initializing the runtime (e.g., by starting a JAVA™ virtual machine within the operating system), provisioning the instance with code of a task, etc. In some instances, initialization can further include executing a portion of the code designated within the code as an initialization portion. For example, code of a task may when executed, implement the initialization portion to prepare for receiving arguments to process via execution of the code. The on-demand code execution system may therefore initialize a virtual machine instance for the code by implementing the initialization portion of the code, such that the code is in a state at which it is prepared to receive arguments. To reduce load on computing resources of the on-demand code execution system, the system may then save a machine state of the virtual machine instance, such as by creating a snapshot of the virtual machine instance at a point in time that it is initialized. Thereafter, when a request to execute the task (e.g., to process arguments) is received, the on-demand code execution system can start the virtual machine instance using the snapshot, in order to quickly bring the instance into an initialized state. The task can then be executed within the instance at a low latency. One potential concern with the above-noted techniques is that of the data required to maintain the variety of snapshots on the on-demand code execution system. For example, it may be most beneficial on the system to maintain, for each task on the system, a corresponding snapshot of a virtual machine instance initialized to execute the task. However, a significant amount of data may be required to independently represent the state of a virtual machine instance initialized to execute each distinct task. It may thus be infeasible to maintain snapshots for each task on the on-demand code execution system on a host device with computational capacity to execute a corresponding virtual machine. While these snapshots could potentially be stored in a centralized storage system, such as network attached storage (NAS), transmission of a snapshot from such a storage system to a host device would again add latency to the time required by the on-demand code execution system.


To address this concern, the on-demand code execution system may be configured, in accordance with embodiments of the present disclosure, to store states of initialized virtual machine instances as cascading snapshots, with multiple different and later machine states represented at least partly by reference to a prior machine state shared by each later state. Illustratively, consider an instance in which two different tasks on the on-demand code execution system, each corresponding to different user-submitted code, depend on common software to execute the respective code. For example, both sets of user-submitted code may be written in the PYTHON™ programming language, and the on-demand code execution system may support execution of Python code via a Python runtime executed within a Linux operating system. As such, while the states of two virtual machine instances initialized to execute the different sets of code may be different, a significant overlap would also exist between those states (e.g., with respect to the Linux operating system and the Python runtime, perhaps). To reduce the amount of data needed to store the machine states, the on-demand code execution system may generate incremental state information for a virtual machine instance in various different states, enabling the different states of instances initialized for various tasks to be described with reference to a prior common state. Illustratively, in the instance described above (where different user-submitted code depends on a common runtime and operating system), the on-demand code execution system may generate a virtual machine instance, boot the operating system on the instance and initialize the runtime, and then generate a “core” snapshot the virtual machine instance. The on-demand code execution system may then initialize the first user-submitted code on the instance, and generate a “first task” snapshot, which represents a state of the virtual machine instance initialized to execute the first user-submitted code as a difference in the state of the virtual machine instance from the state reflected in the first snapshot. Specifically, because the first task snapshot reflects the initialized state of the virtual machine as a difference from the core snapshot, the amount of information within the first task snapshot itself can be expected to be relatively small (e.g., on the order of a size of the first user-submitted code). Thereafter, the on-demand code execution system can return the virtual machine instance to the state reflected in the core snapshot, and initialize the instance the second user-submitted code on the instance. The on-demand code execution system may then generate a “second task” snapshot representing a state of the virtual machine instance initialized to execute the second user-submitted code as a difference in the state of the virtual machine instance from the state reflected in the core snapshot. A similar process may be repeated for each additional task that relies on the runtime and operating system initialized in the core snapshot. Because a majority of machine state information is captured in the core snapshot, the size of each task snapshot can be relatively small. For this reason, it is feasible to configure a host device to store state information for a wide variety of virtual machine instances, each initialized to execute different tasks on the on-demand code execution system, by storing a “core” snapshot and task-specific snapshot for each different task.


In some embodiments, the concept of differential snapshots may be expanded to reflect multiple layers of virtual machine states. For example, a first “OS” snapshot may be created for a virtual machine instance initialized with a given operating system, and multiple “runtime” snapshots may be created with various runtimes initialized on that operating system. Each runtime snapshot may be used to generate task-specific snapshots for tasks intended to execute based on that runtime. Such a configuration can enable a single host device to support a wide variety of machine states, reflecting virtual machine instances each initialized to execute a different task, even when such tasks depend on various combinations of operating systems, runtimes, or other software. Moreover, because the amount of information in a task-specific snapshot may be relatively small, such snapshots can be quickly and easily transferred between devices. For example, each host device within an on-demand code execution system may be provisioned with one or more core snapshots (or potentially combinations of OS and runtime snapshots) and maintain a set of task-specific snapshots for tasks expected to be executed on that host in the near future. Should a reconfiguration of host devices become necessary, or should a host be instructed to execute a task for which it does not current hold a task-specific snapshot, a task-specific snapshot can be retrieved by the host over a network in a time similar to retrieving the code of the task itself. Thus, host devices within the on-demand code execution system can be enabled to rapidly execute code via a reduction in cold start time for virtual machine instances, without significantly increasing latency for “exception” cases in which task information must be provisioned onto the machine at the time of a request to execute the task.


In some instances, a task may be utilized by more than one user. For example, a first user may author a task and make the task available to be executed by a variety of different users. To ensure security of user data, the on-demand code execution system can be configured to ensure that executions of the same task between different users are provided with isolated execution environments. For example, a first user may execute a given task in a first virtual machine instance, a second user may execute the same task in a second virtual machine instance, etc. One advantage of the task-specific virtual machine instance snapshots described herein is the ability to quickly generate, from a common task-specific snapshot, a variety of different user-specific environments. In particular, as requests to execute a task are received from various users, a single task-specific snapshot may be used as a basis to generate different virtual machine instances for each user. In this manner, the time required to initialize a virtual machine instances to execute a task can be “amortized” across multiple requests.


In some instances, the state of a user-specific virtual machine instance (e.g., for a given task) may be maintained as a user-specific snapshot of that instance. Thereafter, if subsequent requests to execute a task are received from a user, the user-specific snapshot may be used to restore the user-specific virtual machine instance. In one embodiment, the time required to restore a user-specific virtual machine instance may be reduced, by maintaining an “ancestor” virtual machine instance in a primary memory (e.g., RAM) of a host device, which ancestor instance formed a basis for multiple later instances. For example, an ancestor instance may correspond to a task-specific snapshot, from which multiple user-specific instances (and corresponding snapshots) were created. As such, a host may maintain one or more copies of an ancestor instance in primary memory, and when a user request to execute a task is received, the host may modify the ancestor instance to match the user's specific instance. The modification may, for example, be based on the user-specific snapshot for the user, which reflects a “delta” in machine state between the ancestor instance state recorded in the task-specific snapshot and the user-specific instance. Because this delta may be fairly small (e.g., reflecting a change in processor registers and some “working set” of primary memory), modification of the ancestor instance can be completed very quickly. Thereafter, the instance (which after modification represents the user-specific instance) can be started in order to facilitate execution of the task within the user-specific instance. In some embodiments, multiple copies of an ancestor instance may be maintained in a primary memory on a host (e.g., in a non-executing state), any of which may be modified to represent an environment associated with a user. Thus, as user requests to execute a task are received, ancestor instances may be rapidly allocated to those users to facilitate execution of the task.


The general execution of tasks on the on-demand code execution system will now be discussed. As described in detail herein, the on-demand code execution system may provide a network-accessible service enabling users to submit or designate computer-executable source code to be executed by virtual machine instances on the on-demand code execution system. Each set of code on the on-demand code execution system may define a “task,” and implement specific functionality corresponding to that task when executed on a virtual machine instance of the on-demand code execution system. Individual implementations of the task on the on-demand code execution system may be referred to as an “execution” of the task (or a “task execution”). The on-demand code execution system can further enable users to trigger execution of a task based on a variety of potential events, such as detecting new data at a network-based storage system, transmission of an application programming interface (“API”) call to the on-demand code execution system, or transmission of a specially formatted hypertext transport protocol (“HTTP”) packet to the on-demand code execution system. Thus, users may utilize the on-demand code execution system to execute any specified executable code “on-demand,” without requiring configuration or maintenance of the underlying hardware or infrastructure on which the code is executed. Further, the on-demand code execution system may be configured to execute tasks in a rapid manner (e.g., in under 100 milliseconds [ms]), thus enabling execution of tasks in “real-time” (e.g., with little or no perceptible delay to an end user). To enable this rapid execution, the on-demand code execution system can include one or more virtual machine instances that are “pre-warmed” or pre-initialized (e.g., booted into an operating system and executing a complete or substantially complete runtime environment) and configured to enable execution of user-defined code, such that the code may be rapidly executed in response to a request to execute the code, without delay caused by initializing the virtual machine instance. Thus, when an execution of a task is triggered, the code corresponding to that task can be executed within a pre-initialized virtual machine in a very short amount of time.


Specifically, to execute tasks, the on-demand code execution system described herein may maintain a pool of executing virtual machine instances that are ready for use as soon as a user request is received. Due to the pre-initialized nature of these virtual machines, delay (sometimes referred to as latency) associated with executing the user code (e.g., instance and language runtime startup time) can be significantly reduced, often to sub-100 millisecond levels. Illustratively, the on-demand code execution system may maintain a pool of virtual machine instances on one or more physical computing devices, where each virtual machine instance has one or more software components (e.g., operating systems, language runtimes, libraries, etc.) loaded thereon. When the on-demand code execution system receives a request to execute the program code of a user (a “task”), which specifies one or more computing constraints for executing the program code of the user, the on-demand code execution system may select a virtual machine instance for executing the program code of the user based on the one or more computing constraints specified by the request and cause the program code of the user to be executed on the selected virtual machine instance. The program codes can be executed in isolated containers that are created on the virtual machine instances, or may be executed within a virtual machine instance isolated from other virtual machine instances acting as environments for other tasks. Since the virtual machine instances in the pool have already been booted and loaded with particular operating systems and language runtimes by the time the requests are received, the delay associated with finding compute capacity that can handle the requests (e.g., by executing the user code in one or more containers created on the virtual machine instances) can be significantly reduced.


Because the number of different virtual machine instances that a host computing device may execute is limited by the computing resources of that host (and particularly by highly utilized resources such as CPU cycles and RAM), the number of virtual machine instances in a pool on the on-demand code execution system is similarly limited. Thus, in accordance with the embodiments of the present disclosure, the on-demand code execution system may generate initialized execution environments for a large number of tasks (e.g., more environments than could be maintained as executing on the on-demand code execution system at a given point in time), and maintain those environments in a non-running state, by saving state information of those environments. When a request to execute a task on the system is received, the system can utilize the state information to rapidly generate an environment pre-initialized to support execution of the task. Thereafter, the state environment of the environment can once again be saved, and the environment can be placed into a non-executing state. In this manner, environments for any number of tasks may be held in a pre-initialized state and used to enable rapid generation of task code, without requiring the on-demand code execution system to maintain such environments in an executing state.


For illustrative purposes, embodiments of the present disclosure are described with reference to a specific type of execution environment: a virtual machine instance. As used herein, the term “virtual machine instance” is intended to refer to an execution of software or other executable code that emulates hardware to provide an environment or platform on which software may execute (an “execution environment”). Virtual machine instances are generally executed by hardware devices, which may differ from the physical hardware emulated by the virtual machine instance. For example, a virtual machine may emulate a first type of processor and memory while being executed on a second type of processor and memory. Thus, virtual machines can be utilized to execute software intended for a first execution environment (e.g., a first operating system) on a physical device that is executing a second execution environment (e.g., a second operating system). In some instances, hardware emulated by a virtual machine instance may be the same or similar to hardware of an underlying device. For example, a device with a first type of processor may implement a plurality of virtual machine instances, each emulating an instance of that first type of processor. Thus, virtual machine instances can be used to divide a device into a number of logical sub-devices (each referred to as a “virtual machine instance”). While virtual machine instances can generally provide a level of abstraction away from the hardware of an underlying physical device, this abstraction is not required. For example, assume a device implements a plurality of virtual machine instances, each of which emulate hardware identical to that provided by the device. Under such a scenario, each virtual machine instance may allow a software application to execute code on the underlying hardware without translation, while maintaining a logical separation between software applications running on other virtual machine instances. This process, which is generally referred to as “native execution,” may be utilized to increase the speed or performance of virtual machine instances. Other techniques that allow direct utilization of underlying hardware, such as hardware pass-through techniques, may be used, as well.


While a virtual machine executing an operating system is described herein as one example of an execution environment, other execution environments are also possible. For example, tasks or other processes may be executed within a software “container,” which provides a runtime environment without itself providing virtualization of hardware. Containers may be implemented within virtual machines to provide additional security, or may be run outside of a virtual machine instance. Thus, examples made with reference to virtual machine instances, unless otherwise specified, may be modified to utilize other types of execution environments.


Moreover, embodiments of the present disclosure are described with reference to snapshots as an example of a system image, which stores the state of an execution environment at a given point in time. Snapshotting of virtual machines is a known technique, and thus will not be described in detail herein. However, in brief, snapshotting may generate a data file which stores a state of a virtual machine instance at a point in time, including state elements such as a content of CPU registers of the virtual machine instance, contents of RAM of the virtual machine instances, states of pages within RAM (e.g., as “dirty” or “clean”), and any other information required to return the virtual machine instances to its prior state at a later point in time. While snapshots are described herein as one example of a system image that stores state information, other system images are also known in the art. For example, a checkpoint data file may be utilized to store the state of a software container execution environment. Thus, examples made with reference to snapshots, unless otherwise specified, may be modified to utilize other types of system images.


As will be appreciated by one of skill in the art in light of the present disclosure, the embodiments disclosed herein improves the ability of computing systems, such as on-demand code execution systems, to execute code in an efficient manner. Specifically, embodiments of the present disclosure increase the efficiency of computing resource usage of such systems by enabling execution of tasks within already initialized execution environments, and also enabling storage of state information for such environments while minimizing memory required to store that information. Moreover, the presently disclosed embodiments address technical problems inherent within computing systems; specifically, the limited nature of computing resources with which to execute code and the inefficiencies caused by maintaining unutilized environments in an executing state. These technical problems are addressed by the various technical solutions described herein, including the execution of tasks within execution environments for pre-initialized for such tasks, and the storage of those environments as cascading state information. Thus, the present disclosure represents an improvement on existing data processing systems and computing systems in general.


The foregoing aspects and many of the attendant advantages of this disclosure will become more readily appreciated as the same become better understood by reference to the following description, when taken in conjunction with the accompanying drawings.



FIG. 1 is a block diagram of an illustrative operating environment 100 in which an on-demand code execution system 110 may operate based on communication with user computing devices 102, auxiliary services 106, and network-based data storage services 108. By way of illustration, various example user computing devices 102 are shown in communication with the on-demand code execution system 110, including a desktop computer, laptop, and a mobile phone. In general, the user computing devices 102 can be any computing device such as a desktop, laptop or tablet computer, personal computer, wearable computer, server, personal digital assistant (PDA), hybrid PDA/mobile phone, mobile phone, electronic book reader, set-top box, voice command device, camera, digital media player, and the like. The on-demand code execution system 110 may provide the user computing devices 102 with one or more user interfaces, command-line interfaces (CLIs), application programing interfaces (APIs), and/or other programmatic interfaces for generating and uploading user-executable code (e.g., including metadata identifying dependency code objects for the uploaded code), invoking the user-provided code (e.g., submitting a request to execute the user codes on the on-demand code execution system 110), scheduling event-based jobs or timed jobs, tracking the user-provided code, and/or viewing other logging or monitoring information related to their requests and/or user codes. Although one or more embodiments may be described herein as using a user interface, it should be appreciated that such embodiments may, additionally or alternatively, use any CLIs, APIs, or other programmatic interfaces.


The illustrative environment 100 further includes one or more auxiliary services 106, which can interact with the on-demand code execution environment 110 to implement desired functionality on behalf of a user. Auxiliary services 106 can correspond to network-connected computing devices, such as servers, which generate data accessible to the one-demand code execution environment 110 or otherwise communicate to the one-demand code execution environment 110. For example, the auxiliary services 106 can include web services (e.g., associated with the user computing devices 102, with the on-demand code execution system 110, or with third parties), databases, really simple syndication (“RSS”) readers, social networking sites, or any other source of network-accessible service or data source. In some instances, auxiliary services 106 may be associated with the on-demand code execution system 110, e.g., to provide billing or logging services to the on-demand code execution system 110. In some instances, auxiliary services 106 actively transmit information, such as API calls or other task-triggering information, to the on-demand code execution system 110. In other instances, auxiliary services 106 may be passive, such that data is made available for access by the on-demand code execution system 110. For example, components of the on-demand code execution system 110 may periodically poll such passive data sources, and trigger execution of tasks within the on-demand code execution system 110 based on the data provided. While depicted in FIG. 1 as distinct from the user computing devices 102 and the on-demand code execution system 110, in some embodiments, various auxiliary services 106 may be implemented by either the user computing devices 102 or the on-demand code execution system 110.


The illustrative environment 100 further includes one or more network-based data storage services 108, configured to enable the on-demand code execution system 110 to store and retrieve data from one or more persistent or substantially persistent data sources. Illustratively, the network-based data storage services 108 may enable the on-demand code execution system 110 to store information corresponding to a task, such as code or metadata, to store additional code objects representing dependencies of tasks, to retrieve data to be processed during execution of a task, and to store information (e.g., results) regarding that execution. The network-based data storage services 108 may represent, for example, a relational or non-relational database. In another example, the network-based data storage services 108 may represent a network-attached storage (NAS), configured to provide access to data arranged as a file system. The network-based data storage services 108 may further enable the on-demand code execution system 110 to query for and retrieve information regarding data stored within the on-demand code execution system 110, such as by querying for a number of relevant files or records, sizes of those files or records, file or record names, file or record creation times, etc. In some instances, the network-based data storage services 108 may provide additional functionality, such as the ability to separate data into logical groups (e.g., groups associated with individual accounts, etc.). While shown as distinct from the auxiliary services 106, the network-based data storage services 108 may in some instances also represent a type of auxiliary service 106.


The user computing devices 102, auxiliary services 106, and network-based data storage services 108 may communicate with the on-demand code execution system 110 via a network 104, which may include any wired network, wireless network, or combination thereof. For example, the network 104 may be a personal area network, local area network, wide area network, over-the-air broadcast network (e.g., for radio or television), cable network, satellite network, cellular telephone network, or combination thereof. As a further example, the network 104 may be a publicly accessible network of linked networks, possibly operated by various distinct parties, such as the Internet. In some embodiments, the network 104 may be a private or semi-private network, such as a corporate or university intranet. The network 104 may include one or more wireless networks, such as a Global System for Mobile Communications (GSM) network, a Code Division Multiple Access (CDMA) network, a Long Term Evolution (LTE) network, or any other type of wireless network. The network 104 can use protocols and components for communicating via the Internet or any of the other aforementioned types of networks. For example, the protocols used by the network 104 may include Hypertext Transfer Protocol (HTTP), HTTP Secure (HTTPS), Message Queue Telemetry Transport (MQTT), Constrained Application Protocol (CoAP), and the like. Protocols and components for communicating via the Internet or any of the other aforementioned types of communication networks are well known to those skilled in the art and, thus, are not described in more detail herein.


The on-demand code execution system 110 is depicted in FIG. 1 as operating in a distributed computing environment including several computer systems that are interconnected using one or more computer networks (not shown in FIG. 1). The on-demand code execution system 110 could also operate within a computing environment having a fewer or greater number of devices than are illustrated in FIG. 1. Thus, the depiction of the on-demand code execution system 110 in FIG. 1 should be taken as illustrative and not limiting to the present disclosure. For example, the on-demand code execution system 110 or various constituents thereof could implement various Web services components, hosted or “cloud” computing environments, and/or peer to peer network configurations to implement at least a portion of the processes described herein.


Further, the on-demand code execution system 110 may be implemented directly in hardware or software executed by hardware devices and may, for instance, include one or more physical or virtual servers implemented on physical computer hardware configured to execute computer executable instructions for performing various features that will be described herein. The one or more servers may be geographically dispersed or geographically co-located, for instance, in one or more data centers. In some instances, the one or more servers may operate as part of a system of rapidly provisioned and released computing resources, often referred to as a “cloud computing environment.”


In the example of FIG. 1, the on-demand code execution system 110 is illustrated as connected to the network 104. In some embodiments, any of the components within the on-demand code execution system 110 can communicate with other components of the on-demand code execution system 110 via the network 104. In other embodiments, not all components of the on-demand code execution system 110 are capable of communicating with other components of the virtual environment 100. In one example, only the frontend 120 (which may in some instances represent multiple frontends 120) may be connected to the network 104, and other components of the on-demand code execution system 110 may communicate with other components of the environment 100 via the frontends 120.


In FIG. 1, users, by way of user computing devices 102, may interact with the on-demand code execution system 110 to provide executable code, and establish rules or logic defining when and how such code should be executed on the on-demand code execution system 110, thus establishing a “task.” For example, a user may wish to run a piece of code in connection with a web or mobile application that the user has developed. One way of running the code would be to acquire virtual machine instances from service providers who provide infrastructure as a service, configure the virtual machine instances to suit the user's needs, and use the configured virtual machine instances to run the code. In order to avoid the complexity of this process, the user may alternatively provide the code to the on-demand code execution system 110, and request that the on-demand code execution system 110 execute the code. The on-demand code execution system 110 can handle the acquisition and configuration of compute capacity (e.g., containers, instances, etc.) based on the code execution request, and execute the code using the compute capacity. The on-demand code execution system 110 may automatically scale up and down based on the volume, thereby relieving the user from the burden of having to worry about over-utilization (e.g., acquiring too little computing resources and suffering performance issues) or under-utilization (e.g., acquiring more computing resources than necessary to run the codes, and thus overpaying).


To enable interaction with the on-demand code execution system 110, the system 110 includes one or more frontends 120, which enable interaction with the on-demand code execution system 110. In an illustrative embodiment, the frontends 120 serve as a “front door” to the other services provided by the on-demand code execution system 110, enabling users (via user computing devices 102) to provide, request execution of, and view results of computer executable code. The frontends 120 include a variety of components to enable interaction between the on-demand code execution system 110 and other computing devices. For example, each frontend 120 may include a request interface providing user computing devices 102 with the ability to upload or otherwise communication user-specified code to the on-demand code execution system 110 and to thereafter request execution of that code. In one embodiment, the request interface communicates with external computing devices (e.g., user computing devices 102, auxiliary services 106, etc.) via a graphical user interface (GUI), CLI, or API. The frontends 120 process the requests and makes sure that the requests are properly authorized. For example, the frontends 120 may determine whether the user associated with the request is authorized to access the user code specified in the request.


References to user code as used herein may refer to any program code (e.g., a program, routine, subroutine, thread, etc.) written in a specific program language. In the present disclosure, the terms “code,” “user code,” and “program code,” may be used interchangeably. Such user code may be executed to achieve a specific function, for example, in connection with a particular web application or mobile application developed by the user. As noted above, individual collections of user code (e.g., to achieve a specific function) are referred to herein as “tasks,” while specific executions of that code (including, e.g., compiling code, interpreting code, or otherwise making the code executable) are referred to as “task executions” or simply “executions.” Tasks may be written, by way of non-limiting example, in JavaScript (e.g., node.js), Java, Python, and/or Ruby (and/or another programming language). Tasks may be “triggered” for execution on the on-demand code execution system 110 in a variety of manners. In one embodiment, a user or other computing device may transmit a request to execute a task may, which can generally be referred to as “call” to execute of the task. Such calls may include the user code (or the location thereof) to be executed and one or more arguments to be used for executing the user code. For example, a call may provide the user code of a task along with the request to execute the task. In another example, a call may identify a previously uploaded task by its name or an identifier. In yet another example, code corresponding to a task may be included in a call for the task, as well as being uploaded in a separate location (e.g., storage of an auxiliary service 106 or a storage system internal to the on-demand code execution system 110) prior to the request being received by the on-demand code execution system 110. As noted above, the code for a task may reference additional code objects maintained at the on-demand code execution system 110 by use of identifiers of those code objects, such that the code objects are combined with the code of a task in an execution environment prior to execution of the task. The on-demand code execution system 110 may vary its execution strategy for a task based on where the code of the task is available at the time a call for the task is processed. A request interface of the frontend 120 may receive calls to execute tasks as Hypertext Transfer Protocol Secure (HTTPS) requests from a user. Also, any information (e.g., headers and parameters) included in the HTTPS request may also be processed and utilized when executing a task. As discussed above, any other protocols, including, for example, HTTP, MQTT, and CoAP, may be used to transfer the message containing a task call to the request interface 122.


A call to execute a task (which may also be referred to as a request to execute the task) may specify one or more third-party libraries (including native libraries) to be used along with the user code corresponding to the task. In one embodiment, the call may provide to the on-demand code execution system 110 a file containing the user code and any libraries (and/or identifications of storage locations thereof) corresponding to the task requested for execution. In some embodiments, the call includes metadata that indicates the program code of the task to be executed, the language in which the program code is written, the user associated with the call, and/or the computing resources (e.g., memory, etc.) to be reserved for executing the program code. For example, the program code of a task may be provided with the call, previously uploaded by the user, provided by the on-demand code execution system 110 (e.g., standard routines), and/or provided by third parties. Illustratively, code not included within a call or previously uploaded by the user may be referenced within metadata of the task by use of a URI associated with the code. In some embodiments, such resource-level constraints (e.g., how much memory is to be allocated for executing a particular user code) are specified for the particular task, and may not vary over each execution of the task. In such cases, the on-demand code execution system 110 may have access to such resource-level constraints before each individual call is received, and the individual call may not specify such resource-level constraints. In some embodiments, the call may specify other constraints such as permission data that indicates what kind of permissions or authorities that the call invokes to execute the task. Such permission data may be used by the on-demand code execution system 110 to access private resources (e.g., on a private network). In some embodiments, individual code objects may also be associated with permissions or authorizations. For example, a third party may submit a code object and designate the object as readable by only a subset of users. The on-demand code execution system 110 may include functionality to enforce these permissions or authorizations with respect to code objects.


In some embodiments, a call may specify the behavior that should be adopted for handling the call. In such embodiments, the call may include an indicator for enabling one or more execution modes in which to execute the task referenced in the call. For example, the call may include a flag or a header for indicating whether the task should be executed in a debug mode in which the debugging and/or logging output that may be generated in connection with the execution of the task is provided back to the user (e.g., via a console user interface). In such an example, the on-demand code execution system 110 may inspect the call and look for the flag or the header, and if it is present, the on-demand code execution system 110 may modify the behavior (e.g., logging facilities) of the container in which the task is executed, and cause the output data to be provided back to the user. In some embodiments, the behavior/mode indicators are added to the call by the user interface provided to the user by the on-demand code execution system 110. Other features such as source code profiling, remote debugging, etc. may also be enabled or disabled based on the indication provided in a call.


To manage requests for code execution, the frontend 120 can include an execution queue (not shown in FIG. 1), which can maintain a record of requested task executions. Illustratively, the number of simultaneous task executions by the on-demand code execution system 110 is limited, and as such, new task executions initiated at the on-demand code execution system 110 (e.g., via an API call, via a call from an executed or executing task, etc.) may be placed on the execution queue 124 and processed, e.g., in a first-in-first-out order. In some embodiments, the on-demand code execution system 110 may include multiple execution queues, such as individual execution queues for each user account. For example, users of the on-demand code execution system 110 may desire to limit the rate of task executions on the on-demand code execution system 110 (e.g., for cost reasons). Thus, the on-demand code execution system 110 may utilize an account-specific execution queue to throttle the rate of simultaneous task executions by a specific user account. In some instances, the on-demand code execution system 110 may prioritize task executions, such that task executions of specific accounts or of specified priorities bypass or are prioritized within the execution queue. In other instances, the on-demand code execution system 110 may execute tasks immediately or substantially immediately after receiving a call for that task, and thus, the execution queue may be omitted.


As noted above, tasks may be triggered for execution at the on-demand code execution system 110 based on explicit calls from user computing devices 102 (e.g., as received at the request interface). Alternatively or additionally, tasks may be triggered for execution at the on-demand code execution system 110 based on data retrieved from one or more auxiliary services 106 or network-based data storage services 108. To facilitate interaction with auxiliary services 106, the frontend 120 can include a polling interface (not shown in FIG. 1), which operates to poll auxiliary services 106 or data storage services 108 for data. Illustratively, the polling interface may periodically transmit a request to one or more user-specified auxiliary services 106 or data storage services 108 to retrieve any newly available data (e.g., social network “posts,” news articles, files, records, etc.), and to determine whether that data corresponds to a user-established criteria triggering execution a task on the on-demand code execution system 110. Illustratively, criteria for execution of a task may include, but is not limited to, whether new data is available at the auxiliary services 106 or data storage services 108, the type or content of the data, or timing information corresponding to the data. In some instances, the auxiliary services 106 or data storage services 108 may function to notify the frontend 120 of the availability of new data, and thus the polling service may be unnecessary with respect to such services.


In addition to tasks executed based on explicit user calls and data from auxiliary services 106, the on-demand code execution system 110 may in some instances operate to trigger execution of tasks independently. For example, the on-demand code execution system 110 may operate (based on instructions from a user) to trigger execution of a task at each of a number of specified time intervals (e.g., every 10 minutes).


The frontend 120 can further include an output interface (not shown in FIG. 1) configured to output information regarding the execution of tasks on the on-demand code execution system 110. Illustratively, the output interface may transmit data regarding task executions (e.g., results of a task, errors related to the task execution, or details of the task execution, such as total time required to complete the execution, total data processed via the execution, etc.) to the user computing devices 102 or to auxiliary services 106, which may include, for example, billing or logging services. The output interface may further enable transmission of data, such as service calls, to auxiliary services 106. For example, the output interface may be utilized during execution of a task to transmit an API request to an external service 106 (e.g., to store data generated during execution of the task).


In some embodiments, the on-demand code execution system 110 may include multiple frontends 120. In such embodiments, a load balancer (not shown in FIG. 1) may be provided to distribute the incoming calls to the multiple frontends 120, for example, in a round-robin fashion. In some embodiments, the manner in which the load balancer distributes incoming calls to the multiple frontends 120 may be based on the location or state of other components of the on-demand code execution system 110. For example, a load balancer may distribute calls to a geographically nearby frontend 120, or to a frontend with capacity to service the call. In instances where each frontend 120 corresponds to an individual instance of another component of the on-demand code execution system, such as the active pool 140A described below, the load balancer may distribute calls according to the capacities or loads on those other components. Calls may in some instances be distributed between frontends 120 deterministically, such that a given call to execute a task will always (or almost always) be routed to the same frontend 120. This may, for example, assist in maintaining an accurate execution record for a task, to ensure that the task executes only a desired number of times. For example, calls may be distributed to load balance between frontend 120. Other distribution techniques, such as anycast routing, will be apparent to those of skill in the art.


The on-demand code execution system further includes one or more worker managers 140 that manage the execution environments, such as virtual machine instances 150 (shown as VM instance 150A and 150B, generally referred to as a “VM”), used for servicing incoming calls to execute tasks, and that manage the memory states of execution environments. While the following will be described with reference to virtual machine instances 150 as examples of such environments, embodiments of the present disclosure may utilize other environments, such as software containers. In the example illustrated in FIG. 1, each worker manager 140 manages an active pool 140A, which is a group (sometimes referred to as a pool) of virtual machine instances 150 executing on one or more physical host computing devices that are initialized to execute a given task (e.g., by having the code of the task and any dependency data objects loaded into the instance). The active pool 140 illustratively is implemented using primary memory (e.g., RAM) of host devices implementing or under control of the worker manager 140.


Although the virtual machine instances 150 are described here as being assigned to a particular task, in some embodiments, the instances may be assigned to a group of tasks, such that the instance is tied to the group of tasks and any tasks of the group can be executed within the instance. For example, the tasks in the same group may belong to the same security group (e.g., based on their security credentials) such that executing one task in a container on a particular instance 150 after another task has been executed in another container on the same instance does not pose security risks. As another example, the tasks of the group may share common dependencies, such that an environment used to execute one task of the group can be rapidly modified to support execution of another task within the group.


Once a triggering event to execute a task has been successfully processed by a frontend 120, the frontend 120 passes a request to a worker manager 140 to execute the task. In one embodiment, each frontend 120 may be associated with a corresponding worker manager 140 (e.g., a worker manager 140 co-located or geographically nearby to the frontend 120) and thus, the frontend 120 may pass most or all requests to that worker manager 140. In another embodiment, a frontend 120 may include a location selector configured to determine a worker manager 140 to which to pass the execution request. In one embodiment, the location selector may determine the worker manager 140 to receive a call based on hashing the call, and distributing the call to a worker manager 140 selected based on the hashed value (e.g., via a hash ring). Various other mechanisms for distributing calls between worker managers 140 will be apparent to one of skill in the art.


Thereafter, the worker manager 140 may modify a virtual machine instance 150 (if necessary) and execute the code of the task within the instance 150. As shown in FIG. 1, respective instances 150 may have operating systems (OS) 152 (shown as OS 152A and 152B), language runtimes 154 (shown as runtime 154A and 154B), and user code 156 (shown as user code 156A and 156B). The OS 152, runtime 154, and user code 156 may collectively enable execution of the user code to implement the task. In some instances, each VM 150 may be associated with additional information, such as state information, maintained across individual executions of a task. For example, when initially created, a VM 150 may initialize the OS 152, and each time the user code 156 is executed in the VM 150, a state of the VM 150 may change. State of a VM 150 may be maintained, for example, within registers of a virtual CPU of the VM 150, within RAM of the VM 150, within a virtual disk drive of the VM 150, or the like.


In accordance with embodiments of the present disclosure, the on-demand code execution system 110 further includes a snapshot management system 160 configured to generate snapshots associated with VMs 150. Specifically, and as will be described in more detail below, the snapshot management system 160 can be configured to generate a snapshot reflecting a state of a VM 150 at a point in time in which the VM 150 is initialized to begin execution of a task, which snapshot is generally referred to herein as a task-specific snapshot. (Note that, as stated above, while the virtual machine instances 150 are described here as being assigned to a particular task, in some embodiments, the instances may be assigned to a group of tasks, such that the instance is tied to the group of tasks and any tasks of the group can be executed within the instance. In such instances, a task-specific snapshot may be more accurately referred to as a task group-specific snapshot.) In some embodiments, task-specific snapshots may be generated based on other snapshots, such as runtime- or OS-specific snapshots. Multiple task-specific snapshots may incorporate state information by reference to one or more common runtime- or OS-specific snapshots, reducing the data required to represent a given task-specific snapshot.


Snapshots generated by the snapshot management system 160 can be stored in a snapshot data store 164 for access by worker managers 140. The snapshot data store 164 may correspond to any persistent or substantially persistent data storage device, including (but not limited to) hard disk drives, solid state disk drives, network attached storage, etc., or any combination thereof.


Each worker manager 140 may be provisioned with snapshots from the snapshot data store 164, such that a virtual machine instance 150 that is pre-initialized for a given task can be quickly generated from a snapshot and placed into the active pool 140A. In one embodiment, task-specific snapshots within the snapshot data store 164 are distributed across worker managers 140 such that all or a large portion of tasks on the on-demand code execution system 110 (which portion may include, for example, tasks that are frequently requested to be execute) are represented by task-specific snapshots stored at a worker manager 140. As such, when a request to execute a task is received, the frontend 120 may route instructions to execute the task to a worker manager 140 associated with a locally stored task-specific snapshot. In one embodiment, task-specific snapshots are distributed among worker managers 140 based on reference to common reference snapshots, such as an OS- or runtime-specific snapshot. Thus, duplication of OS- or runtime-specific snapshots among worker managers 140 can be reduced, reducing the overall storage needs of the on-demand code execution system 110.


Snapshots on a worker manager 140 are illustratively stored within secondary memory 144 of the worker manager 140. Secondary memory 144 can be contrasted to primary memories, such as RAM, supporting execution of VMs 150 within the active pool. In one embodiment, secondary memories 144 correspond to one or more lower tier memories, which are less rapid than primary memory, but which are illustratively greater in capacity. The secondary memories 144 can correspond, for example, to 3D XPOINT, flash memory, magnetic storage, or network-attached storage.


While some functionalities are generally described herein with reference to an individual component of the on-demand code execution system 110, other components or a combination of components may additionally or alternatively implement such functionalities. For example, while the snapshot management system 160 is depicted in FIG. 1 as a distinct device, in some instances, one or more worker managers 140 may implemented functionalities corresponding to the snapshot management system 160. Similarly, while a distinct snapshot data store 164 is shown in FIG. 1, in some embodiments the snapshot data store 164 may be implemented as a logical construct divided across underlying data storage on the worker managers 140 (e.g., the secondary memories 144). Thus, the specific configuration of elements within FIG. 1 is intended to be illustrative.



FIG. 2 depicts a general architecture of a computing system (referenced as snapshot management system 160) that operates to generate snapshots of pre-initialized virtual machine instances within the on-demand code execution system 110. The general architecture of the snapshot management system 160 depicted in FIG. 2 includes an arrangement of computer hardware and software modules that may be used to implement aspects of the present disclosure. The hardware modules may be implemented with physical electronic devices, as discussed in greater detail below. The snapshot management system 160 may include many more (or fewer) elements than those shown in FIG. 2. It is not necessary, however, that all of these generally conventional elements be shown in order to provide an enabling disclosure. Additionally, the general architecture illustrated in FIG. 2 may be used to implement one or more of the other components illustrated in FIG. 1.


As illustrated, the snapshot management system 160 includes a processing unit 290, a network interface 292, a computer readable medium drive 294, and an input/output device interface 296, all of which may communicate with one another by way of a communication bus. The network interface 292 may provide connectivity to one or more networks or computing systems. The processing unit 290 may thus receive information and instructions from other computing systems or services via the network 104. The processing unit 290 may also communicate to and from memory 280 and further provide output information for an optional display (not shown) via the input/output device interface 296. The input/output device interface 296 may also accept input from an optional input device (not shown).


The memory 280 may contain computer program instructions (grouped as modules in some embodiments) that the processing unit 290 executes in order to implement one or more aspects of the present disclosure. The memory 280 generally includes random access memory (RAM), read only memory (ROM) and/or other persistent, auxiliary or non-transitory computer readable media. The memory 280 may store an operating system 284 that provides computer program instructions for use by the processing unit 290 in the general administration and operation of the sidecar configuration system 160. The memory 280 may further include computer program instructions and other information for implementing aspects of the present disclosure. For example, in one embodiment, the memory 280 includes a user interface unit 282 that generates user interfaces (and/or instructions therefor) for display upon a computing device, e.g., via a navigation and/or browsing interface such as a browser or application installed on the computing device. In addition, the memory 280 may include and/or communicate with one or more data repositories (not shown), for example, to access user program codes and/or libraries.


In addition to and/or in combination with the user interface unit 282, the memory 280 may include a virtual machine configuration unit 202 and a snapshot generation unit 204 that may be executed by the processing unit 290. In one embodiment, the virtual machine configuration unit 202 and the snapshot generation unit 204 individually or collectively implement various aspects of the present disclosure, e.g., generating a virtual machine instance provisioned with software enabling execution of a task, initializing the virtual machine instance to a point from which it can begin executing code of the task, creating a snapshot of the state of the instance at that point, etc., as described further below.


While the virtual machine configuration unit 202 and the snapshot generation unit 204 are shown in FIG. 2 as part of the snapshot management system 160, in other embodiments, all or a portion of the virtual machine configuration unit 202 and the sidecar configuration unit 204 may be implemented by other components of the on-demand code execution system 110 and/or another computing device. For example, in certain embodiments of the present disclosure, another computing device in communication with the on-demand code execution system 110 may include several modules or components that operate similarly to the modules and components illustrated as part of the snapshot management system 160.


In some embodiments, the snapshot management system 160 may further include components other than those illustrated in FIG. 2. For example, the memory 280 may include software enabling the snapshot management unit 160 to operate as a worker manager 140 within the on-demand code execution system 110. Examples of such software are described in more detail in U.S. Pat. No. 9,323,556, entitled “PROGRAMMATIC EVENT DETECTION AND MESSAGE GENERATION FOR REQUESTS TO EXECUTE PROGRAM CODE,” and filed Sep. 30, 2014 (the “'556 Patent”), the entirety of which is hereby incorporated by reference.


With reference to FIG. 3, illustrative interactions are depicted for generating state information for a pre-initialized virtual machine instance on the on-demand code execution system 110, which state information may later be used to recreate the pre-initialized virtual machine instance, supporting low latency execution of code.


The interactions of FIG. 3 begin at (1), where a user device 102 submits a task to the frontend 120 of the on-demand code execution system 120. Illustratively, the submission may include source code to be executed on execution of the task, as well as dependency information for the task (e.g., an operating system, runtime, libraries, etc.). Various embodiments for managing dependency information for a task are described within U.S. patent application Ser. No. 15/895,449, entitled “DEPENDENCY HANDLING IN AN ON-DEMAND NETWORK CODE EXECUTION SYSTEM” and filed Feb. 13, 2018 (the “'449 Application”), the entirety of which is incorporated by reference herein.


At (2), the frontend 120 transmits a request to the snapshot management system 160 to generate a snapshot of a pre-initialized virtual machine instance for the task. The snapshot management system 160, in turn, generates the pre-initialized virtual machine instance. Specifically, at (3), the snapshot management generates a virtual machine instance, and at (4), the snapshot management unit initializes the virtual machine instance into a state at which the instance is ready to begin executing the task code.


In one embodiment, generation of a virtual machine instance (e.g., at (3)) can include creation of a wholly new instance. For example, the snapshot management system may create a new virtual machine instance and provision the virtual machine instance with dependency objects of the task, such as by installing an operating system and runtime onto the virtual machine instance. In another embodiment, generation of a virtual machine instance can be based on a snapshot of the state of a pre-existing virtual machine instance that is appropriate for execution of the task. For example, where the task depends on a specific operating system and the snapshot management system 160 has previously created and snapshotted a virtual machine instance having the specific operating system installed, the snapshot management system 160 may generate a virtual machine instance from the snapshot. Use of a preexisting snapshot may both reduce the time to generate a virtual machine instance (e.g., by eliminating the need to install an operating system, etc.), and reduce the size of state information for the later-created snapshot of the pre-initialized virtual machine instance (e.g., since that state information can be saved in the form of a snapshot that references the preexisting snapshot). In some instances, the snapshot management system 160 implements interaction (3) by first determining whether one or more pre-existing snapshots exists that reflects a virtual machine instance provisioned with dependency objects of the present task. If such snapshots do exit, the snapshot management system 160 may select the snapshot that represents a virtual machine instance provisioned with a greatest amount of the dependency objects of the present task. Illustratively, where the dependency objects of a task form a “graph” for the task (e.g., as depicted in FIG. 6 of the '449 Application, the snapshot management system 160 may select the snapshot that represents the most nodes of that graph. The snapshot management system 160 may then generate a virtual machine instance from the selected snapshot. When such a snapshot does not exist, the snapshot management system 160 may instead generate a new virtual machine instance for the task, provisioned with the dependency objects of the task.


In some instances, the snapshot management system 160 may generate one or more snapshots during the generation of a new virtual machine instance, or modification of an instance generated from a pre-existing snapshot. For example, each time a virtual machine instance is provisioned with a new dependency object, the snapshot management system 160 may determine whether a pre-existing snapshot exists that reflects a virtual machine instance provisioned with the new dependency object. If such a pre-existing snapshot does not exist, the snapshot management system 160 may take a snapshot of the virtual machine instance provisioned with a new dependency object. In this manner, a “web” of snapshots may be created which reflects a graph of dependency objects for tasks on the system 110. For example, the snapshot management system 160 may operate to generate snapshots for virtual machine instances provisioned with each dependency object within a dependency object graph, such that later instances can be quickly created based on a most similar snapshot.


Initialization of the instance into a ready state (e.g., at (4)), can generally include any operations required to be completed on the instance prior to servicing an individual request to execute the task. Initialization can thus include provisioning the virtual machine instance with code of the task and any dependency objects, booting an operating system, loading a runtime environment, and the like. In some instances, a portion of code of a task may be required to be executed prior to servicing an individual request to execute the task. For example, code of a task may include a designated “initialization” portion, to be executed prior to passing arguments of a request to the code of the task. Thus, initialization may include executing a portion of the code of the task, such that an execution of that code reaches a point at which arguments from an execution request can be accepted by the execution.


Thereafter, at (6), the snapshot management system 160 stores the snapshot within the snapshot data store 164. The snapshot data store 164 may further include any prior snapshots that acted as a basis for creation of the new snapshot, as well as information identifying dependencies between the new snapshot and any prior snapshots. The snapshot data store 164 may thus serve as a centralized repository for snapshots of pre-initialized virtual machine instances. As such, at (7), one or more worker managers 140 can be provisioned with the snapshots, to enable rapid execution of code within the pre-initialized instances.


While the interactions of FIG. 3 are described with respect to creation of a snapshot for a single, these interactions may be repeated any number of times. Illustratively, the interactions of FIG. 3 may be repeated for each task submitted to the on-demand code execution system 110, such that a snapshot exists that holds the state of a virtual machine instance pre-initialized to execute each respective task. Because multiple snapshots may reference a prior snapshot, such as an OS- or runtime-specific snapshot, the total data required to store such a variety of snapshots on the snapshot data store 164 can be reduced.


With reference to FIG. 4, illustrative interactions will be described for utilizing a snapshot of a virtual machine instance in a pre-initialized state to support rapid execution of a task on the on-demand code execution system 110.


The interactions of FIG. 4 begin at (1), where a user device 102 submits to the frontend 120 a request to execute a task on the system 110. The request may correspond, for example, to an API call transmitted by the user device 102. While a request from a user device 102 is illustratively shown in FIG. 4, requests to execute tasks on the system 110 may be received from any number of devices, including auxiliary services 106 or devices within the system 110 (e.g., based on pre-determined trigger conditions).


At (2), the frontend 120 identifies a worker manager 140 that has stored, within secondary memory 144, a snapshot storing the state of a virtual machine instance pre-initialized to execute the task. Illustratively, the frontend 120 may maintain a mapping of worker managers 140 to snapshots stored at each worker manager 140, and may utilize this mapping to identify the worker manager 140. The mapping may be based, for example, on dependencies of the task requested to be executed. As such, if the task depends on a specific runtime, for example, the frontend 120 may identify a worker manager 140 which stores snapshots of tasks that depend on that runtime. While identification of a worker manager 140 associated with a snapshot of a virtual machine pre-initialized for a task is shown in FIG. 4 as a function of the frontend 120, in some instances, worker managers 140 may additionally or alternatively implement this function. For example, a frontend 120 may distribute task execution instructions without regard to identification of a snapshot, and a worker manager 140 may redirect the request to another worker manager 140 if that initial worker manager 140 does not contain an appropriate snapshot for the request.


After identification of a worker manager 140, the frontend at (3) distributes to the worker manager 140 instructions to execute the task. The worker manager 140, in turn at (4), identifies a task-specific snapshot for the task within secondary memory 144. As noted above, the task-specific snapshot can identify state information for a virtual machine instance at a point that the instance is initialized and ready to process a request to execute code of the task. The snapshot may thus reflect the state of a machine after it has booted an operating system, initialized a runtime, executed an initialization portion of user-submitted code, etc.


Thereafter, at (5), the worker manager 140 utilizes the identified task-specific snapshot to generate an initialized virtual machine instance 302 within the active pool 140A. Generation of a virtual machine instance from a snapshot may also be referred to as “restoring” the virtual machine instance whose state is reflected in the snapshot.


The worker manager 140 can then, at (6), execute the task within the initialized VM 302. Execution of the task may include, for example, passing arguments submitted within the request to execute the task to source code of the task, which code is executed to implement functionality corresponding to the task. Because the initialized VM 302 is in a state at which it can begin executing a task, interactions (5) and (6) can occur in rapid succession, without requiring that initialization occur on the VM 302. In one example, the VM 302 need not load an operating system, install or initialize a runtime, allocate memory for task code, or the like. Moreover, because generation of an initialized VM 302 from a task-specific snapshot can require mere milliseconds, a total time to begin execution of the task from a time at which the request is received can be similarly low (e.g., at 50-100 milliseconds or less).


While the interactions of FIG. 4 are depicted with respect to a single request to execute a task, these interactions may be repeated for each request to execute a task on the on-demand code execution system. In this manner, a single task-specific snapshot may facilitate generation of a large number of different virtual machine instances, thus amortizing the costs associated with initializing the virtual machine instance recorded in the snapshot. Illustratively, each virtual machine instance may be associated with a different user on the on-demand code execution system, ensuring privacy of users' data with respect to other users.


Various modifications to the above-discussed interactions are contemplated within the present disclosure. For example, in one embodiment, rather than generating a new virtual machine instance from a snapshot, the worker manager 140 may maintain a virtual machine instance in the active pool 140A (e.g., as executing or non-executing) in a state other than that reflected in a task-specific snapshot, and on receiving instructions to execute a task, utilize the task-specific snapshot to modify the maintained virtual machine instance into the state reflected in that snapshot. Modification of an existing virtual machine instance may beneficially reduce the time to create an instance in the state reflected in the task-specific snapshot. In one embodiment, the executing virtual machine instance may be created based on a less specific snapshot, such as an OS- or runtime-specific snapshot used as a basis for creating a set of task-specific snapshots. Thus, when a worker manager 140 obtains instructions to execute a task, the worker manager 140 may modify the virtual machine instance initialized with an OS or runtime to further initialize the instance to execute the task. Because the task illustratively depends on the OS or runtime, the modifications to state of the virtual machine instance such that it matches the state recorded in the task-specific snapshot may be minimal. As an additional example, where the on-demand code execution system 110 maintains user-specific snapshots for a task (e.g., each recording a state of a virtual machine instance initialized to execute a task and dedicated to executions on behalf of a given user), the active pool 140A may maintain a virtual machine instance in a state recorded in a task-specific snapshot and, on receiving instructions to execute a task on behalf of a given user, modify the maintained instance to match the state recorded in a user-specific snapshot for that user. This process may speed the system 110 in providing a user-specific instance, since the changes between a user-specific snapshot reflecting a user-specific virtual machine instance and the task-specific snapshot initially used to create that user-specific virtual machine instance can be expected to be small.


With reference to FIG. 5 one illustrative routine 500 for generating task-specific snapshots on an on-demand code execution system 110 will be described. The routine 500 may be carried out, for example, by the snapshot management system 160 of FIG. 1.


The routine 500 begins at block 502, where the snapshot management system 160 identifies a task for which a task-specific snapshot should be created, as well as dependencies of that task. The task may be identified, for example, subsequent to submission of the task to a frontend 120 of the system 110. Dependencies may be identified based on information submitted in conjunction with a task, such as a specific operating system, runtime, library, etc., on which the code of the task depends.


At block 504, the snapshot management system 160 determines whether a snapshot exists for a dependency of the task. Illustratively, where the task depends on a number of dependency objects represented as nodes within a graph, the snapshot management system 160 may determine whether a snapshot exists recording a state of a machine initialized with at least one such node. Where more than one snapshot exists, the snapshot management system 160 may select the snapshot with a highest number of nodes within that graph. Accordingly, if the task for example depends on a specific operating system, runtime, and library, and a snapshot exists storing a state of a virtual machine instance initialized with that operating system, runtime, and library, the snapshot management system 160 may identify that snapshot at block 504.


In some embodiments, snapshots may be associated with permissions based on those dependency objects initialized in the instance whose state is recorded in the snapshot. For example, if a given snapshot is a task-specific snapshot, the snapshot may inherit permissions of the task. In general, the permissions of a snapshot may be set as the minimum permissions associated with each dependency object initialized in the instance whose state is recorded in the snapshot. Implementation of block 504 may thus further include selecting a snapshot to which an owner of a current task has permission to access. Such an implementation may prevent, for example, a task-specific snapshot associated with a task of a first user from being selected as a basis for creating a task-specific snapshot associated with a task of a second user. In other instances, such scenarios may be prevented by selecting, at block 504, snapshots initialized only with dependency objects of a current task. In such an implementation, a snapshot reflecting an instance initialized with three dependency objects would not serve as a basis for a task depending on only two of those three dependencies, for example.


If a snapshot exists for a dependency of the task, the routine 500 proceeds to block 512, where a virtual machine instance is generated based on that snapshot. Alternatively, if such a snapshot does not exist, the routine 500 proceeds to block 506, were a virtual machine instances is created without use of such a snapshot (e.g., as a new virtual machine instance). At block 508, that virtual machine instance is initialized with dependencies of the task, such as an operating system, runtimes, etc. Illustratively, initialization may include installing each dependency, and bringing the instance to a state at which each dependency is running and ready to support execution of other code. Optionally, at block 510, a snapshot may be taken of the virtual machine instance initialized with the dependencies. This snapshot may form the basis for later creation of task-specific snapshots. In some instances, blocks 508 and 510 may be implemented iteratively, such that after initialization of each dependency object, a new snapshot is created. In this manner, a variety of snapshots can be generated reflecting different combinations of dependency objects.


In either instance, the routine 500 the proceeds to block 514, where the virtual machine instance is initialized to execute the task. Initialization may include, for example, loading code of the task into the instance and readying dependency objects, such as runtimes, to execute that code. In some instances, initialization may include executing a portion of the code, such as an initialization portion.


Once the instance is initialized into a ready state to support a request for execution of the task code, a task-specific snapshot of the instance is generated at block 516. As noted above, generation of a snapshot can include recording a full state of the instance, including values such as CPU registers, RAM contents, disk contents, and the like. As discussed above, the snapshot can later be used to generate a new virtual machine, or modify an existing virtual machine, such that it's state matches that of the instance reflected in the snapshot. Because that instance is initialized to support execution of a task, the instance is not required to undergo initialization in response to a request to execute the task. As such, the instance can support rapid execution of a task.


Thereafter, at block 518, the instance is halted, thus freeing resources of the system 110 to support other instances executing other tasks. In this manner, a pre-initialized virtual machine instance can be maintained at the system 110 for a task, without consuming resources of the system 100 to maintain that instance in a running state. When a request to execute a task is received, that task can be quickly executed by restoring the instance from the snapshot, as described above. The instance can then be moved once again to a non-executing state, by creating and storing a snapshot of the image. Because the data required to store each snapshot is expected to be relatively small (e.g., reflecting only a difference from a more general OS- or runtime-specific snapshot), the system 110 can be configured to effectively maintain instances specific to all or nearly all tasks on the system 110, without being required to continuously execute those instances. As noted above, the task-specific snapshot may then be used to rapidly recreate numerous environments in which to execute the task, without requiring repetition of initialization phases for the environments.


All of the methods and processes described above may be embodied in, and fully automated via, software code modules executed by one or more computers or processors. The code modules may be stored in any type of non-transitory computer-readable medium or other computer storage device. Some or all of the methods may alternatively be embodied in specialized computer hardware.


Conditional language such as, among others, “can,” “could,” “might” or “may,” unless specifically stated otherwise, are otherwise understood within the context as used in general to present that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.


Disjunctive language such as the phrase “at least one of X, Y or Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to present that an item, term, etc., may be either X, Y or Z, or any combination thereof (e.g., X, Y and/or Z). Thus, such disjunctive language is not generally intended to, and should not, imply that certain embodiments require at least one of X, at least one of Y or at least one of Z to each be present.


Unless otherwise explicitly stated, articles such as ‘a’ or ‘an’ should generally be interpreted to include one or more described items. Accordingly, phrases such as “a device configured to” are intended to include one or more recited devices. Such one or more recited devices can also be collectively configured to carry out the stated recitations. For example, “a processor configured to carry out recitations A, B and C” can include a first processor configured to carry out recitation A working in conjunction with a second processor configured to carry out recitations B and C.


Any routine descriptions, elements or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or elements in the routine. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, or executed out of order from that shown or discussed, including substantially synchronously or in reverse order, depending on the functionality involved as would be understood by those skilled in the art.


It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.

Claims
  • 1. A computer-implemented method comprising: generating a first software container provisioned with (i) code submitted by a user for execution on an on-demand code execution system and (ii) a runtime on which execution of the code depends, wherein generating the first software container comprises: selecting a first checkpoint, wherein the first checkpoint reflects a state of a second software container provisioned with the runtime, and wherein the first checkpoint is selected from a plurality of checkpoints based at least in part on a dependency on which execution of the code depends, which dependency is initialized on the second software container whose state is captured within the first checkpoint,generating the first software container from the first checkpoint of the second software container, andprovisioning the first software container with additional dependency data required to place the runtime into a ready state for execution of the code;initializing the runtime on the first software container into the ready state for execution of the code;generating a second checkpoint of the first software container at a time that the runtime on the first software container is initialized into the ready state for execution of the code and prior to execution of the code in the first software container;storing the second checkpoint as an execution-ready checkpoint for the code;obtaining a request to execute the code, wherein the request corresponds to the user of the on-demand code execution system; andin response to the request to execute the code, generating, from the execution-ready checkpoint for the code that reflects the checkpoint of the first software container at a time that the runtime on the first software container is initialized into the ready state for execution of the code and prior to execution of the code in the first software container, a third software container in the ready state for execution of the code, including the initialized runtime, and executing the code within the third software container.
  • 2. The computer-implemented method of claim 1, further comprising halting execution of the first software container after generating the second checkpoint, wherein generating the third software container from the execution-ready checkpoint for the code comprises generating a new software container and updating the new software container, using the execution-ready checkpoint for the code, to match the ready state.
  • 3. The computer-implemented method of claim 1, wherein generating the third software container from the execution-ready checkpoint for the code comprises modifying an executing software container, using the execution-ready checkpoint for the code, to match the ready state.
  • 4. The computer-implemented method of claim 1, wherein generating the first software container provisioned with the runtime comprises provisioning the first software container with additional dependency data required to place the runtime into the ready state for execution of the code.
  • 5. The computer-implemented method of claim 1, wherein initializing the runtime on the first software container into the ready state for execution of the code comprises executing an initialization portion of the code within the first software container.
  • 6. One or more non-transitory computer-readable media comprising instructions that, when executed by a computing system, cause the computing system to: generate a first software container provisioned with (i) code submitted by a user for execution on an on-demand code execution system and (ii) a runtime on which execution of the code depends, wherein the instructions cause the computing system to generate the first software container at least partly by: identifying a dependency on which execution of the code depends,selecting a first checkpoint storing a state of a software container initialized with the dependency, wherein the first checkpoint is selected from a plurality of checkpoints based at least in part on the dependency on which execution of the code depends, which dependency is initialized on the software container whose state is captured within the first checkpoint, andgenerating the first software container based at least in part on the first checkpoint;initialize the runtime on the first software container into a ready state for execution of the code;generate a second checkpoint of the first software container at a time that the runtime on the first software container is initialized into the ready state for execution of the code and prior to execution of the code in the first software container;store the second checkpoint as an execution-ready checkpoint for the code;obtain a request to execute the code; andin response to the request to execute the code, generate, from the execution-ready checkpoint, a second software container in the ready state for execution of the code, including the initialized runtime, and execute the code within the second software container.
  • 7. The non-transitory computer-readable media of claim 6, wherein the instructions cause the computing system to initialize the runtime on the first software container into the ready state for execution of the code based at least partly on executing an initialization portion of the code.
  • 8. The non-transitory computer-readable media of claim 7, wherein the request to execute the code comprises a parameter to be passed to an execution of the code, and wherein executing an initialization portion of the code places the execution of the code in a state corresponding to a location, within the code, at which the parameter is processed by the execution.
  • 9. The non-transitory computer-readable media of claim 6, wherein the instructions cause the computing system to generate the second software container from the execution-ready checkpoint for the code at least partly by at least one of generating a new software container and updating the new software container to match the ready state or modifying an executing software container to match the ready state.
  • 10. A system comprising: a data store including an execution-ready checkpoint for code submitted by a user for execution on an on-demand code execution system, wherein execution of the code depends on a runtime, and wherein the execution-ready checkpoint for the code records a state of a first software container provisioned with the code at a time that the runtime on the first software container is initialized into a ready state for executing the code and prior to execution of the code in the first software container; andone or more computing devices configured with specific executable instructions to: generate the execution-ready checkpoint for the code, wherein to generate the execution-ready checkpoint for the code, the one or more computing devices are configured with specific executable instructions to: identify a dependency on which execution of the code depends,select a first checkpoint, wherein the first checkpoint stores a state of a container initialized with the dependency, and wherein the first checkpoint is selected from a plurality of checkpoints based at least in part on the dependency on which execution of the code depends, which dependency is initialized on a virtual machine instance whose state is captured within the first checkpoint,generate the first software container based at least partly on the first checkpoint, andgenerate the execution-ready checkpoint for the code from a second checkpoint taken of the first software container;obtain a request to execute the code, the request corresponding to the user of the on-demand code execution system; andin response to the request to execute the code, generate, from the execution-ready checkpoint, a second software container including the initialized runtime and execute the code within the second software container.
  • 11. The system of claim 10, wherein the one or more computing devices are further configured to initialize the runtime on the first software container into the ready state for execution of the code at least partly by executing an initialization portion of the code.
  • 12. The system of claim 11, wherein the request to execute the code comprises a parameter to be passed to an execution of the code, and wherein executing an initialization portion of the code places the execution of the code in a state corresponding to a location, within the code, at which the parameter is processed by the execution.
  • 13. The system of claim 10, wherein to generate the second software container from the execution-ready checkpoint for the code, the one or more computing devices are further configured with specific executable instructions to at least one of: modify an executing software container to match the ready state or generate a new software container and update the new software container to match the ready state.
  • 14. The system of claim 10, wherein the runtime is at least one of an interpreter or a compiler for the code.
US Referenced Citations (939)
Number Name Date Kind
4949254 Shorter Aug 1990 A
5283888 Dao et al. Feb 1994 A
5835764 Platt et al. Nov 1998 A
5970488 Crowe et al. Oct 1999 A
5983197 Enta Nov 1999 A
6237005 Griffin May 2001 B1
6260058 Hoenninger et al. Jul 2001 B1
6385636 Suzuki May 2002 B1
6463509 Teoman et al. Oct 2002 B1
6501736 Smolik et al. Dec 2002 B1
6523035 Fleming et al. Feb 2003 B1
6549936 Hirabayashi Apr 2003 B1
6708276 Yarsa et al. Mar 2004 B1
7036121 Casabona et al. Apr 2006 B1
7308463 Taulbee et al. Dec 2007 B2
7340522 Basu et al. Mar 2008 B1
7360215 Kraiss et al. Apr 2008 B2
7558719 Donlin Jul 2009 B1
7577722 Khandekar et al. Aug 2009 B1
7590806 Harris et al. Sep 2009 B2
7640574 Kim et al. Dec 2009 B1
7665090 Tormasov et al. Feb 2010 B1
7707579 Rodriguez Apr 2010 B2
7730464 Trowbridge Jun 2010 B2
7774191 Berkowitz et al. Aug 2010 B2
7823186 Pouliot Oct 2010 B2
7831464 Nichols et al. Nov 2010 B1
7870153 Croft et al. Jan 2011 B2
7886021 Scheifler et al. Feb 2011 B2
7949677 Croft et al. May 2011 B2
7954150 Croft et al. May 2011 B2
8010679 Low et al. Aug 2011 B2
8010990 Ferguson et al. Aug 2011 B2
8024564 Bassani et al. Sep 2011 B2
8046765 Cherkasova et al. Oct 2011 B2
8051180 Mazzaferri et al. Nov 2011 B2
8051266 DeVal et al. Nov 2011 B2
8065676 Sahai et al. Nov 2011 B1
8065682 Baryshnikov et al. Nov 2011 B2
8095931 Chen et al. Jan 2012 B1
8127284 Meijer et al. Feb 2012 B2
8146073 Sinha Mar 2012 B2
8166304 Murase et al. Apr 2012 B2
8171473 Lavin May 2012 B2
8201026 Bornstein et al. Jun 2012 B1
8209695 Pruyne et al. Jun 2012 B1
8219987 Vlaovic et al. Jul 2012 B1
8296267 Cahill et al. Oct 2012 B2
8321554 Dickinson Nov 2012 B2
8321558 Sirota et al. Nov 2012 B1
8336079 Budko et al. Dec 2012 B2
8352608 Keagy et al. Jan 2013 B1
8387075 McCann et al. Feb 2013 B1
8392558 Ahuja et al. Mar 2013 B1
8402514 Thompson et al. Mar 2013 B1
8417723 Lissack et al. Apr 2013 B1
8429282 Ahuja Apr 2013 B1
8448165 Conover May 2013 B1
8479195 Adams et al. Jul 2013 B2
8490088 Tang Jul 2013 B2
8555281 Van Dijk et al. Oct 2013 B1
8560699 Theimer et al. Oct 2013 B1
8566835 Wang et al. Oct 2013 B2
8601323 Tsantilis Dec 2013 B2
8613070 Borzycki et al. Dec 2013 B1
8615589 Adogla et al. Dec 2013 B1
8631130 Jackson Jan 2014 B2
8667471 Wintergerst et al. Mar 2014 B2
8677359 Cavage et al. Mar 2014 B1
8694996 Cawlfield et al. Apr 2014 B2
8700768 Benari Apr 2014 B2
8713093 Upadhyay et al. Apr 2014 B1
8719415 Sirota et al. May 2014 B1
8725702 Raman et al. May 2014 B1
8756322 Lynch Jun 2014 B1
8756696 Miller Jun 2014 B1
8763091 Singh et al. Jun 2014 B1
8769519 Leitman et al. Jul 2014 B2
8793676 Quinn et al. Jul 2014 B2
8799236 Azari et al. Aug 2014 B1
8799879 Wright et al. Aug 2014 B2
8806266 Qu et al. Aug 2014 B1
8806468 Meijer et al. Aug 2014 B2
8806644 McCorkendale et al. Aug 2014 B1
8819679 Agarwal et al. Aug 2014 B2
8825863 Hansson et al. Sep 2014 B2
8825964 Sopka et al. Sep 2014 B1
8839035 Dimitrovich et al. Sep 2014 B1
8850432 Mcgrath et al. Sep 2014 B2
8869300 Singh et al. Oct 2014 B2
8874952 Tameshige et al. Oct 2014 B2
8904008 Calder et al. Dec 2014 B2
8949457 Theroux et al. Feb 2015 B1
8966495 Kulkarni Feb 2015 B2
8972980 Banga et al. Mar 2015 B2
8990807 Wu et al. Mar 2015 B2
8997093 Dimitrov Mar 2015 B2
9002871 Bulkowski et al. Apr 2015 B2
9021501 Li et al. Apr 2015 B2
9026658 Xu et al. May 2015 B2
9027087 Ishaya et al. May 2015 B2
9038068 Engle et al. May 2015 B2
9052935 Rajaa Jun 2015 B1
9086897 Oh et al. Jul 2015 B2
9086924 Barsness et al. Jul 2015 B2
9092837 Bala et al. Jul 2015 B2
9098528 Wang Aug 2015 B2
9104477 Kodialam et al. Aug 2015 B2
9110732 Forschmiedt et al. Aug 2015 B1
9110770 Raju et al. Aug 2015 B1
9111037 Nalis et al. Aug 2015 B1
9112813 Jackson Aug 2015 B2
9116733 Banga et al. Aug 2015 B2
9130900 Tran Sep 2015 B2
9141410 Leafe et al. Sep 2015 B2
9146764 Wagner Sep 2015 B1
9152406 De et al. Oct 2015 B2
9154955 Bertz et al. Oct 2015 B1
9164754 Pohlack Oct 2015 B1
9176871 Serlet Nov 2015 B1
9183019 Kruglick Nov 2015 B2
9189778 Sh. Al-Rashidi Nov 2015 B1
9195520 Turk Nov 2015 B2
9208007 Harper et al. Dec 2015 B2
9218190 Anand et al. Dec 2015 B2
9223561 Orveillon et al. Dec 2015 B2
9223966 Satish et al. Dec 2015 B1
9250893 Blahaerath et al. Feb 2016 B2
9268586 Voccio et al. Feb 2016 B2
9298633 Zhao et al. Mar 2016 B1
9317689 Aissi Apr 2016 B2
9323556 Wagner Apr 2016 B2
9361145 Wilson et al. Jun 2016 B1
9405582 Fuller et al. Aug 2016 B2
9411645 Duan et al. Aug 2016 B1
9413626 Reque et al. Aug 2016 B2
9417918 Chin et al. Aug 2016 B2
9430290 Gupta et al. Aug 2016 B1
9436555 Dornemann et al. Sep 2016 B2
9461996 Hayton et al. Oct 2016 B2
9471775 Wagner et al. Oct 2016 B1
9471776 Gu et al. Oct 2016 B2
9483335 Wagner et al. Nov 2016 B1
9489227 Oh et al. Nov 2016 B2
9497136 Ramarao et al. Nov 2016 B1
9501345 Lietz et al. Nov 2016 B1
9514037 Dow et al. Dec 2016 B1
9537788 Reque et al. Jan 2017 B2
9563613 Dinkel et al. Feb 2017 B1
9575798 Terayama et al. Feb 2017 B2
9588790 Wagner et al. Mar 2017 B1
9594590 Hsu Mar 2017 B2
9596350 Dymshyts et al. Mar 2017 B1
9600312 Wagner et al. Mar 2017 B2
9613127 Rus et al. Apr 2017 B1
9626204 Banga et al. Apr 2017 B1
9628332 Bruno, Jr. et al. Apr 2017 B2
9635132 Lin et al. Apr 2017 B1
9652306 Wagner et al. May 2017 B1
9652617 Evans et al. May 2017 B1
9654508 Barton et al. May 2017 B2
9661011 Van Horenbeeck et al. May 2017 B1
9678773 Wagner et al. Jun 2017 B1
9678778 Youseff Jun 2017 B1
9703681 Taylor et al. Jul 2017 B2
9715402 Wagner et al. Jul 2017 B2
9720661 Gschwind et al. Aug 2017 B2
9720662 Gschwind et al. Aug 2017 B2
9727725 Wagner et al. Aug 2017 B2
9733967 Wagner et al. Aug 2017 B2
9760387 Wagner et al. Sep 2017 B2
9760443 Tarasuk-Levin et al. Sep 2017 B2
9767271 Ghose Sep 2017 B2
9785476 Wagner et al. Oct 2017 B2
9787779 Frank et al. Oct 2017 B2
9798831 Chattopadhyay et al. Oct 2017 B2
9799017 Vermeulen et al. Oct 2017 B1
9811363 Wagner Nov 2017 B1
9811434 Wagner Nov 2017 B1
9817695 Clark Nov 2017 B2
9830175 Wagner Nov 2017 B1
9830193 Wagner et al. Nov 2017 B1
9830449 Wagner Nov 2017 B1
9864636 Patel et al. Jan 2018 B1
9898393 Moorthi et al. Feb 2018 B2
9910713 Wisniewski et al. Mar 2018 B2
9921864 Singaravelu et al. Mar 2018 B2
9928108 Wagner et al. Mar 2018 B1
9929916 Subramanian et al. Mar 2018 B1
9930103 Thompson Mar 2018 B2
9930133 Susarla et al. Mar 2018 B2
9952896 Wagner et al. Apr 2018 B2
9977691 Marriner et al. May 2018 B2
9979817 Huang et al. May 2018 B2
9983982 Kumar et al. May 2018 B1
10002026 Wagner Jun 2018 B1
10002036 Fuchs et al. Jun 2018 B2
10013267 Wagner et al. Jul 2018 B1
10042660 Wagner et al. Aug 2018 B2
10048974 Wagner et al. Aug 2018 B1
10061613 Brooker et al. Aug 2018 B1
10067801 Wagner Sep 2018 B1
10102040 Marriner et al. Oct 2018 B2
10108443 Wagner et al. Oct 2018 B2
10139876 Lu et al. Nov 2018 B2
10140137 Wagner Nov 2018 B2
10146635 Chai Dec 2018 B1
10162655 Tuch et al. Dec 2018 B2
10162672 Wagner et al. Dec 2018 B2
10162688 Wagner Dec 2018 B2
10191861 Steinberg Jan 2019 B1
10193839 Tandon et al. Jan 2019 B2
10198298 Bishop et al. Feb 2019 B2
10203990 Wagner et al. Feb 2019 B2
10248467 Wisniewski et al. Apr 2019 B2
10255090 Tuch et al. Apr 2019 B2
10277708 Wagner et al. Apr 2019 B2
10282229 Wagner et al. May 2019 B2
10303492 Wagner et al. May 2019 B1
10331462 Varda et al. Jun 2019 B1
10346625 Anderson et al. Jul 2019 B2
10353678 Wagner Jul 2019 B1
10353746 Reque et al. Jul 2019 B2
10360025 Foskett et al. Jul 2019 B2
10360067 Wagner Jul 2019 B1
10365985 Wagner Jul 2019 B2
10387177 Wagner et al. Aug 2019 B2
10402231 Marriner et al. Sep 2019 B2
10423158 Hadlich Sep 2019 B1
10437629 Wagner et al. Oct 2019 B2
10445140 Sagar et al. Oct 2019 B1
10459822 Gondi Oct 2019 B1
10496547 Naenko et al. Dec 2019 B1
10503626 Idicula et al. Dec 2019 B2
10528390 Brooker et al. Jan 2020 B2
10531226 Wang et al. Jan 2020 B1
10552193 Wagner et al. Feb 2020 B2
10552442 Lusk et al. Feb 2020 B1
10564946 Wagner et al. Feb 2020 B1
10572375 Wagner Feb 2020 B1
10592269 Wagner et al. Mar 2020 B2
10608973 Kuo et al. Mar 2020 B2
10615984 Wang Apr 2020 B1
10623476 Thompson Apr 2020 B2
10637817 Kuo et al. Apr 2020 B2
10649749 Brooker et al. May 2020 B1
10649792 Kulchytskyy et al. May 2020 B1
10650156 Anderson et al. May 2020 B2
10652350 Wozniak May 2020 B2
10686605 Chhabra et al. Jun 2020 B2
10691498 Wagner Jun 2020 B2
10713080 Brooker et al. Jul 2020 B1
10719367 Kim et al. Jul 2020 B1
10725752 Wagner et al. Jul 2020 B1
10725826 Sagar et al. Jul 2020 B1
10732951 Jayanthi Aug 2020 B2
10733085 Wagner Aug 2020 B1
10754701 Wagner Aug 2020 B1
10776091 Wagner et al. Sep 2020 B1
10776171 Wagner et al. Sep 2020 B2
10817331 Mullen et al. Oct 2020 B2
10824484 Wagner et al. Nov 2020 B2
10831898 Wagner Nov 2020 B1
10846117 Steinberg Nov 2020 B1
10853112 Wagner et al. Dec 2020 B2
10853115 Mullen et al. Dec 2020 B2
10884722 Brooker et al. Jan 2021 B2
10884787 Wagner et al. Jan 2021 B1
10884802 Wagner et al. Jan 2021 B2
10884812 Brooker et al. Jan 2021 B2
10891145 Wagner et al. Jan 2021 B2
10915371 Wagner et al. Feb 2021 B2
10942795 Yanacek et al. Mar 2021 B1
10949237 Piwonka et al. Mar 2021 B2
10956185 Wagner Mar 2021 B2
11010188 Brooker et al. May 2021 B1
11016815 Wisniewski et al. May 2021 B2
11099870 Brooker et al. Aug 2021 B1
11099917 Hussels et al. Aug 2021 B2
11115404 Siefker et al. Sep 2021 B2
11119809 Brooker et al. Sep 2021 B1
11119813 Kasaragod Sep 2021 B1
11119826 Yanacek et al. Sep 2021 B2
11126469 Reque et al. Sep 2021 B2
11132213 Wagner Sep 2021 B1
11146569 Brooker et al. Oct 2021 B1
11159528 Siefker et al. Oct 2021 B2
11188391 Sule Nov 2021 B1
11190609 Siefker et al. Nov 2021 B2
11231955 Shahane et al. Jan 2022 B1
11243819 Wagner Feb 2022 B1
11243953 Wagner et al. Feb 2022 B2
11263034 Wagner et al. Mar 2022 B2
11354169 Marriner et al. Jun 2022 B2
11360793 Wagner et al. Jun 2022 B2
11392497 Brooker et al. Jul 2022 B1
11461124 Wagner et al. Oct 2022 B2
11467890 Wagner Oct 2022 B2
11550713 Piwonka et al. Jan 2023 B1
11561811 Wagner Jan 2023 B2
20010044817 Asano et al. Nov 2001 A1
20020083012 Bush et al. Jun 2002 A1
20020120685 Srivastava et al. Aug 2002 A1
20020172273 Baker et al. Nov 2002 A1
20030071842 King et al. Apr 2003 A1
20030084434 Ren May 2003 A1
20030149801 Kushnirskiy Aug 2003 A1
20030177186 Goodman et al. Sep 2003 A1
20030191795 Bernardin et al. Oct 2003 A1
20030208569 O'Brien et al. Nov 2003 A1
20030229794 James, II et al. Dec 2003 A1
20040003087 Chambliss et al. Jan 2004 A1
20040019886 Berent et al. Jan 2004 A1
20040044721 Song et al. Mar 2004 A1
20040049768 Matsuyama et al. Mar 2004 A1
20040098154 McCarthy May 2004 A1
20040158551 Santosuosso Aug 2004 A1
20040205493 Simpson et al. Oct 2004 A1
20040249947 Novaes et al. Dec 2004 A1
20040268358 Darling et al. Dec 2004 A1
20050027611 Wharton Feb 2005 A1
20050044301 Vasilevsky et al. Feb 2005 A1
20050120160 Plouffe et al. Jun 2005 A1
20050132167 Longobardi Jun 2005 A1
20050132368 Sexton et al. Jun 2005 A1
20050149535 Frey et al. Jul 2005 A1
20050193113 Kokusho et al. Sep 2005 A1
20050193283 Reinhardt et al. Sep 2005 A1
20050237948 Wan et al. Oct 2005 A1
20050257051 Richard Nov 2005 A1
20050262183 Colrain et al. Nov 2005 A1
20050262512 Schmidt et al. Nov 2005 A1
20060010440 Anderson et al. Jan 2006 A1
20060015740 Kramer Jan 2006 A1
20060031448 Chu et al. Feb 2006 A1
20060036941 Neil Feb 2006 A1
20060080678 Bailey et al. Apr 2006 A1
20060123066 Jacobs et al. Jun 2006 A1
20060129684 Datta Jun 2006 A1
20060155800 Matsumoto Jul 2006 A1
20060168174 Gebhart et al. Jul 2006 A1
20060184669 Vaidyanathan et al. Aug 2006 A1
20060200668 Hybre et al. Sep 2006 A1
20060212332 Jackson Sep 2006 A1
20060218601 Michel Sep 2006 A1
20060242647 Kimbrel et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248195 Toumura et al. Nov 2006 A1
20060259763 Cooperstein et al. Nov 2006 A1
20060288120 Hoshino et al. Dec 2006 A1
20070033085 Johnson Feb 2007 A1
20070050779 Hayashi Mar 2007 A1
20070067321 Bissett et al. Mar 2007 A1
20070076244 Suzuki et al. Apr 2007 A1
20070094396 Takano et al. Apr 2007 A1
20070101325 Bystricky et al. May 2007 A1
20070112864 Ben-Natan May 2007 A1
20070130341 Ma Jun 2007 A1
20070174419 O'Connell et al. Jul 2007 A1
20070180449 Croft et al. Aug 2007 A1
20070180450 Croft et al. Aug 2007 A1
20070180493 Croft et al. Aug 2007 A1
20070186212 Mazzaferri et al. Aug 2007 A1
20070192082 Gaos et al. Aug 2007 A1
20070192329 Croft et al. Aug 2007 A1
20070198656 Mazzaferri et al. Aug 2007 A1
20070199000 Shekhel et al. Aug 2007 A1
20070220009 Morris et al. Sep 2007 A1
20070226700 Gal et al. Sep 2007 A1
20070240160 Paterson-Jones Oct 2007 A1
20070255604 Seelig Nov 2007 A1
20070300297 Dawson et al. Dec 2007 A1
20080028409 Cherkasova et al. Jan 2008 A1
20080052401 Bugenhagen et al. Feb 2008 A1
20080052725 Stoodley et al. Feb 2008 A1
20080082977 Araujo et al. Apr 2008 A1
20080104247 Venkatakrishnan et al. May 2008 A1
20080104608 Hyser et al. May 2008 A1
20080115143 Shimizu et al. May 2008 A1
20080126110 Haeberle et al. May 2008 A1
20080126486 Heist May 2008 A1
20080127125 Anckaert et al. May 2008 A1
20080147893 Marripudi et al. Jun 2008 A1
20080178278 Grinstein et al. Jul 2008 A1
20080184340 Nakamura et al. Jul 2008 A1
20080189468 Schmidt et al. Aug 2008 A1
20080195369 Duyanovich et al. Aug 2008 A1
20080201568 Quinn et al. Aug 2008 A1
20080201711 Amir Husain Aug 2008 A1
20080209423 Hirai Aug 2008 A1
20080244547 Wintergerst et al. Oct 2008 A1
20080288940 Adams et al. Nov 2008 A1
20080307098 Kelly Dec 2008 A1
20090006897 Sarsfield Jan 2009 A1
20090013153 Hilton Jan 2009 A1
20090018892 Grey et al. Jan 2009 A1
20090025009 Brunswig et al. Jan 2009 A1
20090034537 Colrain et al. Feb 2009 A1
20090055810 Kondur Feb 2009 A1
20090055829 Gibson Feb 2009 A1
20090070355 Cadarette et al. Mar 2009 A1
20090077569 Appleton et al. Mar 2009 A1
20090125902 Ghosh et al. May 2009 A1
20090158275 Wang et al. Jun 2009 A1
20090158407 Nicodemus et al. Jun 2009 A1
20090177860 Zhu et al. Jul 2009 A1
20090183162 Kindel et al. Jul 2009 A1
20090193410 Arthursson et al. Jul 2009 A1
20090198769 Keller et al. Aug 2009 A1
20090204960 Ben-Yehuda et al. Aug 2009 A1
20090204964 Foley et al. Aug 2009 A1
20090222922 Sidiroglou et al. Sep 2009 A1
20090271472 Scheifler et al. Oct 2009 A1
20090288084 Astete Nov 2009 A1
20090300151 Friedman Dec 2009 A1
20090300599 Piotrowski Dec 2009 A1
20090307430 Bruening et al. Dec 2009 A1
20100023940 Iwamatsu et al. Jan 2010 A1
20100031274 Sim-Tang Feb 2010 A1
20100031325 Maigne et al. Feb 2010 A1
20100036925 Haffner Feb 2010 A1
20100037031 DeSantis et al. Feb 2010 A1
20100058342 Machida Mar 2010 A1
20100058351 Yahagi Mar 2010 A1
20100064299 Kacin et al. Mar 2010 A1
20100070678 Zhang et al. Mar 2010 A1
20100070725 Prahlad et al. Mar 2010 A1
20100083048 Calinoiu et al. Apr 2010 A1
20100083248 Wood et al. Apr 2010 A1
20100094816 Groves, Jr. et al. Apr 2010 A1
20100106926 Kandasamy et al. Apr 2010 A1
20100114825 Siddegowda May 2010 A1
20100115098 De Baer et al. May 2010 A1
20100122343 Ghosh May 2010 A1
20100131936 Cheriton May 2010 A1
20100131959 Spiers et al. May 2010 A1
20100146004 Sim-Tang Jun 2010 A1
20100169477 Stienhans et al. Jul 2010 A1
20100186011 Magenheimer Jul 2010 A1
20100198972 Umbehocker Aug 2010 A1
20100199285 Medovich Aug 2010 A1
20100257116 Mehta et al. Oct 2010 A1
20100257269 Clark Oct 2010 A1
20100269109 Cartales Oct 2010 A1
20100298011 Pelley et al. Nov 2010 A1
20100299541 Ishikawa et al. Nov 2010 A1
20100312871 Desantis et al. Dec 2010 A1
20100325727 Neystadt et al. Dec 2010 A1
20100329149 Singh et al. Dec 2010 A1
20100329643 Kuang Dec 2010 A1
20110004687 Takemura Jan 2011 A1
20110010690 Howard et al. Jan 2011 A1
20110010722 Matsuyama Jan 2011 A1
20110023026 Oza Jan 2011 A1
20110029970 Arasaratnam Feb 2011 A1
20110029984 Norman et al. Feb 2011 A1
20110035785 Mihara Feb 2011 A1
20110040812 Phillips Feb 2011 A1
20110055378 Ferris et al. Mar 2011 A1
20110055396 DeHaan Mar 2011 A1
20110055683 Jiang Mar 2011 A1
20110078679 Bozek et al. Mar 2011 A1
20110099204 Thaler Apr 2011 A1
20110099551 Fahrig et al. Apr 2011 A1
20110131572 Elyashev et al. Jun 2011 A1
20110134761 Smith Jun 2011 A1
20110141124 Halls et al. Jun 2011 A1
20110153541 Koch et al. Jun 2011 A1
20110153727 Li Jun 2011 A1
20110153838 Belkine et al. Jun 2011 A1
20110154353 Theroux et al. Jun 2011 A1
20110173637 Brandwine et al. Jul 2011 A1
20110179162 Mayo et al. Jul 2011 A1
20110184993 Chawla et al. Jul 2011 A1
20110208866 Marmolejo-Meillon et al. Aug 2011 A1
20110225277 Freimuth et al. Sep 2011 A1
20110231680 Padmanabhan et al. Sep 2011 A1
20110247005 Benedetti et al. Oct 2011 A1
20110258603 Wisnovsky et al. Oct 2011 A1
20110265067 Schulte et al. Oct 2011 A1
20110265069 Fee et al. Oct 2011 A1
20110265164 Lucovsky Oct 2011 A1
20110271276 Ashok et al. Nov 2011 A1
20110276945 Chasman et al. Nov 2011 A1
20110276963 Wu Nov 2011 A1
20110296412 Banga et al. Dec 2011 A1
20110314465 Smith et al. Dec 2011 A1
20110321033 Kelkar et al. Dec 2011 A1
20110321051 Rastogi Dec 2011 A1
20120011496 Shimamura Jan 2012 A1
20120011511 Horvitz et al. Jan 2012 A1
20120016721 Weinman Jan 2012 A1
20120041970 Ghosh et al. Feb 2012 A1
20120054744 Singh et al. Mar 2012 A1
20120060207 Mardikar et al. Mar 2012 A1
20120072762 Atchison et al. Mar 2012 A1
20120072914 Ota Mar 2012 A1
20120072920 Kawamura Mar 2012 A1
20120079004 Herman Mar 2012 A1
20120096271 Ramarathinam et al. Apr 2012 A1
20120096468 Chakravorty et al. Apr 2012 A1
20120102307 Wong Apr 2012 A1
20120102333 Wong Apr 2012 A1
20120102481 Mani et al. Apr 2012 A1
20120102493 Allen et al. Apr 2012 A1
20120110155 Adlung et al. May 2012 A1
20120110164 Frey et al. May 2012 A1
20120110570 Jacobson et al. May 2012 A1
20120110588 Bieswanger et al. May 2012 A1
20120110603 Kaneko et al. May 2012 A1
20120124563 Chung et al. May 2012 A1
20120131379 Tameshige et al. May 2012 A1
20120144290 Goldman et al. Jun 2012 A1
20120166624 Suit et al. Jun 2012 A1
20120173709 Li et al. Jul 2012 A1
20120192184 Burckart et al. Jul 2012 A1
20120197795 Campbell et al. Aug 2012 A1
20120197958 Nightingale et al. Aug 2012 A1
20120198442 Kashyap et al. Aug 2012 A1
20120198514 McCune et al. Aug 2012 A1
20120204164 Castanos et al. Aug 2012 A1
20120209947 Glaser et al. Aug 2012 A1
20120222038 Katragadda et al. Aug 2012 A1
20120233464 Miller et al. Sep 2012 A1
20120254193 Chattopadhyay et al. Oct 2012 A1
20120324052 Paleja et al. Dec 2012 A1
20120324236 Srivastava Dec 2012 A1
20120331113 Jain et al. Dec 2012 A1
20130014101 Ballani et al. Jan 2013 A1
20130042234 DeLuca et al. Feb 2013 A1
20130054804 Jana et al. Feb 2013 A1
20130054927 Raj et al. Feb 2013 A1
20130055262 Lubsey et al. Feb 2013 A1
20130061208 Tsao et al. Mar 2013 A1
20130061212 Krause et al. Mar 2013 A1
20130061220 Gnanasambandam et al. Mar 2013 A1
20130067484 Sonoda et al. Mar 2013 A1
20130067494 Srour et al. Mar 2013 A1
20130080641 Lui et al. Mar 2013 A1
20130091387 Bohnet et al. Apr 2013 A1
20130097601 Podvratnik et al. Apr 2013 A1
20130111032 Alapati et al. May 2013 A1
20130111469 B et al. May 2013 A1
20130124807 Nielsen et al. May 2013 A1
20130132942 Wang May 2013 A1
20130132953 Chuang et al. May 2013 A1
20130139152 Chang et al. May 2013 A1
20130139166 Zhang et al. May 2013 A1
20130145354 Bruening et al. Jun 2013 A1
20130151587 Takeshima et al. Jun 2013 A1
20130151648 Luna Jun 2013 A1
20130151684 Forsman et al. Jun 2013 A1
20130152047 Moorthi et al. Jun 2013 A1
20130167147 Corrie et al. Jun 2013 A1
20130179574 Calder et al. Jul 2013 A1
20130179881 Calder et al. Jul 2013 A1
20130179894 Calder et al. Jul 2013 A1
20130179895 Calder et al. Jul 2013 A1
20130185719 Kar et al. Jul 2013 A1
20130185729 Vasic et al. Jul 2013 A1
20130191924 Tedesco Jul 2013 A1
20130198319 Shen et al. Aug 2013 A1
20130198743 Kruglick Aug 2013 A1
20130198748 Sharp et al. Aug 2013 A1
20130198763 Kunze et al. Aug 2013 A1
20130205092 Roy et al. Aug 2013 A1
20130205114 Badam et al. Aug 2013 A1
20130219390 Lee et al. Aug 2013 A1
20130227097 Yasuda et al. Aug 2013 A1
20130227534 Ike et al. Aug 2013 A1
20130227563 McGrath Aug 2013 A1
20130227641 White et al. Aug 2013 A1
20130227710 Barak et al. Aug 2013 A1
20130232190 Miller et al. Sep 2013 A1
20130232480 Winterfeldt et al. Sep 2013 A1
20130239125 Iorio Sep 2013 A1
20130246944 Pandiyan et al. Sep 2013 A1
20130262556 Xu et al. Oct 2013 A1
20130263117 Konik et al. Oct 2013 A1
20130274006 Hudlow Oct 2013 A1
20130275376 Hudlow et al. Oct 2013 A1
20130275958 Ivanov et al. Oct 2013 A1
20130275969 Dimitrov Oct 2013 A1
20130275975 Masuda et al. Oct 2013 A1
20130283141 Stevenson et al. Oct 2013 A1
20130283176 Hoole et al. Oct 2013 A1
20130290538 Gmach et al. Oct 2013 A1
20130291087 Kailash et al. Oct 2013 A1
20130297964 Hegdal et al. Nov 2013 A1
20130298183 McGrath Nov 2013 A1
20130311650 Brandwine et al. Nov 2013 A1
20130326506 McGrath et al. Dec 2013 A1
20130326507 McGrath et al. Dec 2013 A1
20130332660 Talagala et al. Dec 2013 A1
20130339950 Ramarathinam et al. Dec 2013 A1
20130346470 Obstfeld et al. Dec 2013 A1
20130346946 Pinnix Dec 2013 A1
20130346952 Huang et al. Dec 2013 A1
20130346964 Nobuoka et al. Dec 2013 A1
20130346987 Raney et al. Dec 2013 A1
20130346994 Chen et al. Dec 2013 A1
20130347095 Barjatiya et al. Dec 2013 A1
20140007097 Chin et al. Jan 2014 A1
20140019523 Heymann et al. Jan 2014 A1
20140019735 Menon et al. Jan 2014 A1
20140019965 Neuse et al. Jan 2014 A1
20140019966 Neuse et al. Jan 2014 A1
20140040343 Nickolov et al. Feb 2014 A1
20140040857 Trinchini et al. Feb 2014 A1
20140040880 Brownlow et al. Feb 2014 A1
20140047437 Wu et al. Feb 2014 A1
20140058871 Marr et al. Feb 2014 A1
20140059209 Alnoor Feb 2014 A1
20140059226 Messerli et al. Feb 2014 A1
20140059552 Cunningham et al. Feb 2014 A1
20140068568 Wisnovsky Mar 2014 A1
20140068608 Kulkarni Mar 2014 A1
20140068611 McGrath et al. Mar 2014 A1
20140073300 Leeder et al. Mar 2014 A1
20140081984 Sitsky et al. Mar 2014 A1
20140082165 Marr et al. Mar 2014 A1
20140082201 Shankari et al. Mar 2014 A1
20140101643 Inoue Apr 2014 A1
20140101649 Kamble et al. Apr 2014 A1
20140108722 Lipchuk et al. Apr 2014 A1
20140109087 Jujare et al. Apr 2014 A1
20140109088 Dournov et al. Apr 2014 A1
20140129667 Ozawa May 2014 A1
20140130040 Lemanski May 2014 A1
20140137110 Engle et al. May 2014 A1
20140164551 Resch et al. Jun 2014 A1
20140173614 Konik et al. Jun 2014 A1
20140173616 Bird et al. Jun 2014 A1
20140180862 Certain et al. Jun 2014 A1
20140189677 Curzi et al. Jul 2014 A1
20140189704 Narvaez et al. Jul 2014 A1
20140201735 Kannan et al. Jul 2014 A1
20140207912 Thibeault Jul 2014 A1
20140214752 Rash et al. Jul 2014 A1
20140215073 Dow et al. Jul 2014 A1
20140229221 Shih et al. Aug 2014 A1
20140229942 Wiseman et al. Aug 2014 A1
20140245297 Hackett Aug 2014 A1
20140258777 Cheriton Sep 2014 A1
20140279581 Devereaux Sep 2014 A1
20140280325 Krishnamurthy et al. Sep 2014 A1
20140282418 Wood et al. Sep 2014 A1
20140282559 Verduzco et al. Sep 2014 A1
20140282615 Cavage et al. Sep 2014 A1
20140282629 Gupta et al. Sep 2014 A1
20140283045 Brandwine et al. Sep 2014 A1
20140289286 Gusak Sep 2014 A1
20140298295 Overbeck Oct 2014 A1
20140304246 Helmich et al. Oct 2014 A1
20140304698 Chigurapati et al. Oct 2014 A1
20140304815 Maeda Oct 2014 A1
20140317617 O'Donnell Oct 2014 A1
20140330936 Factor et al. Nov 2014 A1
20140331222 Zheng Nov 2014 A1
20140337953 Banatwala et al. Nov 2014 A1
20140344457 Bruno, Jr. et al. Nov 2014 A1
20140344736 Ryman et al. Nov 2014 A1
20140351674 Grube et al. Nov 2014 A1
20140359093 Raju et al. Dec 2014 A1
20140359608 Tsirkin et al. Dec 2014 A1
20140365781 Dmitrienko et al. Dec 2014 A1
20140372489 Jaiswal et al. Dec 2014 A1
20140372533 Fu et al. Dec 2014 A1
20140380085 Rash et al. Dec 2014 A1
20150006487 Yang Jan 2015 A1
20150033241 Jackson et al. Jan 2015 A1
20150039891 Ignatchenko et al. Feb 2015 A1
20150040229 Chan et al. Feb 2015 A1
20150046926 Kenchammana-Hosekote et al. Feb 2015 A1
20150046971 Huh et al. Feb 2015 A1
20150052258 Johnson et al. Feb 2015 A1
20150058914 Yadav Feb 2015 A1
20150067019 Balko Mar 2015 A1
20150067830 Johansson et al. Mar 2015 A1
20150074659 Madsen et al. Mar 2015 A1
20150074661 Kothari Mar 2015 A1
20150074662 Saladi et al. Mar 2015 A1
20150074675 Qi Mar 2015 A1
20150081885 Thomas et al. Mar 2015 A1
20150095822 Feis et al. Apr 2015 A1
20150106805 Melander et al. Apr 2015 A1
20150120928 Gummaraju et al. Apr 2015 A1
20150121391 Wang Apr 2015 A1
20150134626 Theimer et al. May 2015 A1
20150135287 Medeiros et al. May 2015 A1
20150142747 Zou May 2015 A1
20150142952 Bragstad et al. May 2015 A1
20150143374 Banga et al. May 2015 A1
20150143381 Chin et al. May 2015 A1
20150146716 Olivier et al. May 2015 A1
20150154046 Farkas et al. Jun 2015 A1
20150161384 Gu et al. Jun 2015 A1
20150163231 Sobko et al. Jun 2015 A1
20150178019 Hegdal et al. Jun 2015 A1
20150178110 Li et al. Jun 2015 A1
20150186129 Apte et al. Jul 2015 A1
20150188775 Van Der Walt et al. Jul 2015 A1
20150199218 Wilson et al. Jul 2015 A1
20150205596 Hiltegen et al. Jul 2015 A1
20150212818 Gschwind et al. Jul 2015 A1
20150227598 Hahn et al. Aug 2015 A1
20150229645 Keith Aug 2015 A1
20150235144 Gusev et al. Aug 2015 A1
20150242225 Muller et al. Aug 2015 A1
20150254248 Burns et al. Sep 2015 A1
20150256514 Laivand et al. Sep 2015 A1
20150256621 Noda et al. Sep 2015 A1
20150261578 Greden et al. Sep 2015 A1
20150264014 Budhani et al. Sep 2015 A1
20150269494 Kardes et al. Sep 2015 A1
20150271073 Saladi et al. Sep 2015 A1
20150271280 Zhang et al. Sep 2015 A1
20150289220 Kim et al. Oct 2015 A1
20150309923 Iwata et al. Oct 2015 A1
20150319160 Ferguson et al. Nov 2015 A1
20150319174 Hayton et al. Nov 2015 A1
20150324174 Bromley et al. Nov 2015 A1
20150324182 Barros et al. Nov 2015 A1
20150324210 Carlson Nov 2015 A1
20150324229 Valine Nov 2015 A1
20150332048 Mooring et al. Nov 2015 A1
20150332195 Jue Nov 2015 A1
20150334173 Coulmeau et al. Nov 2015 A1
20150350701 Lemus et al. Dec 2015 A1
20150356294 Tan et al. Dec 2015 A1
20150363181 Alberti et al. Dec 2015 A1
20150363304 Nagamalla et al. Dec 2015 A1
20150370560 Tan et al. Dec 2015 A1
20150370591 Tuch et al. Dec 2015 A1
20150370592 Tuch et al. Dec 2015 A1
20150371244 Neuse et al. Dec 2015 A1
20150378762 Saladi et al. Dec 2015 A1
20150378764 Sivasubramanian et al. Dec 2015 A1
20150378765 Singh et al. Dec 2015 A1
20150379167 Griffith et al. Dec 2015 A1
20160011901 Hurwitz et al. Jan 2016 A1
20160012099 Tuatini et al. Jan 2016 A1
20160019081 Chandrasekaran Jan 2016 A1
20160019082 Chandrasekaran Jan 2016 A1
20160019536 Ortiz et al. Jan 2016 A1
20160021112 Katieb Jan 2016 A1
20160026486 Abdallah Jan 2016 A1
20160048606 Rubinstein et al. Feb 2016 A1
20160070714 D'Sa et al. Mar 2016 A1
20160072727 Leafe et al. Mar 2016 A1
20160077901 Roth et al. Mar 2016 A1
20160092252 Wagner Mar 2016 A1
20160092320 Baca Mar 2016 A1
20160092493 Ko et al. Mar 2016 A1
20160098285 Davis et al. Apr 2016 A1
20160100036 Lo et al. Apr 2016 A1
20160103739 Huang Apr 2016 A1
20160110188 Verde et al. Apr 2016 A1
20160117163 Fukui Apr 2016 A1
20160117254 Susarla et al. Apr 2016 A1
20160119289 Jain et al. Apr 2016 A1
20160124665 Jain et al. May 2016 A1
20160124978 Nithrakashyap May 2016 A1
20160140180 Park et al. May 2016 A1
20160150053 Janczuk et al. May 2016 A1
20160188367 Zeng Jun 2016 A1
20160191420 Nagarajan et al. Jun 2016 A1
20160198235 Liu et al. Jul 2016 A1
20160203219 Hoch et al. Jul 2016 A1
20160212007 Alatorre et al. Jul 2016 A1
20160226955 Moorthi et al. Aug 2016 A1
20160282930 Ramachandran et al. Sep 2016 A1
20160285906 Fine et al. Sep 2016 A1
20160292016 Bussard et al. Oct 2016 A1
20160294614 Searle et al. Oct 2016 A1
20160306613 Busi et al. Oct 2016 A1
20160315910 Kaufman Oct 2016 A1
20160350099 Suparna et al. Dec 2016 A1
20160350124 Gschwind et al. Dec 2016 A1
20160357536 Firlik et al. Dec 2016 A1
20160364265 Cao et al. Dec 2016 A1
20160364316 Bhat et al. Dec 2016 A1
20160371127 Antony et al. Dec 2016 A1
20160371156 Merriman Dec 2016 A1
20160378449 Khazanchi et al. Dec 2016 A1
20160378525 Bjorkengren Dec 2016 A1
20160378547 Brouwer et al. Dec 2016 A1
20160378554 Gummaraju et al. Dec 2016 A1
20170004169 Merrill et al. Jan 2017 A1
20170032000 Sharma et al. Feb 2017 A1
20170041144 Krapf et al. Feb 2017 A1
20170041309 Ekambaram et al. Feb 2017 A1
20170060615 Thakkar et al. Mar 2017 A1
20170060621 Whipple et al. Mar 2017 A1
20170068574 Cherkasova et al. Mar 2017 A1
20170075749 Ambichl et al. Mar 2017 A1
20170083381 Cong et al. Mar 2017 A1
20170085447 Chen et al. Mar 2017 A1
20170085502 Biruduraju Mar 2017 A1
20170085591 Ganda et al. Mar 2017 A1
20170091235 Yammine et al. Mar 2017 A1
20170091296 Beard et al. Mar 2017 A1
20170093684 Jayaraman et al. Mar 2017 A1
20170093920 Ducatel et al. Mar 2017 A1
20170134519 Chen May 2017 A1
20170142099 Hinohara et al. May 2017 A1
20170147656 Choudhary et al. May 2017 A1
20170149740 Mansour et al. May 2017 A1
20170153965 Nitta et al. Jun 2017 A1
20170161059 Wood et al. Jun 2017 A1
20170177266 Doerner et al. Jun 2017 A1
20170177441 Chow Jun 2017 A1
20170177854 Gligor et al. Jun 2017 A1
20170188213 Nirantar et al. Jun 2017 A1
20170192825 Biberman et al. Jul 2017 A1
20170221000 Anand Aug 2017 A1
20170230262 Sreeramoju et al. Aug 2017 A1
20170230499 Mumick et al. Aug 2017 A1
20170249130 Smiljanic Aug 2017 A1
20170264681 Apte et al. Sep 2017 A1
20170272462 Kraemer et al. Sep 2017 A1
20170286187 Chen et al. Oct 2017 A1
20170288878 Lee et al. Oct 2017 A1
20170308520 Beahan, Jr. et al. Oct 2017 A1
20170315163 Wang et al. Nov 2017 A1
20170322824 Reuther Nov 2017 A1
20170329578 Iscen Nov 2017 A1
20170346808 Anzai et al. Nov 2017 A1
20170353851 Gonzalez et al. Dec 2017 A1
20170364345 Fontoura et al. Dec 2017 A1
20170371703 Wagner Dec 2017 A1
20170371720 Basu et al. Dec 2017 A1
20170372142 Bilobrov Dec 2017 A1
20180004555 Ramanathan Jan 2018 A1
20180004556 Marriner et al. Jan 2018 A1
20180004575 Marriner et al. Jan 2018 A1
20180032410 Kang Feb 2018 A1
20180046453 Nair et al. Feb 2018 A1
20180046482 Karve et al. Feb 2018 A1
20180060132 Maru et al. Mar 2018 A1
20180060221 Yim et al. Mar 2018 A1
20180060318 Yang et al. Mar 2018 A1
20180067841 Mahimkar Mar 2018 A1
20180067873 Pikhur et al. Mar 2018 A1
20180069702 Ayyadevara et al. Mar 2018 A1
20180081717 Li Mar 2018 A1
20180089232 Spektor et al. Mar 2018 A1
20180095738 Dürkop et al. Apr 2018 A1
20180113770 Hasanov Apr 2018 A1
20180121665 Anderson et al. May 2018 A1
20180129684 Wilson et al. May 2018 A1
20180144263 Saxena May 2018 A1
20180150339 Pan et al. May 2018 A1
20180152401 Tandon et al. May 2018 A1
20180152405 Kuo et al. May 2018 A1
20180152406 Kuo et al. May 2018 A1
20180192101 Bilobrov Jul 2018 A1
20180225096 Mishra et al. Aug 2018 A1
20180227300 Nakic et al. Aug 2018 A1
20180239636 Arora et al. Aug 2018 A1
20180253333 Gupta Sep 2018 A1
20180268130 Ghosh et al. Sep 2018 A1
20180275987 Vandeputte Sep 2018 A1
20180285101 Yahav et al. Oct 2018 A1
20180300111 Bhat et al. Oct 2018 A1
20180314845 Anderson et al. Nov 2018 A1
20180316552 Subramani Nadar et al. Nov 2018 A1
20180341504 Kissell Nov 2018 A1
20180365422 Callaghan et al. Dec 2018 A1
20180375781 Chen et al. Dec 2018 A1
20190004866 Du et al. Jan 2019 A1
20190018715 Behrendt et al. Jan 2019 A1
20190028552 Johnson, II et al. Jan 2019 A1
20190034095 Singh et al. Jan 2019 A1
20190043231 Uzgin et al. Feb 2019 A1
20190072529 Andrawes et al. Mar 2019 A1
20190073234 Wagner Mar 2019 A1
20190073430 Webster Mar 2019 A1
20190079751 Foskett et al. Mar 2019 A1
20190102278 Gahlin et al. Apr 2019 A1
20190140831 De Lima Junior May 2019 A1
20190141015 Nellen May 2019 A1
20190147085 Pal et al. May 2019 A1
20190155629 Wagner et al. May 2019 A1
20190171423 Mishra et al. Jun 2019 A1
20190179678 Banerjee et al. Jun 2019 A1
20190179725 Mital et al. Jun 2019 A1
20190180036 Shukla Jun 2019 A1
20190188288 Holm et al. Jun 2019 A1
20190196884 Wagner Jun 2019 A1
20190235848 Swiecki et al. Aug 2019 A1
20190238590 Talukdar et al. Aug 2019 A1
20190250937 Thomas et al. Aug 2019 A1
20190268152 Sandoval et al. Aug 2019 A1
20190278938 Greene et al. Sep 2019 A1
20190286475 Mani Sep 2019 A1
20190286492 Gulsvig Wood et al. Sep 2019 A1
20190303117 Kocberber et al. Oct 2019 A1
20190311115 Lavi et al. Oct 2019 A1
20190318312 Foskett et al. Oct 2019 A1
20190324813 Bogineni et al. Oct 2019 A1
20190339955 Kuo Nov 2019 A1
20190361802 Li et al. Nov 2019 A1
20190363885 Schiavoni et al. Nov 2019 A1
20190370113 Zhao Dec 2019 A1
20190384647 Reque et al. Dec 2019 A1
20200007456 Greenstein et al. Jan 2020 A1
20200026527 Xue Jan 2020 A1
20200028936 Gupta et al. Jan 2020 A1
20200034471 Danilov et al. Jan 2020 A1
20200057680 Marriner et al. Feb 2020 A1
20200065079 Kocberber et al. Feb 2020 A1
20200073770 Mortimore, Jr. et al. Mar 2020 A1
20200073987 Perumala et al. Mar 2020 A1
20200081745 Cybulski et al. Mar 2020 A1
20200104378 Wagner et al. Apr 2020 A1
20200110691 Bryant et al. Apr 2020 A1
20200120120 Cybulski Apr 2020 A1
20200136933 Raskar Apr 2020 A1
20200153798 Liebherr May 2020 A1
20200153897 Mestery et al. May 2020 A1
20200167208 Floes et al. May 2020 A1
20200192646 Yerramreddy et al. Jun 2020 A1
20200213151 Srivatsan et al. Jul 2020 A1
20200327236 Pratt et al. Oct 2020 A1
20200341799 Wagner et al. Oct 2020 A1
20200349067 Syamala et al. Nov 2020 A1
20200366587 White et al. Nov 2020 A1
20200401455 Church et al. Dec 2020 A1
20200412720 Siefker et al. Dec 2020 A1
20200412825 Siefker et al. Dec 2020 A1
20210019056 Mangione-Tran Jan 2021 A1
20210081233 Mullen et al. Mar 2021 A1
20210117534 Maximov et al. Apr 2021 A1
20210232415 Wagner et al. Jul 2021 A1
20210389963 Wagner Dec 2021 A1
20220004423 Brooker et al. Jan 2022 A1
20220012083 Brooker Jan 2022 A1
20220391238 Wagner Dec 2022 A1
Foreign Referenced Citations (82)
Number Date Country
2975522 Aug 2016 CA
1341238 Mar 2002 CN
101002170 Jul 2007 CN
101267334 Sep 2008 CN
101345757 Jan 2009 CN
101496005 Jul 2009 CN
101627388 Jan 2010 CN
101640700 Feb 2010 CN
101764824 Jun 2010 CN
102171712 Aug 2011 CN
102365858 Feb 2012 CN
102420846 Apr 2012 CN
102761549 Oct 2012 CN
103098027 May 2013 CN
103140828 Jun 2013 CN
103384237 Nov 2013 CN
103731427 Apr 2014 CN
104111848 Oct 2014 CN
104243479 Dec 2014 CN
104903854 Sep 2015 CN
105122243 Dec 2015 CN
108885568 Nov 2018 CN
109478134 Mar 2019 CN
109564525 Apr 2019 CN
112513813 Mar 2021 CN
2663052 Nov 2013 EP
3201762 Aug 2017 EP
3254434 Dec 2017 EP
3356938 Aug 2018 EP
3201768 Dec 2019 EP
3811209 Apr 2021 EP
3814895 May 2021 EP
3857375 Aug 2021 EP
4064052 Sep 2022 EP
2002-287974 Oct 2002 JP
2006-107599 Apr 2006 JP
2007-080161 Mar 2007 JP
2007-538323 Dec 2007 JP
2010-026562 Feb 2010 JP
2011-065243 Mar 2011 JP
2011-233146 Nov 2011 JP
2011-257847 Dec 2011 JP
2012-078893 Apr 2012 JP
2012-104150 May 2012 JP
2013-156996 Aug 2013 JP
2014-525624 Sep 2014 JP
2016-507100 Mar 2016 JP
2017-534107 Nov 2017 JP
2017-534967 Nov 2017 JP
2018-503896 Feb 2018 JP
2018-512087 May 2018 JP
2018-536213 Dec 2018 JP
7197612 Dec 2022 JP
10-357850 Oct 2002 KR
10-2021-0019533 Feb 2021 KR
WO 2008114454 Sep 2008 WO
WO 2009137567 Nov 2009 WO
WO 2012039834 Mar 2012 WO
WO 2012050772 Apr 2012 WO
WO 2013106257 Jul 2013 WO
WO 2015078394 Jun 2015 WO
WO 2015108539 Jul 2015 WO
WO 2015149017 Oct 2015 WO
WO 2016053950 Apr 2016 WO
WO 2016053968 Apr 2016 WO
WO 2016053973 Apr 2016 WO
WO 2016090292 Jun 2016 WO
WO 2016126731 Aug 2016 WO
WO 2016164633 Oct 2016 WO
WO 2016164638 Oct 2016 WO
WO 2017059248 Apr 2017 WO
WO 2017112526 Jun 2017 WO
WO 2017172440 Oct 2017 WO
WO 2018005829 Jan 2018 WO
WO 2018098443 May 2018 WO
WO 2018098445 May 2018 WO
WO 2020005764 Jan 2020 WO
WO 2020006081 Jan 2020 WO
WO 2020069104 Apr 2020 WO
WO 2020123439 Jun 2020 WO
WO 2020264431 Dec 2020 WO
WO 2021108435 Jun 2021 WO
Non-Patent Literature Citations (156)
Entry
Dornemann et al., “On-Demand Resource Provisioning for BPEL Workflows Using Amazon's Elastic Compute Cloud”, 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, 2009, pp. 140-147.
Ryden et al., “Nebula: Distributed Edge Cloud for Data-Intensive Computing”, IEEE, 2014, pp. 491-492.
Office Action in Chinese Application No.202110268031.5, dated Sep. 3, 2021.
Office Action in European Application No. 191994029 dated Dec. 3, 2021 in 4 pages.
Office Action in Chinese Application No. 201680020768.2 dated Sep. 24, 2021 in 20 pages.
Decision to refuse a European Patent Application in European Patent Application No. 16716797.2 dated December 20, 2021 in 20 pages (SEAZN.1098EP).
Office Action in Chinese Application No. 2017800451968 dated Dec. 3, 2021 in 20 pages.
Office Action in Japanese Application No. 2020-572441 dated Dec. 22, 2021 in 8 pages.
International Preliminary Repont on Patentability for Application No. PCT/US2020/039996 dated Jan. 6, 2022.
Anonymous: “Docker run reference”, Dec. 7, 2015, XP055350246, Retrieved from the Internet: URL:https://web.archive.org/web/20151207111702/https:/docs.docker.com/engine/reference/run/ [retrieved on Feb. 28, 2017].
Adapter Pattern, Wikipedia, https://en.wikipedia.org/w/index.php?title=Adapter_pattern&oldid=654971255, [retrieved May 26, 2016], 6 pages.
Amazon, “AWS Lambda: Developer Guide”, Jun. 26, 2016 Retrieved from the Internet, URL:http://docs.aws.amazon.com/lambda/latest/dg/lambda-dg.pdf, [retrieved on Aug. 30, 2017], 314 pages.
Amazon, “AWS Lambda: Developer Guide”, Apr. 30, 2016 Retrieved from the Internet, URL:https://web.archive.org/web/20160430050158/http://docs.aws.amazon.com:80/lambda/lates t/dg/lambda-dg.pdf, 346 pages.
Amazon, “AWS Lambda: Developer Guide”, Retrieved from the Internet, 2019, URL:http://docs.aws.amazon.com/lambda/ latest/dg/lambda-dg.pdf, 521 pages.
Balazinska et al., Moirae: History-Enhanced Monitoring, Published: Jan. 2007, 12 pages.
Bebenita et al., “Trace-Based Compilation in Execution Environments without Interpreters,” ACM, Copyright 2010, 10 pages.
Ben-Yehuda et al., “Deconstructing Amazon EC2 Spot Instance Pricing”, ACM Transactions on Economics and Computation 1.3, Sep. 2013, 15 pages.
Bhadani et al., Performance evaluation of web servers using central load balancing policy over virtual machines on cloud, Jan. 2010, 4 pages.
Bryan Liston, “Ad Hoc Big Data Processing Made Simple with Serverless Map Reduce”, Nov. 4, 2016, Amazon Web Services <https :/laws. amazon .com/bl ogs/compute/ad-hoc-big-data-processi ng-made-si mple-with-serverless-mapred uce >.
CodeChef ADMIN discussion web page, retrieved from https://discuss.codechef.com/t/what-are-the-memory-limit-and-stack-size-on-codechef/14159, retrieved on Sep. 10, 2019.
CodeChef IDE web page, Code, Compile & Run, retrieved from https://www.codechef.com/ide, retrieved on Sep. 9, 2019.
Czajkowski, G., and L. Daynes, Multitasking Without Compromise: A Virtual Machine Evolution 47(4a):60-73, ACM SIGPLAN Notices—Supplemental Issue, Apr. 2012.
Das et al., Adaptive Stream Processing using Dynamic Batch Sizing, Nov. 2014, 13 pages.
Deis, Container, Jun. 2014, 1 page.
Dean et al, “MapReduce: Simplified Data Processing on Large Clusters”, ACM, 2008, pp. 107-113.
Dombrowski, M., et al., Dynamic Monitor Allocation in the Java Virtual Machine, JTRES '13, Oct. 9-11, 2013, pp. 30-37.
Dynamic HTML, Wikipedia page from date Mar. 27, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150327215418/https://en.wikipedia.org/wiki/Dynamic_HTML, 2015, 6 pages.
Ekanayake et al, “Twister: A Runtime for Iterative MapReduce”, ACM, 2010, pp. 810-818.
Espadas, J., et al., A Tenant-Based Resource Allocation Model for Scaling Software-as-a-Service Applications Over Cloud Computing Infrastructures, Future Generation Computer Systems, vol. 29, pp. 273-286, 2013.
Fan et al., Online Optimization of VM Deployment in IaaS Cloud, Dec. 17, 2012-Dec. 19, 2012, 6 pages.
Ha et al., A Concurrent Trace-based Just-In-Time Compiler for Single-threaded JavaScript, utexas.edu, Jun. 2009.
Hammoud et al, “Locality-Aware Reduce Task Scheduling for MapReduce”, IEEE, 2011, pp. 570-576.
Han et al., Lightweight Resource Scaling for Cloud Applications, May 13, 2012-May 16, 2012, 8 pages.
Hoffman, Auto scaling your website with Amazon Web Services (AWS)—Part 2, Cardinalpath, Sep. 2015, 15 pages.
http://discuss.codechef.com discussion web page from date Nov. 11, 2012, retrieved using the WayBackMachine, from https://web.archive.org/web/20121111040051/http://discuss.codechef.com/questions/2881 /why-are-simple-java-programs-using-up-so-much-space, 2012.
https://www.codechef.com code error help page from Jan. 2014, retrieved from https://www.codechef.com/JAN14/status/ERROR,va123, 2014.
http://www.codechef.com/ide web page from date Apr. 5, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150405045518/http://www.codechef.com/ide, 2015.
Huang, Zhe, Danny HK Tsang, and James She. “A virtual machine consolidation framework for mapreduce enabled computing clouds.” 2012 24th International Teletraffic Congress (ITC 24). IEEE, Sep. 4, 2012-Sep. 7, 2012.
Kamga et al., Extended scheduler for efficient frequency scaling in viltualized systems, Jul. 2012, 8 pages.
Kato, et al. “Web Service Conversion Architecture of the Web Application and Evaluation”; Research Report from Information Processing Society, Apr. 3, 2006 with Machine Translation.
Kazempour et al., AASH: an asymmetry-aware scheduler for hypervisors, July 2010, 12 pages.
Kim et al, “MRBench: A Benchmark for Map-Reduce Framework”, IEEE, 2008, pp. 11-18.
Kraft et al., 10 performance prediction in consolidated virtualized environments, Mar. 2011, 12 pages.
Krsul et al., “VMPlants: Providing and Managing Virtual Machine Execution Environments for Grid Computing”, Supercomputing, 2004. Proceedings of the ACM/IEEESC 2004 Conference Pittsburgh, PA, XP010780332, Nov. 6-12, 2004, 12 pages.
Lagar-Cavilla et al., “SnowFlock: Virtual Machine Cloning as a First-Class Cloud Primitive”, ACM Transactions on Computer Systems, vol. 29, No. 1, Article 2, Publication date: Feb. 2011, in 45 pages.
Lin, “MR-Apriori: Association Rules Algorithm Based on MapReduce”, IEEE, 2014, pp. 141-144.
Meng et al., Efficient resource provisioning in compute clouds via VM multiplexing, Jun. 2010, 10 pages.
Merkel, “Docker: Lightweight Linux Containers for Consistent Development and Deployment”, Linux Journal, vol. 2014 Issue 239, Mar. 2014, XP055171140, 16 pages.
Monteil, Coupling profile and historical methods to predict execution time of parallel applications. Parallel and Cloud Computing, Jul. 2013, <hal-01228236, pp. 81-89.
Nakajima, J., et al., Optimizing Virtual Machines Using Hybrid Virtualization, SAC '11, Mar. 21-25, 2011, TaiChung, Taiwan, pp. 573-578.
Qian, H., and D. Medhi, et al., Estimating Optimal Cost of Allocating Virtualized Resources With Dynamic Demand, ITC 2011, Sep. 2011, pp. 320-321.
Sakamoto, et al. “Platform for Web Services using Proxy Server”; Research Report from Information Processing Society, Mar. 22, 2002, vol. 2002, No. 31.
Search Query Repont from IP.com, performed Dec. 2, 2020.
Search Query Repont from IP.com, performed May 27, 2021.
Shim (computing), Wikipedia, https://en.wikipedia.org/w/index.php?title+Shim_(computing)&oldid+654971528, [retrieved on May 26, 2016], 2 pages.
Stack Overflow, Creating a database connection pool, Nov. 10, 2009, 4 pages.
Tan et al., Provisioning for large scale cloud computing services, Jun. 2012, 2 pages.
Tange, “GNU Parallel: The Command-Line Power Tool”, vol. 36, No. 1, Jan. 1, 1942, pp. 42-47.
Vaghani, S.B., Virtual Machine File System, ACM SIGOPS Operating Systems Review 44(4):57-70, Dec. 2010.
Vaquero, L., et al., Dynamically Scaling Applications in the cloud, ACM SIGCOMM Computer Communication Review 41(1):45-52, Jan. 2011.
Wang et al., “Improving utilization through dynamic VM resource allocation in hybrid cloud environment”, Parallel and Distributed V Systems (ICPADS), IEEE, Dec. 16, 2014-Dec. 19, 2014. Retrieved on Feb. 14, 2019, Retrieved from the internet: URL<https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7097814, 8 pages.
Wikipedia “API” pages from date Apr. 7, 2015, retrieved using the WayBackMachine from https://web.archive.org/web/ 20150407191158/https://en .wikipedia.org/wiki/Application_programming_interface.
Wikipedia List_of_HTTP status_codes web page, retrieved from https://en.wikipedia.org/wiki/List_of_HTTP status_codes, retrieved on Sep. 10, 2019.
Wikipedia Recursion web page from date Mar. 26, 2015, retrieved using the WayBackMachine, from https://web.archive.org/web/20150326230100/https://en.wikipedia.org/wiki/Recursion_(computer _science), 2015.
Wikipedia subroutine web page, retrieved from https://en.wikipedia.org/wiki/Subroutine, retrieved on Sep. 10, 2019.
Wood, Timothy, et al. “Cloud Net: dynamic pooling of cloud resources by live WAN migration of virtual machines.” ACM Sigplan Notices 46.7 (2011): 121-132. (Year: 2011).
Wu et al., HC-Midware: A Middleware to Enable High Performance Communication System Simulation in Heterogeneous Cloud, Association for Computing Machinery, Oct. 20-22, 2017, 10 pages.
Yamasaki et al. “Model-based resource selection for efficient virtual cluster deployment”, Virtualization Technology in Distributed Computing, ACM, Nov. 2007, pp. 1-7.
Yang, The Application of MapReduce in the Cloud Computing:, IEEE, 2011, pp. 154-156.
Yue et al., AC 2012-4107: Using Amazon EC2 in Computer and Network Security Lab Exercises: Design, Results, and Analysis, 2012, American Society for Engineering Education, Jun. 10, 2012.
Zhang et al., VMThunder: Fast Provisioning of Large-Scale Virtual Machine Clusters, IEEE Transactions on Parallel and Distributed Systems, vol. 25, No. 12, Dec. 2014, pp. 3328-3338.
Zheng, C., and D. Thain, Integrating Containers into Workflows: A Case Study Using Makeflow, Work Queue, and Docker, VTDC '15, Jun. 15, 2015, Portland, Oregon, pp. 31-38.
International Search Report and Written Opinion in PCT/US2015/052810 dated Dec. 17, 2015.
International Preliminary Report on Patentability in PCT/US2015/052810 dated Apr. 4, 2017.
Extended Search Report in European Application No. 15846932.0 dated May 3, 2018.
Office Action in Canadian Application No. 2,962,633 dated May 21, 2020.
Office Action in Canadian Application No. 2,962,633 dated Jun. 18, 2021.
Office Action in European Application No. 19199402.9 dated Mar. 23, 2021.
International Search Report and Written Opinion in PCT/US2015/052838 dated Dec. 18, 2015.
International Preliminary Report on Patentability in PCT/US2015/052838 dated Apr. 4, 2017.
Extended Search Report in European Application No. 15847202.7 dated Sep. 9, 2018.
Extended Search Report in European Application No. 19199402.9 dated Mar. 6, 2020.
Office Action in Japanese Application No. 2017-516160 dated Jan. 15, 2018.
Notice of Allowance in Japanese Application No. 2017-516160 dated May 8, 2018.
Office Action in Canadian Application No. 2,962,631 dated May 19, 2020.
Office Action in Canadian Application No. 2,962,631 dated May 31, 2021.
Office Action in Indian Application No. 201717013356 dated Jan. 22, 2021.
Office Action in Japanese Application No. 2017-516168 dated Mar. 26, 2018.
International Search Report and Written Opinion in PCT/US2015/052833 dated Jan. 13, 2016.
International Preliminary Report on Patentability in PCT/US2015/052833 dated Apr. 4, 2017.
Extended Search Report in European Application No. 15846542.7 dated Aug. 27, 2018.
Office Action in Indian Application No. 201717019903 dated May 18, 2020.
International Search Report and Written Opinion in PCT/US2015/064071dated Mar. 16, 2016.
International Preliminary Report on Patentability in PCT/US2015/064071 dated Jun. 6, 2017.
Office Action in Australian Application No. 2016215438 dated Feb. 26, 2018.
Notice of Allowance in Australian Application No. 2016215438 dated Nov. 19, 2018.
Office Action in Canadian Application No. 2,975,522 dated Jun. 5, 2018.
Notice of Allowance in Canadian Application No. 2,975,522 dated Mar. 13, 2020.
Office Action in Indian Application No. 201717027369 dated May 21, 2020.
International Search Report and Written Opinion in PCT/US2016/016211 dated Apr. 13, 2016.
International Preliminary Report on Patentability in PCT/US2016/016211 dated Aug. 17, 2017.
Office Action in Chinese Application No. 2016800207682 dated May 14, 2021.
First Examination Report for Indian Application No. 201717034806 dated Jun. 25, 2020.
International Search Report and Written Opinion in PCT/US2016/026514 dated Jun. 8, 2016.
International Preliminary Report on Patentability in PCT/US2016/026514 dated Oct. 10, 2017.
International Search Report and Written Opinion in PCT/US2016/026520 dated Jul. 5, 2016.
International Preliminary Report on Patentability in PCT/US2016/026520 dated Oct. 10, 2017.
Office Action in Chinese Application No. 2016800562398 dated Jun. 18, 2021.
International Search Report and Written Opinion in PCT/US2016/054774 dated Dec. 16, 2016.
Office Action in European Application No. 16781265.0 dated Jul. 13, 2020.
Office Action in European Application No. 201817013748 dated Nov. 20, 2020.
International Preliminary Report on Patentability in PCT/US2016/054774 dated Apr. 3, 2018.
Office Action in Chinese Application No. 201680072794X dated Jun. 22, 2021.
Office Action in European Application No. 16823419.3 dated Mar. 12, 2021.
International Search Report and Written Opinion in PCT/US2016/066997 dated Mar. 20, 2017.
International Preliminary Report on Patentability in PCT/US2016/066997 dated Jun. 26, 2018.
Office Action in Chinese Application No. 201780022789.2 dated Apr. 28, 2021.
Office Action in European Application No. 17776325.7 dated Apr. 12, 2021.
International Search Report and Written Opinion in PCT/US/2017/023564 dated Jun. 6, 2017.
International Preliminary Report on Patentability in PCT/US/2017/023564 dated Oct. 2, 2018.
Office Action in Chinese Application No. 2017800451968 dated May 26, 2021.
Office Action in European Application No. 17740533.9 dated May 4, 2021.
International Search Report and Written Opinion in PCT/US2017/040054 dated Sep. 21, 2017.
International Preliminary Report on Patentability in PCT/US2017/040054 dated Jan. 1, 2019.
International Search Report and Written Opinion in PCT/US2017/039514 dated Oct. 10, 2017.
International Preliminary Report on Patentability in PCT/US2017/039514 dated Jan. 1, 2019.
Extended European Search Report in application No. 17776325.7 dated Oct. 23, 2019.
Office Action in European Application No. 17743108.7 dated Jan. 14, 2020.
Office Action in European Application No. 17743108.7 dated Dec. 22, 2020.
International Search Report and Written Opinion dated Oct. 15, 2019 for International Application No. PCT/US2019/039246 in 16 pages.
International Preliminary Report on Patentability dated Dec. 29, 2020 for International Application No. PCT/US2019/039246 in 8 pages.
International Search Report for Application No. PCT/US2019/038520 dated Aug. 14, 2019.
International Preliminary Report on Patentability for Application No. PCT/US2019/038520 dated Dec. 29, 2020.
International Preliminary Report on Patentability and Written Opinion in PCT/US2019/053123 dated Mar. 23, 2021.
International Search Report and Written Opinion in PCT/US2019/053123 dated Jan. 7, 2020.
International Search Report for Application No. PCT/US2019/065365 dated Mar. 19, 2020.
International Preliminary Report on Patentability for Application No. PCT/US2019/065365 dated Jun. 8, 2021.
International Search Report for Application No. PCT/US2020/039996 dated Oct. 8, 2020.
International Search Report for Application No. PCT/US2020/062060 dated Mar. 5, 2021.
Abebe et al., “EC-Store: Bridging the Gap Between Storage and Latency in Distribute Erasure Coded Systems”, IEEE 38th International Conference on Distributed Computing Systems, 2018, pp. 255-266.
Huang et al., “Erasure Coding in Windows Azure Storege”, USENIX, 2012 in 12 pages.
Rashmi et al., “EC-Cache: Load-Balance, Low-Latency Cluster Caching with Online Erasure Coding”, USENIX, 2016, pp. 401-417.
Communication Pursuant to Article 94(3) EPC in European Application No. 19199402.9 dated Apr. 19, 2022 in 5 pages.
Office Action in European Application No. 16823419.3 dated May 20, 2022 in 6 pages.
Office Action in European Application No. 19740451.0 dated Jun. 13, 2022 in 4 pages.
Office Action in Korean Application No. 10-2021-7000975 dated Mar. 31, 2022 in 12 pages.
Office Action in Japanese Application No. 2021-517335 dated May 16, 2022.
International Preliminary Report on Patentability for Application No. PCT/US2020/062060 dated Jun. 9, 2022 in 9 pages.
Anonymous: “Amazon Elastic Compute Cloud User Guide for Linux Instances—first 400 pages of 795,” Apr. 8, 2016 (Apr. 8, 2016, XP055946665, Retrieved from the Internet: URL:https://web.archive.org/web/20160408211543if_/http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-ug.pdf (retrieved on Jul. 27, 2022] 795 pages.
Anonymous: “Amazon Simple Workflow Service Developer Guide API Version Jan. 25, 2012,” Jun. 11, 2016 (Jun. 11, 2016), XP055946928, Retrieved from the Internet: URL:https://web.archive.org/web/20160111075522if_/http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg.pdf [retrieved on Jul. 28, 2022] in 197 pages.
Anonymous: “AWS Flow Framework for Java,” Apr. 7, 2016 (Apr. 7, 2016), XP055946535, Retrieved from the Internet: URL:https://web.archive.org/web/20160407214715if_/http://docs.aws.amazon.com/amazonswf/latest/awsflowguide/swf-aflow.pdf, [retrieved Jul. 27, 2022] in 139 pages.
European Examination Report, re EP Application No. 17743108.7, dated Oct. 12, 2022.
First Chinese Office Action in Chinese Application No. 201780045148.9, dated Sep. 29, 2022.
Office Action in Japanese Application No. 2020-572443 dated Sep. 29, 2022.
Office Action in European Application No. 19736909.3 dated Oct. 12, 2022.
Office Action in Japanese Application No. 2020-572443 dated Feb. 28, 2022.
Related Publications (1)
Number Date Country
20220012083 A1 Jan 2022 US
Continuations (1)
Number Date Country
Parent 16045593 Jul 2018 US
Child 17445699 US