The disclosure relates generally to distribution of data (e.g., digital data services and radio-frequency communications services) in a distributed antenna system (DAS) and more particularly to multiple-input, multiple-output MIMO technology, which may be used in the DAS.
Wireless customers are demanding digital data services, such as streaming video signals. Concurrently, some wireless customers use their wireless devices in areas that are poorly served by conventional cellular networks, such as inside certain buildings or areas where there is little cellular coverage. One response to the intersection of these two concerns has been the use of distributed antenna systems. Distributed antenna systems can be particularly useful to be deployed inside buildings or other indoor environments where client devices may not otherwise be able to effectively receive radio-frequency (RF) signals from a source. Distributed antenna systems include remote units (also referred to as “remote antenna units”) configured to receive and wirelessly transmit wireless communications signals to client devices in antenna range of the remote units. Such distributed antenna systems may use Wireless Fidelity (WiFi) or wireless local area networks (WLANs), as examples, to provide digital data services.
Distributed antenna systems may employ optical fiber to support distribution of high bandwidth data (e.g., video data) with low loss. Even so, WiFi and WLAN-based technology may not be able to provide sufficient bandwidth for expected demand, especially as HD video becomes more prevalent. WiFi was initially limited in data rate transfer to 12.24 Mb/s and is provided at data transfer rates of up to 54 Mb/s using WLAN frequencies of 2.4 GHz and 5.8 GHz. While interesting for many applications, WiFi bandwidth may be too small to support real time downloading of uncompressed HD television signals to wireless client devices.
MIMO technology can be employed in distributed antenna systems to increase the bandwidth up to twice the nominal bandwidth, as a non-limiting example. MIMO is the use of multiple antennas at both a transmitter and receiver to increase data throughput and link range without additional bandwidth or increased transmit power. However, even doubling bandwidth alone may not be enough to support high bandwidth data to wireless client devices, such as the example of real time downloading of uncompressed high definition (HD) television signals.
The frequency of wireless communications signals could also be increased in a MIMO distributed antenna system to provide larger channel bandwidth as a non-limiting example. For example, an extremely high frequency (EHF) in the range of approximately 30 GHz to approximately 300 GHz could be employed. For example, the sixty GHz (60 GHz) spectrum is an EHF that is an unlicensed spectrum by the Federal Communications Commission (FCC). EHFs could be employed to provide for larger channel bandwidths. However, higher frequency wireless signals are more easily attenuated and/or blocked from traveling through walls, building structures, or other obstacles where distributed antenna systems are commonly installed. Higher frequency wireless signals also provide narrow radiation patterns. Thus, remote units in distributed antenna systems may be arranged for line-of-sight (LOS) communications to allow for higher frequencies for higher bandwidth. However, if remote units are provided in a LOS configuration and the remote units are also configured to support MIMO, multiple spatial streams received by multiple receiver antennas in the remote units may be locked into a relative phase and/or amplitude pattern. This can lead to multiple received spatial streams periodically offsetting each other when the spatial streams are combined at MIMO receivers, leading to performance degradation and reduced wireless coverage.
No admission is made that any reference cited herein constitutes prior art. Applicant expressly reserves the right to challenge the accuracy and pertinency of any cited documents.
Components, systems, and methods for reducing location-dependent destructive interference in distributed antenna systems (DASs) operating in multiple-input, multiple-output (MIMO) configuration are disclosed. The DASs include remote units employing MIMO transmitters configured to transmit multiple data streams in MIMO configuration to MIMO receivers in wireless client devices. Destructive interference in a MIMO system can occur when two or more spatial streams transmitted from multiple MIMO antennas are locked into a relative phase and/or amplitude pattern, causing periodic destructive interferences when the two or more spatial streams are combined at MIMO receivers in client devices. These issues can occur due to lack of separation (i.e., phase, amplitude) in the received MIMO communications signals, especially with closely located MIMO transmitters configured for line-of-sight (LOS) communications. Thus, to provide spatial separation of MIMO communications signals received by MIMO receivers in client devices, multiple MIMO transmitters in a remote unit in a DAS are each configured to employ multiple transmitter antennas, which are each configured to transmit in different polarization states. In certain embodiments, the amplitude of one of the MIMO communications signals is modified in one of the polarization states to further provide amplitude separation between the MIMO communications signals received by the MIMO receivers.
The components, systems, and methods for reducing location-dependent periodic destructive interference in distributed antenna systems operating in MIMO configuration may significantly improve high-data rate wireless coverage without significant dependence on transmitter and/or receive placement. This may allow for LOS communications to be more easily achieved between MIMO transmitters and MIMO receivers, especially for higher frequency communications where LOS communications may be required to reduce destructions to higher frequency signals by obstacles on the transmission path. High antenna isolation is not required in the MIMO receivers. No additional hardware component is required in the MIMO transmitters or receivers as well. The improved MIMO performance and increased coverage area can also allow higher frequency bands (e.g., 60 GHz) to be used efficiently to provide multi-gigabit per second (Gbps) data access to client devices in indoor and outdoor environments.
One embodiment of the disclosure relates to a MIMO remote unit configured to wirelessly distribute MIMO communications signals to wireless client devices in a distributed antenna system. The MIMO remote unit comprises a first MIMO transmitter comprising a first MIMO transmitter antenna configured to transmit MIMO communications signals in a first polarization and a second MIMO transmitter antenna configured to transmit MIMO communications signals in a second polarization different from the first polarization. The MIMO remote unit also comprises a second MIMO transmitter comprising a third MIMO transmitter antenna configured to transmit MIMO communications signals in the first polarization and a fourth MIMO transmitter antenna configured to transmit MIMO communications signals in the second polarization. The first MIMO transmitter is configured to receive a first downlink MIMO communications signal at a first amplitude over a first downlink communications medium, and transmit the first downlink MIMO communications signal wirelessly as a first electrical downlink MIMO communications signal over the first MIMO transmitter antenna in the first polarization. The first MIMO transmitter is also configured to receive a second downlink MIMO communications signal at the first amplitude over a second downlink communications medium, and transmit the second downlink MIMO communications signal wirelessly as a second electrical downlink MIMO communications signal over the second MIMO transmitter antenna in the second polarization. The second MIMO transmitter is configured to receive a third downlink MIMO communications signal at the first amplitude over a third downlink communications medium, and transmit the third downlink MIMO communications signal wirelessly as a third electrical downlink MIMO communications signal over the third MIMO transmitter antenna in the first polarization. The second MIMO transmitter is also configured to receive a fourth downlink MIMO communications signal over a fourth downlink communications medium, and transmit the fourth downlink MIMO communications signal at a second amplitude modified from the first amplitude, wirelessly as a fourth electrical downlink MIMO communications signal over the fourth MIMO transmitter antenna in the second polarization.
An additional embodiment of the disclosure relates to a method of transmitting MIMO communications signals to wireless client devices in a distributed antenna system is provided. The method includes receiving a first downlink MIMO communications signal at a first amplitude over a first downlink communications medium. The method also includes transmitting the first downlink MIMO communications signal wirelessly as a first electrical downlink MIMO communications signal over a first MIMO transmitter antenna in a first polarization. The method also includes receiving a second downlink MIMO communications signal at the first amplitude over a second downlink communications medium. The method also includes transmitting the second downlink MIMO communications signal wirelessly as a second electrical downlink MIMO communications signal over a second MIMO transmitter antenna in a second polarization. The method also includes receiving a third downlink MIMO communications signal at the first amplitude over a third downlink communications medium. The method also includes transmitting the third downlink MIMO communications signal wirelessly as a third electrical downlink MIMO communications signal over a third MIMO transmitter antenna in the first polarization. The method also includes receiving a fourth downlink MIMO communications signal over a fourth downlink communications medium. The method also includes transmitting the fourth downlink MIMO communications signal at a second amplitude modified from the first amplitude, wirelessly as a fourth electrical downlink MIMO communications signal over a fourth MIMO transmitter antenna in the second polarization.
An additional embodiment of the disclosure relates to a distributed antenna system for distributing MIMO communications signals to wireless client devices. The distributed antenna system comprises a central unit. The central unit comprises a central unit transmitter configured to receive a downlink communications signal. The central unit transmitter is also configured to transmit the received downlink communications signal as a first downlink MIMO communications signal over a first downlink communications medium, a second downlink MIMO communications signal over a second downlink communications medium, a third MIMO downlink communications signal over a third downlink communications medium, and a fourth downlink MIMO communications signal over a fourth downlink communications medium.
This distributed antenna system also comprises a remote unit. The remote unit comprises a first MIMO transmitter comprising a first MIMO transmitter antenna configured to transmit MIMO communications signals in a first polarization and a second MIMO transmitter antenna configured to transmit MIMO communications signals in a second polarization different from the first polarization. The remote unit also comprises a second MIMO transmitter comprising a third MIMO transmitter antenna configured to transmit MIMO communications signals in the first polarization and a fourth MIMO transmitter antenna configured to transmit MIMO communications signals in the second polarization. The first MIMO transmitter is configured to receive a first downlink MIMO communications signal at a first amplitude over a first downlink communications medium, and transmit the first downlink MIMO communications signal wirelessly as a first electrical downlink MIMO communications signal over the first MIMO transmitter antenna in the first polarization. The first MIMO transmitter is also configured to receive a second downlink MIMO communications signal at the first amplitude over a second downlink communications medium, and transmit the second downlink MIMO communications signal wirelessly as a second electrical downlink MIMO communications signal over the second MIMO transmitter antenna in the second polarization. The second MIMO transmitter is configured to receive a third downlink MIMO communications signal at the first amplitude over a third downlink communications medium, and transmit the third downlink MIMO communications signal wirelessly as a third electrical downlink MIMO communications signal over the third MIMO transmitter antenna in the first polarization. The second MIMO transmitter is also configured to receive a fourth downlink MIMO communications signal over a fourth downlink communications medium, and transmit the fourth downlink MIMO communications signal at a second amplitude modified from the first amplitude, wirelessly as a fourth electrical downlink MIMO communications signal over the fourth MIMO transmitter antenna in the second polarization. The remote unit also comprises at least one amplitude adjustment circuit configured to amplitude adjust the fourth downlink MIMO communications signal to the second amplitude.
The distributed antenna systems disclosed herein can be configured to support one or more radio-frequency (RF)-based services and/or distribution of one or more digital data services. The remote units in the distributed antenna systems may be configured to transmit and receive wireless communications signals at one or more frequencies, including but not limited to extremely high frequencies (EHF) (i.e., approximately 30 GHz—approximately 300 GHz). The distributed antenna systems may include, without limitation, wireless local area networks (WLANs). Further, as a non-limiting example, the distributed antenna systems may be an optical fiber-based distributed antenna system, but such is not required. An optical fiber-based distributed antenna system may employ Radio-over-Fiber (RoF) communications. The embodiments disclosed herein are also applicable to other remote antenna clusters and distributed antenna systems, including those that include other forms of communications media for distribution of communications signals, including electrical conductors and wireless transmission. For example, the distributed antenna systems may include electrical and/or wireless communications mediums between a central unit and remote units in addition or in lieu of optical fiber communications medium. The embodiments disclosed herein may also be applicable to remote antenna clusters and distributed antenna systems and may also include more than one communications media for distribution of communications signals (e.g., digital data services, RF communications services). The communications signals in the distributed antenna system may or may not be frequency shifted.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from the description or recognized by practicing the embodiments as described in the written description and the claims hereof, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understand the nature and character of the claims. The accompanying drawings are included to provide a further understanding and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiments, and together with the description serve to explain principles and operation of the various embodiments.
Components, systems, and methods for reducing location-dependent destructive interference in distributed antenna systems (DASs) operating in multiple-input, multiple-output (MIMO) configuration are disclosed. The DASs include remote units employing MIMO transmitters configured to transmit multiple data streams in MIMO configuration to MIMO receivers in wireless client devices. Destructive interference in a MIMO system can occur when two or more spatial streams transmitted from multiple MIMO antennas are locked into a relative phase and/or amplitude pattern, causing periodic destructive interferences when the two or more spatial streams are combined at MIMO receivers in client devices. These issues can occur due to lack of separation (i.e., phase, amplitude) in the received MIMO communications signals, especially with closely located MIMO transmitters configured for line-of-sight (LOS) communications. Thus, to provide spatial separation of MIMO communications signals received by MIMO receivers in client devices, multiple MIMO transmitters in a remote unit in a DAS are each configured to employ multiple transmitter antennas, which are each configured to transmit in different polarization states. In certain embodiments, the amplitude of one of the MIMO communications signals is modified in one of the polarization states to further provide amplitude separation between the MIMO communications signals received by the MIMO receivers. Various embodiments will be explained by the following examples.
Before discussing examples of components, systems, and methods for reducing location-dependent destructive interference in distributed antenna systems operating in MIMO configuration starting at
One downlink optical fiber 16D and one uplink optical fiber 16U could be provided to support multiple full-duplex channels each using wave-division multiplexing (WDM), as discussed in U.S. patent application Ser. No. 12/892,424, entitled “Providing Digital Data Services in Optical Fiber-based Distributed Radio Frequency (RF) Communications Systems, And Related Components and Methods,” incorporated herein by reference in its entirety. Other options for WDM and frequency-division multiplexing (FDM) are also disclosed in U.S. patent application Ser. No. 12/892,424, any of which can be employed in any of the embodiments disclosed herein. Further, U.S. patent application Ser. No. 12/892,424 also discloses distributed digital data communications signals in a distributed antenna system which may also be distributed in the distributed antenna system 10 either in conjunction with the RF communications signals or not.
The distributed antenna system 10 has an antenna coverage area 20 that can be disposed around the remote unit 14. The antenna coverage area 20 of the remote unit 14 forms an RF coverage area 21. The central unit 12 is adapted to perform or to facilitate any one of a number of Radio-over-Fiber (RoF) applications, such as RF identification (RFID), wireless local-area network (WLAN) communication, or cellular phone service. Shown within the antenna coverage area 20 is a client device 24 in the form of a mobile device, which may be a cellular telephone as an example. The client device 24 can be any device that is capable of receiving RF communications signals. The client device 24 includes an antenna 26 (e.g., a wireless card) adapted to receive and/or send electromagnetic RF signals.
With continuing reference to
Similarly, the antenna 32 is also configured to receive wireless RF communications from the client device 24 in the antenna coverage area 20. In this regard, the antenna 32 receives wireless RF communications from the client device 24 and communicates electrical RF signals representing the wireless RF communications to an E/O converter 34 in the remote unit 14. The E/O converter 34 converts the electrical RF signals into uplink optical RF signals 22U to be communicated over the uplink optical fiber 16U. An 0/E converter 36 provided in the central unit 12 converts the uplink optical RF signals 22U into uplink electrical RF signals, which can then be communicated as uplink electrical RF signals 18U back to a network or other source.
As noted, one or more of the network or other sources can be a cellular system, which may include a base station or base transceiver station (BTS). The BTS may be provided by a second party such as a cellular service provider, and can be co-located or located remotely from the central unit 12.
In a typical cellular system, for example, a plurality of BTSs is deployed at a plurality of remote locations to provide wireless telephone coverage. Each BTS serves a corresponding cell and when a mobile client device enters the cell, the BTS communicates with the mobile client device. Each BTS can include at least one radio transceiver for enabling communication with one or more subscriber units operating within the associated cell. As another example, wireless repeaters or bi-directional amplifiers could also be used to serve a corresponding cell in lieu of a BTS. Alternatively, radio input could be provided by a repeater, picocell, or femtocell, as other examples. In a particular exemplary embodiment, cellular signal distribution in the frequency range from 400 MHz to 2.7 GHz is supported by the distributed antenna system 10.
Although the distributed antenna system 10 in
A distributed antenna system, including the distributed antenna system 10 in
With continuing reference to
With continuing reference to
With continuing reference to
A destructive interference occurs when the electrical downlink MIMO communication signals 82D(1), 82D(2) are locked into a relative phase and/or amplitude pattern, causing them to cancel each other when combined at MIMO receivers 85(1), 85(2). Because the electrical downlink MIMO communication signals 82D(1), 82D(2) are periodic radio frequency waves, the destructive interference also becomes periodic as result. When physical obstacles (e.g., buildings, walls, trees, vehicles, etc.) standing in radio transmission paths between the MIMO transmitter antennas 78(1), 78(2) and the MIMO receiver antennas 86(1), 86(2), the electrical downlink MIMO communication signals 82D(1), 82D(2) transmitted by the MIMO transmitter antennas 78(1), 78(2) typically arrive at the MIMO receiver antennas 86(1), 86(2) from different directions and/or angles (also known as “multipath”) due to reflections from the physical obstacles. Due to multipath effect, the electrical downlink MIMO communication signals 82D(1), 82D(2) transmitted by the MIMO transmitter antennas 78(1), 78(2) may arrive at the MIMO receiver antennas 86(1), 86(2) with slight delays among each other, resulting in natural phase shifts between the electrical downlink MIMO communication signals 82D(1), 82D(2). Further, the amplitudes of the electrical downlink MIMO communication signals 82D(1), 82D(2) may also be modified due to different reflection angles caused by different obstacles along different transmission paths. In this regard, multipath acts to break up the locked-in phase and/or amplitude pattern among the electrical downlink MIMO communication signals 82D(1), 82D(2) transmitted by the MIMO transmitter antennas 78(1), 78(2) and, thus, helps mitigate periodic destructive interferences at MIMO receivers 85(1), 85(2). However, when a millimeter wave radio frequency band (e.g., 60 GHz) is employed as the carrier frequency between the MIMO transmitter antennas 78(1), 78(2) and the MIMO receiver antennas 86(1), 86(2), there cannot be any physical obstacle stand in the radio transmission path. This is because higher frequency signals like a 60 GHz signal are inherently incapable of penetrating or bouncing off physical obstacles. To prevent millimeter wave radio frequency signals from being blocked by physical obstacles, the MIMO transmitter antennas 78(1), 78(2) and the MIMO receiver antennas 86(1), 86(2) must be configured in a line-of-sight (LOS) arrangement, which is further elaborated in
With continuing reference to
Location-dependent destructive interference for the received electrical downlink MIMO communication signals 82D(1), 82D(2) can negatively affect MIMO communications performance. These issues with electrical downlink MIMO communication signals 82D(1), 82D(2) received by the MIMO receiver antennas 86(1), 86(2) can occur due to lack of separation (e.g., phase, amplitude) in the received electrical downlink MIMO communication signals 82D(1), 82D(2), especially in LOS communications. To illustrate the effect of these issues,
To address these issues,
In this regard,
With continuing reference to
In this regard,
With reference to
With continuing reference to
With continuing reference to
As previously discussed above, the amplitude adjustment circuit 120(1) is provided in the central unit 42(1) to amplitude adjust the electrical downlink MIMO communications signal 50D(4) The amplitude adjustment in the above example in turn causes the second and fourth electrical downlink MIMO communications signals 82D(2), 82D(4) to be received by the second MIMO receiver antennas 160(2) to have a small but sufficient amplitude difference. Further, the second and fourth electrical downlink MIMO communications signals 82D(2), 82D(4) are also received by the second MIMO receiver antenna 160(2) in the second polarization 158(2), which is different from the first and third electrical downlink MIMO communications signals 82D(1), 82D(3) received by the first MIMO receiver 162(1) in the first polarization 158(1). This combination of amplitude adjustment and MIMO transmitter antenna polarization can reduce or eliminate periodic destructive interferences between the first and the third electrical downlink MIMO communications signals 82D(1), 82D(3) being received by the first MIMO receiver 162(1) and between the second and the fourth electrical downlink MIMO communications signals 82D(2), 82D(4) being received by the second MIMO receiver 162(2).
As previously stated above, the amplitude adjustment circuit 120 can be provided in other downlink signal processing stages of the MIMO distributed antenna system 40 other than in the central unit, as provided in the MIMO distributed antenna system 40(1) in
As previously discussed above with regard to
With reference back to
With reference to
With continuing reference to
To help visualize the concept of amplitude adjustment,
To illustrate the performance improvements provided by the amplitude adjustment circuits 120(1)-120(3) in the MIMO distributed antenna systems 40(1)-40(3) in
It may also be desired to provide high-speed wireless digital data service connectivity with remote units in the MIMO distributed antenna systems disclosed herein. One example would be WiFi. WiFi was initially limited in data rate transfer to 12.24 Mb/s and is now provided at data transfer rates of up to 54 Mb/s using WLAN frequencies of 2.4 GHz and 5.8 GHz. While interesting for many applications, WiFi has proven to have too small a bandwidth to support real time downloading of uncompressed high definition (HD) television signals to wireless client devices. To increase data transfer rates, the frequency of wireless signals could be increased to provide larger channel bandwidth. For example, an extremely high frequency in the range of 30 GHz to 300 GHz could be employed. For example, the sixty (60) GHz spectrum is an EHF that is an unlicensed spectrum by the Federal Communications Commission (FCC) and that could be employed to provide for larger channel bandwidths. However, high frequency wireless signals are more easily attenuated or blocked from traveling through walls or other building structures where distributed antenna systems are installed.
Thus, the embodiments disclosed herein can include distribution of extremely high frequency (EHF) (i.e., approximately 30—approximately 300 GHz), as a non-limiting example. The MIMO distributed antenna systems disclosed herein can also support provision of digital data services to wireless clients. The use of the EHF band allows for the use of channels having a higher bandwidth, which in turn allows more data intensive signals, such as uncompressed HD video to be communicated without substantial degradation to the quality of the video. As a non-limiting example, the distributed antenna systems disclosed herein may operate at approximately sixty (60) GHz with approximately seven (7) GHz bandwidth channels to provide greater bandwidth to digital data services. The distributed antenna systems disclosed herein may be well suited to be deployed in an indoor building or other facility for delivering of digital data services.
It may be desirable to provide MIMO distributed antenna systems, according to the embodiments disclosed herein, that provide digital data services for client devices. For example, it may be desirable to provide digital data services to client devices located within a distributed antenna system. Wired and wireless devices may be located in the building infrastructures that are configured to access digital data services. Examples of digital data services include, but are not limited to, Ethernet, WLAN, WiMax, WiFi, DSL, and LTE, etc. Ethernet standards could be supported, including but not limited to, 100 Mb/s (i.e., fast Ethernet) or Gigabit (Gb) Ethernet, or ten Gigabit (10G) Ethernet. Examples of digital data services include, but are not limited to, wired and wireless servers, wireless access points (WAPs), gateways, desktop computers, hubs, switches, remote radio heads (RRHs), baseband units (BBUs), and femtocells. A separate digital data services network can be provided to provide digital data services to digital data devices.
The exemplary computer system 220 in this embodiment includes a processing device or processor 222, a main memory 224 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM), such as synchronous DRAM (SDRAM), etc.), and a static memory 226 (e.g., flash memory, static random access memory (SRAM), etc.), which may communicate with each other via a data bus 228. Alternatively, the processing device 222 may be connected to the main memory 224 and/or static memory 226 directly or via some other connectivity means. The processing device 222 may be a controller, and the main memory 224 or static memory 226 may be any type of memory.
The processing device 222 represents one or more general-purpose processing devices, such as a microprocessor, central processing unit, or the like. More particularly, the processing device 222 may be a complex instruction set computing (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a processor implementing other instruction sets, or other processors implementing a combination of instruction sets. The processing device 222 is configured to execute processing logic in instructions 230 for performing the operations and steps discussed herein.
The computer system 220 may further include a network interface device 232. The computer system 220 also may or may not include an input 234, configured to receive input and selections to be communicated to the computer system 220 when executing instructions. The computer system 220 also may or may not include an output 236, including but not limited to a display, a video display unit (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device (e.g., a keyboard), and/or a cursor control device (e.g., a mouse).
The computer system 220 may or may not include a data storage device that includes instructions 238 stored in a computer-readable medium 240. The instructions 238 may also reside, completely or at least partially, within the main memory 224 and/or within the processing device 222 during execution thereof by the computer system 220, the main memory 224 and the processing device 222 also constituting computer-readable medium. The instructions 238 may further be transmitted or received over a network 242 via the network interface device 232.
While the computer-readable medium 240 is shown in an exemplary embodiment to be a single medium, the term “computer-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-readable medium” shall also be taken to include any medium that is capable of storing, encoding, or carrying a set of instructions for execution by the processing device and that cause the processing device to perform any one or more of the methodologies of the embodiments disclosed herein. The term “computer-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical and magnetic medium, and carrier wave signals.
The embodiments disclosed herein include various steps. The steps of the embodiments disclosed herein may be formed by hardware components or may be embodied in machine-executable instructions, which may be used to cause a general-purpose or special-purpose processor programmed with the instructions to perform the steps. Alternatively, the steps may be performed by a combination of hardware and software.
The embodiments disclosed herein may be provided as a computer program product, or software, that may include a machine-readable medium (or computer-readable medium) having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to the embodiments disclosed herein. A machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium includes: a machine-readable storage medium (e.g., ROM, random access memory (“RAM”), a magnetic disk storage medium, an optical storage medium, flash memory devices, etc.); a machine-readable transmission medium (electrical, optical, acoustical, or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.)); and the like.
Unless specifically stated otherwise and as apparent from the previous discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing,” “computing,” “determining,” “displaying,” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data and memories represented as physical (electronic) quantities within the computer system's registers into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission, or display devices.
The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatuses to perform the required method steps. The required structure for a variety of these systems will appear from the description above. In addition, the embodiments described herein are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the embodiments as described herein.
Those of skill in the art will further appreciate that the various illustrative logical blocks, modules, circuits, and algorithms described in connection with the embodiments disclosed herein may be implemented as electronic hardware, instructions stored in memory or in another computer-readable medium and executed by a processor or other processing device, or combinations of both. The components of the distributed antenna systems described herein may be employed in any circuit, hardware component, integrated circuit (IC), or IC chip, as examples. Memory disclosed herein may be any type and size of memory and may be configured to store any type of information desired. To clearly illustrate this interchangeability, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. How such functionality is implemented depends on the particular application, design choices, and/or design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present embodiments.
The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. Furthermore, a controller may be a processor. A processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration).
The embodiments disclosed herein may be embodied in hardware and in instructions that are stored in hardware, and may reside, for example, in RAM, flash memory, ROM, Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, a hard disk, a removable disk, a CD-ROM, or any other form of computer-readable medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a remote station. In the alternative, the processor and the storage medium may reside as discrete components in a remote station, base station, or server.
It is also noted that the operational steps described in any of the exemplary embodiments herein are described to provide examples and discussion. The operations described may be performed in numerous different sequences other than the illustrated sequences. Furthermore, operations described in a single operational step may actually be performed in a number of different steps. Additionally, one or more operational steps discussed in the exemplary embodiments may be combined. Those of skill in the art will also understand that information and signals may be represented using any of a variety of technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips, that may be references throughout the above description, may be represented by voltages, currents, electromagnetic waves, magnetic fields, or particles, optical fields or particles, or any combination thereof.
Further and as used herein, it is intended that terms “fiber optic cables” and/or “optical fibers” include all types of single mode and multi-mode light waveguides, including one or more optical fibers that may be upcoated, colored, buffered, ribbonized, and/or have other organizing or protective structure in a cable such as one or more tubes, strength members, jackets, or the like. The optical fibers disclosed herein can be single mode or multi-mode fibers. Likewise, other types of suitable optical fibers include bend-insensitive optical fibers, or any other expedient of a medium for transmitting light signals. An example of a bend-insensitive, or bend resistant, optical fiber is ClearCurve® Multimode fiber, commercially available from Corning Incorporated. Suitable fibers of this type are disclosed, for example, in U.S. Patent Application Publication Nos. 2008/0166094 and 2009/0169163, the disclosures of which are incorporated herein by reference in their entireties.
Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that any particular order be inferred.
It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the invention. Since modifications combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and their equivalents.
This application is a continuation of U.S. application Ser. No. 15/372,490, filed Dec. 8, 2016, which is a continuation of U.S. application Ser. No. 14/447,014, filed on Jul. 30, 2014, the contents of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4365865 | Stiles | Dec 1982 | A |
4449246 | Seiler et al. | May 1984 | A |
4573212 | Lipsky | Feb 1986 | A |
4665560 | Lange | May 1987 | A |
4867527 | Dotti et al. | Sep 1989 | A |
4889977 | Hayden | Dec 1989 | A |
4896939 | O'Brien | Jan 1990 | A |
4916460 | Powell | Apr 1990 | A |
4939852 | Brenner | Jul 1990 | A |
4943136 | Popoff | Jul 1990 | A |
4972346 | Kawano et al. | Nov 1990 | A |
5039195 | Jenkins et al. | Aug 1991 | A |
5042086 | Cole et al. | Aug 1991 | A |
5056109 | Gilhousen et al. | Oct 1991 | A |
5059927 | Cohen | Oct 1991 | A |
5125060 | Edmundson | Jun 1992 | A |
5159479 | Takagi | Oct 1992 | A |
5187803 | Sohner et al. | Feb 1993 | A |
5189718 | Barrett et al. | Feb 1993 | A |
5189719 | Coleman et al. | Feb 1993 | A |
5206655 | Caille et al. | Apr 1993 | A |
5208812 | Dudek et al. | May 1993 | A |
5210812 | Nilsson et al. | May 1993 | A |
5260957 | Hakimi | Nov 1993 | A |
5263108 | Kurokawa et al. | Nov 1993 | A |
5267122 | Glover et al. | Nov 1993 | A |
5268971 | Nilsson et al. | Dec 1993 | A |
5278690 | Vella-Coleiro | Jan 1994 | A |
5278989 | Burke et al. | Jan 1994 | A |
5280472 | Gilhousen et al. | Jan 1994 | A |
5299947 | Barnard | Apr 1994 | A |
5301056 | O'Neill | Apr 1994 | A |
5325223 | Bears | Jun 1994 | A |
5339058 | Lique | Aug 1994 | A |
5339184 | Tang | Aug 1994 | A |
5343320 | Anderson | Aug 1994 | A |
5377035 | Wang et al. | Dec 1994 | A |
5379455 | Koschek | Jan 1995 | A |
5381459 | Lappington | Jan 1995 | A |
5396224 | Dukes et al. | Mar 1995 | A |
5400391 | Emura et al. | Mar 1995 | A |
5420863 | Taketsugu et al. | May 1995 | A |
5424864 | Emura | Jun 1995 | A |
5444564 | Newberg | Aug 1995 | A |
5455592 | Huddle | Oct 1995 | A |
5457557 | Zarem et al. | Oct 1995 | A |
5459727 | Vannucci | Oct 1995 | A |
5469523 | Blew et al. | Nov 1995 | A |
5500763 | Ota | Mar 1996 | A |
5502446 | Denninger | Mar 1996 | A |
5513176 | Dean et al. | Apr 1996 | A |
5519830 | Opoczynski | May 1996 | A |
5543000 | Lique | Aug 1996 | A |
5546443 | Raith | Aug 1996 | A |
5557698 | Gareis et al. | Sep 1996 | A |
5574815 | Kneeland | Nov 1996 | A |
5583517 | Yokev et al. | Dec 1996 | A |
5598288 | Collar | Jan 1997 | A |
5606725 | Hart | Feb 1997 | A |
5615034 | Hori | Mar 1997 | A |
5627879 | Russell et al. | May 1997 | A |
5640678 | Ishikawa et al. | Jun 1997 | A |
5644622 | Russell et al. | Jul 1997 | A |
5648961 | Ebihara | Jul 1997 | A |
5651081 | Blew et al. | Jul 1997 | A |
5661582 | Kintis et al. | Aug 1997 | A |
5668562 | Cutrer et al. | Sep 1997 | A |
5677974 | Elms et al. | Oct 1997 | A |
5682256 | Motley et al. | Oct 1997 | A |
5694232 | Parsay et al. | Dec 1997 | A |
5703602 | Casebolt | Dec 1997 | A |
5708681 | Malkemes et al. | Jan 1998 | A |
5726984 | Kubler et al. | Mar 1998 | A |
5765099 | Georges et al. | Jun 1998 | A |
5774789 | van der Kaay et al. | Jun 1998 | A |
5790536 | Mahany et al. | Aug 1998 | A |
5790606 | Dent | Aug 1998 | A |
5793772 | Burke et al. | Aug 1998 | A |
5802173 | Hamilton-Piercy et al. | Sep 1998 | A |
5802473 | Rutledge et al. | Sep 1998 | A |
5805975 | Green, Sr. et al. | Sep 1998 | A |
5805983 | Naidu et al. | Sep 1998 | A |
5809395 | Hamilton-Piercy et al. | Sep 1998 | A |
5809422 | Raleigh et al. | Sep 1998 | A |
5809431 | Bustamante et al. | Sep 1998 | A |
5812296 | Tarusawa et al. | Sep 1998 | A |
5818619 | Medved et al. | Oct 1998 | A |
5818883 | Smith et al. | Oct 1998 | A |
5821510 | Cohen et al. | Oct 1998 | A |
5825651 | Gupta et al. | Oct 1998 | A |
5828658 | Ottersten et al. | Oct 1998 | A |
5832379 | Mallinckrodt | Nov 1998 | A |
5835857 | Otten | Nov 1998 | A |
5838474 | Stilling | Nov 1998 | A |
5839052 | Dean et al. | Nov 1998 | A |
5852651 | Fischer et al. | Dec 1998 | A |
5854986 | Dorren et al. | Dec 1998 | A |
5859719 | Dentai et al. | Jan 1999 | A |
5862460 | Rich | Jan 1999 | A |
5867485 | Chambers et al. | Feb 1999 | A |
5867763 | Dean et al. | Feb 1999 | A |
5881200 | Burt | Mar 1999 | A |
5883882 | Schwartz | Mar 1999 | A |
5896568 | Tseng et al. | Apr 1999 | A |
5903834 | Wallstedt et al. | May 1999 | A |
5910776 | Black | Jun 1999 | A |
5913003 | Arroyo et al. | Jun 1999 | A |
5917636 | Wake et al. | Jun 1999 | A |
5930682 | Schwartz et al. | Jul 1999 | A |
5936754 | Ariyavisitakul et al. | Aug 1999 | A |
5943372 | Gans et al. | Aug 1999 | A |
5946622 | Bojeryd | Aug 1999 | A |
5949564 | Wake | Sep 1999 | A |
5953670 | Newson | Sep 1999 | A |
5959531 | Gallagher, III et al. | Sep 1999 | A |
5960344 | Mahany | Sep 1999 | A |
5969837 | Farber et al. | Oct 1999 | A |
5983070 | Georges et al. | Nov 1999 | A |
5987303 | Dutta et al. | Nov 1999 | A |
5995832 | Mallinckrodt | Nov 1999 | A |
6005884 | Cook et al. | Dec 1999 | A |
6006069 | Langston et al. | Dec 1999 | A |
6006105 | Rostoker et al. | Dec 1999 | A |
6011980 | Nagano et al. | Jan 2000 | A |
6014546 | Georges et al. | Jan 2000 | A |
6016426 | Bodell | Jan 2000 | A |
6023625 | Myers, Jr. | Feb 2000 | A |
6031645 | Ichikawa | Feb 2000 | A |
6037898 | Parish et al. | Mar 2000 | A |
6049705 | Xue | Apr 2000 | A |
6061161 | Yang et al. | May 2000 | A |
6069721 | Oh et al. | May 2000 | A |
6088381 | Myers, Jr. | Jul 2000 | A |
6112086 | Wala | Aug 2000 | A |
6118767 | Shen et al. | Sep 2000 | A |
6122529 | Sabat, Jr. et al. | Sep 2000 | A |
6127917 | Tuttle | Oct 2000 | A |
6128470 | Naidu et al. | Oct 2000 | A |
6128477 | Freed | Oct 2000 | A |
6148041 | Dent | Nov 2000 | A |
6150921 | Werb et al. | Nov 2000 | A |
6157810 | Georges et al. | Dec 2000 | A |
6192216 | Sabat, Jr. et al. | Feb 2001 | B1 |
6194968 | Winslow | Feb 2001 | B1 |
6198432 | Janky | Mar 2001 | B1 |
6211978 | Wojtunik | Apr 2001 | B1 |
6212397 | Langston et al. | Apr 2001 | B1 |
6222503 | Gietema | Apr 2001 | B1 |
6223201 | Reznak | Apr 2001 | B1 |
6232870 | Garber et al. | May 2001 | B1 |
6236784 | Ido | May 2001 | B1 |
6236789 | Fitz | May 2001 | B1 |
6236863 | Waldroup et al. | May 2001 | B1 |
6240274 | Izadpanah | May 2001 | B1 |
6268946 | Larkin et al. | Jul 2001 | B1 |
6275990 | Dapper et al. | Aug 2001 | B1 |
6279158 | Geile et al. | Aug 2001 | B1 |
6286163 | Trimble | Sep 2001 | B1 |
6292673 | Maeda et al. | Sep 2001 | B1 |
6295451 | Mimura | Sep 2001 | B1 |
6301240 | Slabinski et al. | Oct 2001 | B1 |
6307869 | Pawelski | Oct 2001 | B1 |
6308085 | Shoki | Oct 2001 | B1 |
6314163 | Acampora | Nov 2001 | B1 |
6317599 | Rappaport et al. | Nov 2001 | B1 |
6323980 | Bloom | Nov 2001 | B1 |
6324391 | Bodell | Nov 2001 | B1 |
6330241 | Fort | Dec 2001 | B1 |
6330244 | Swartz et al. | Dec 2001 | B1 |
6334219 | Hill et al. | Dec 2001 | B1 |
6336021 | Nukada | Jan 2002 | B1 |
6336042 | Dawson et al. | Jan 2002 | B1 |
6337754 | Imajo | Jan 2002 | B1 |
6340932 | Rodgers et al. | Jan 2002 | B1 |
6353406 | Lanzl et al. | Mar 2002 | B1 |
6353600 | Schwartz et al. | Mar 2002 | B1 |
6359714 | Imajo | Mar 2002 | B1 |
6370203 | Boesch et al. | Apr 2002 | B1 |
6374078 | Williams et al. | Apr 2002 | B1 |
6374124 | Slabinski | Apr 2002 | B1 |
6389010 | Kubler et al. | May 2002 | B1 |
6400318 | Kasami et al. | Jun 2002 | B1 |
6400418 | Wakabayashi | Jun 2002 | B1 |
6404775 | Leslie et al. | Jun 2002 | B1 |
6405018 | Reudink et al. | Jun 2002 | B1 |
6405058 | Bobier | Jun 2002 | B2 |
6405308 | Gupta et al. | Jun 2002 | B1 |
6414624 | Endo et al. | Jul 2002 | B2 |
6415132 | Sabat, Jr. | Jul 2002 | B1 |
6421327 | Lundby et al. | Jul 2002 | B1 |
6438301 | Johnson et al. | Aug 2002 | B1 |
6438371 | Fujise et al. | Aug 2002 | B1 |
6448558 | Greene | Sep 2002 | B1 |
6452915 | Jorgensen | Sep 2002 | B1 |
6459519 | Sasai et al. | Oct 2002 | B1 |
6459989 | Kirkpatrick et al. | Oct 2002 | B1 |
6477154 | Cheong et al. | Nov 2002 | B1 |
6480702 | Sabat, Jr. | Nov 2002 | B1 |
6486907 | Farber et al. | Nov 2002 | B1 |
6496290 | Lee | Dec 2002 | B1 |
6501965 | Lucidarme | Dec 2002 | B1 |
6504636 | Seto et al. | Jan 2003 | B1 |
6504831 | Greenwood et al. | Jan 2003 | B1 |
6512478 | Chien | Jan 2003 | B1 |
6519395 | Bevan et al. | Feb 2003 | B1 |
6519449 | Zhang et al. | Feb 2003 | B1 |
6525855 | Westbrook et al. | Feb 2003 | B1 |
6535330 | Lelic et al. | Mar 2003 | B1 |
6535720 | Kintis et al. | Mar 2003 | B1 |
6553239 | Langston | Apr 2003 | B1 |
6556551 | Schwartz | Apr 2003 | B1 |
6577794 | Currie et al. | Jun 2003 | B1 |
6577801 | Broderick et al. | Jun 2003 | B2 |
6580393 | Holt | Jun 2003 | B2 |
6580402 | Navarro et al. | Jun 2003 | B2 |
6580905 | Naidu et al. | Jun 2003 | B1 |
6580918 | Leickel et al. | Jun 2003 | B1 |
6583763 | Judd | Jun 2003 | B2 |
6587514 | Wright et al. | Jul 2003 | B1 |
6594496 | Schwartz | Jul 2003 | B2 |
6597325 | Judd et al. | Jul 2003 | B2 |
6598009 | Yang | Jul 2003 | B2 |
6606430 | Bartur et al. | Aug 2003 | B2 |
6615074 | Mickle et al. | Sep 2003 | B2 |
6628732 | Takaki | Sep 2003 | B1 |
6634811 | Gertel et al. | Oct 2003 | B1 |
6636747 | Harada et al. | Oct 2003 | B2 |
6640103 | Inman et al. | Oct 2003 | B1 |
6643437 | Park | Nov 2003 | B1 |
6652158 | Bartur et al. | Nov 2003 | B2 |
6654590 | Boros et al. | Nov 2003 | B2 |
6654616 | Pope, Jr. et al. | Nov 2003 | B1 |
6657535 | Magbie et al. | Dec 2003 | B1 |
6658269 | Golemon et al. | Dec 2003 | B1 |
6665308 | Rakib et al. | Dec 2003 | B1 |
6670930 | Navarro | Dec 2003 | B2 |
6675294 | Gupta et al. | Jan 2004 | B1 |
6678509 | Skarman et al. | Jan 2004 | B2 |
6687437 | Starnes et al. | Feb 2004 | B1 |
6690328 | Judd | Feb 2004 | B2 |
6696917 | Heitner et al. | Feb 2004 | B1 |
6697603 | Lovinggood et al. | Feb 2004 | B1 |
6704298 | Matsumiya et al. | Mar 2004 | B1 |
6704545 | Wala | Mar 2004 | B1 |
6710366 | Lee et al. | Mar 2004 | B1 |
6714800 | Johnson et al. | Mar 2004 | B2 |
6731880 | Westbrook et al. | May 2004 | B2 |
6745013 | Porter et al. | Jun 2004 | B1 |
6758913 | Tunney et al. | Jul 2004 | B1 |
6763226 | McZeal, Jr. | Jul 2004 | B1 |
6771862 | Karnik et al. | Aug 2004 | B2 |
6771933 | Eng et al. | Aug 2004 | B1 |
6784802 | Stanescu | Aug 2004 | B1 |
6785558 | Stratford et al. | Aug 2004 | B1 |
6788666 | Linebarger et al. | Sep 2004 | B1 |
6801767 | Schwartz et al. | Oct 2004 | B1 |
6807374 | Imajo et al. | Oct 2004 | B1 |
6812824 | Goldinger et al. | Nov 2004 | B1 |
6812905 | Thomas et al. | Nov 2004 | B2 |
6823174 | Masenten et al. | Nov 2004 | B1 |
6826163 | Mani et al. | Nov 2004 | B2 |
6826337 | Linnell | Nov 2004 | B2 |
6836660 | Wala | Dec 2004 | B1 |
6836673 | Trott | Dec 2004 | B1 |
6842433 | West et al. | Jan 2005 | B2 |
6842459 | Binder | Jan 2005 | B1 |
6847856 | Bohannon | Jan 2005 | B1 |
6850510 | Kubler | Feb 2005 | B2 |
6865390 | Goss et al. | Mar 2005 | B2 |
6873823 | Hasarchi | Mar 2005 | B2 |
6876056 | Tilmans et al. | Apr 2005 | B2 |
6879290 | Toutain et al. | Apr 2005 | B1 |
6882311 | Walker et al. | Apr 2005 | B2 |
6883710 | Chung | Apr 2005 | B2 |
6885344 | Mohamadi | Apr 2005 | B2 |
6885846 | Panasik et al. | Apr 2005 | B1 |
6889060 | Fernando et al. | May 2005 | B2 |
6895249 | Gaal | May 2005 | B2 |
6909399 | Zegelin et al. | Jun 2005 | B1 |
6914539 | Hoctor et al. | Jul 2005 | B2 |
6915058 | Pons | Jul 2005 | B2 |
6915529 | Suematsu et al. | Jul 2005 | B1 |
6919858 | Rofougaran | Jul 2005 | B2 |
6920330 | Caronni et al. | Jul 2005 | B2 |
6924997 | Chen et al. | Aug 2005 | B2 |
6930987 | Fukuda et al. | Aug 2005 | B1 |
6931183 | Panak et al. | Aug 2005 | B2 |
6931659 | Kinemura | Aug 2005 | B1 |
6933849 | Sawyer | Aug 2005 | B2 |
6934511 | Lovinggood et al. | Aug 2005 | B1 |
6934541 | Miyatani | Aug 2005 | B2 |
6941112 | Hasegawa | Sep 2005 | B2 |
6946989 | Vavik | Sep 2005 | B2 |
6961312 | Kubler et al. | Nov 2005 | B2 |
6963289 | Aljadeff et al. | Nov 2005 | B2 |
6963552 | Sabat, Jr. et al. | Nov 2005 | B2 |
6965718 | Koertel | Nov 2005 | B2 |
6967347 | Estes et al. | Nov 2005 | B2 |
6968107 | Belardi et al. | Nov 2005 | B2 |
6970652 | Zhang et al. | Nov 2005 | B2 |
6973243 | Koyasu et al. | Dec 2005 | B2 |
6974262 | Rickenbach | Dec 2005 | B1 |
6977502 | Hertz | Dec 2005 | B1 |
7002511 | Ammar et al. | Feb 2006 | B1 |
7006039 | Miyamoto et al. | Feb 2006 | B2 |
7006465 | Toshimitsu et al. | Feb 2006 | B2 |
7013087 | Suzuki et al. | Mar 2006 | B2 |
7015826 | Chan et al. | Mar 2006 | B1 |
7020473 | Splett | Mar 2006 | B2 |
7020488 | Bleile et al. | Mar 2006 | B1 |
7023382 | Akano | Apr 2006 | B1 |
7024166 | Wallace | Apr 2006 | B2 |
7035512 | Van Bijsterveld | Apr 2006 | B2 |
7035671 | Solum | Apr 2006 | B2 |
7039399 | Fischer | May 2006 | B2 |
7043271 | Seto et al. | May 2006 | B1 |
7047028 | Cagenius et al. | May 2006 | B2 |
7050017 | King et al. | May 2006 | B2 |
7053838 | Judd | May 2006 | B2 |
7054513 | Herz et al. | May 2006 | B2 |
7069577 | Geile et al. | Jun 2006 | B2 |
7072586 | Aburakawa et al. | Jul 2006 | B2 |
7082320 | Kattukaran et al. | Jul 2006 | B2 |
7084769 | Bauer et al. | Aug 2006 | B2 |
7092726 | Shi et al. | Aug 2006 | B2 |
7093985 | Lord et al. | Aug 2006 | B2 |
7103119 | Matsuoka et al. | Sep 2006 | B2 |
7103377 | Bauman et al. | Sep 2006 | B2 |
7106931 | Sutehall et al. | Sep 2006 | B2 |
7110795 | Doi | Sep 2006 | B2 |
7114859 | Tuohimaa et al. | Oct 2006 | B1 |
7123939 | Bird et al. | Oct 2006 | B1 |
7127176 | Sasaki | Oct 2006 | B2 |
7142503 | Grant et al. | Nov 2006 | B1 |
7142535 | Kubler et al. | Nov 2006 | B2 |
7142619 | Sommer et al. | Nov 2006 | B2 |
7160032 | Nagashima et al. | Jan 2007 | B2 |
7171244 | Bauman | Jan 2007 | B2 |
7184728 | Solum | Feb 2007 | B2 |
7190748 | Kim et al. | Mar 2007 | B2 |
7194023 | Norrell et al. | Mar 2007 | B2 |
7199443 | Elsharawy | Apr 2007 | B2 |
7200305 | Dion et al. | Apr 2007 | B2 |
7200391 | Chung et al. | Apr 2007 | B2 |
7228072 | Mickelsson et al. | Jun 2007 | B2 |
7250907 | Krumm et al. | Jul 2007 | B2 |
7263293 | Ommodt et al. | Aug 2007 | B2 |
7269311 | Kim et al. | Sep 2007 | B2 |
7280011 | Bayar et al. | Oct 2007 | B2 |
7286843 | Scheck | Oct 2007 | B2 |
7286854 | Ferrato et al. | Oct 2007 | B2 |
7295119 | Rappaport et al. | Nov 2007 | B2 |
7310430 | Mallya et al. | Dec 2007 | B1 |
7313415 | Wake et al. | Dec 2007 | B2 |
7315735 | Graham | Jan 2008 | B2 |
7324730 | Varkey et al. | Jan 2008 | B2 |
7343164 | Kallstenius | Mar 2008 | B2 |
7348843 | Qiu et al. | Mar 2008 | B1 |
7349633 | Lee et al. | Mar 2008 | B2 |
7359408 | Kim | Apr 2008 | B2 |
7359674 | Markki et al. | Apr 2008 | B2 |
7366150 | Lee et al. | Apr 2008 | B2 |
7366151 | Kubler et al. | Apr 2008 | B2 |
7369526 | Lechleider et al. | May 2008 | B2 |
7379669 | Kim | May 2008 | B2 |
7388892 | Nishiyama et al. | Jun 2008 | B2 |
7392025 | Rooyen et al. | Jun 2008 | B2 |
7392029 | Pronkine | Jun 2008 | B2 |
7394883 | Funakubo et al. | Jul 2008 | B2 |
7403156 | Coppi et al. | Jul 2008 | B2 |
7409159 | Izadpanah | Aug 2008 | B2 |
7417724 | Kotola et al. | Aug 2008 | B1 |
7424228 | Williams et al. | Sep 2008 | B1 |
7429951 | Kennedy, Jr. et al. | Sep 2008 | B2 |
7442679 | Stolte et al. | Oct 2008 | B2 |
7444051 | Tatat et al. | Oct 2008 | B2 |
7450853 | Kim et al. | Nov 2008 | B2 |
7450854 | Lee et al. | Nov 2008 | B2 |
7451365 | Wang et al. | Nov 2008 | B2 |
7453363 | Reynolds | Nov 2008 | B2 |
7454222 | Huang et al. | Nov 2008 | B2 |
7460507 | Kubler et al. | Dec 2008 | B2 |
7460829 | Utsumi et al. | Dec 2008 | B2 |
7460831 | Hasarchi | Dec 2008 | B2 |
7466925 | Iannelli | Dec 2008 | B2 |
7469105 | Wake et al. | Dec 2008 | B2 |
7477597 | Segel | Jan 2009 | B2 |
7483504 | Shapira et al. | Jan 2009 | B2 |
7483711 | Burchfiel | Jan 2009 | B2 |
7496070 | Vesuna | Feb 2009 | B2 |
7496384 | Seto et al. | Feb 2009 | B2 |
7505747 | Solum | Mar 2009 | B2 |
7512419 | Solum | Mar 2009 | B2 |
7522552 | Fein et al. | Apr 2009 | B2 |
7539509 | Bauman et al. | May 2009 | B2 |
7542452 | Penumetsa | Jun 2009 | B2 |
7546138 | Bauman | Jun 2009 | B2 |
7548138 | Kamgaing | Jun 2009 | B2 |
7548695 | Wake | Jun 2009 | B2 |
7551641 | Pirzada et al. | Jun 2009 | B2 |
7557758 | Rofougaran | Jul 2009 | B2 |
7580384 | Kubler et al. | Aug 2009 | B2 |
7586861 | Kubler et al. | Sep 2009 | B2 |
7590354 | Sauer et al. | Sep 2009 | B2 |
7593704 | Pinel et al. | Sep 2009 | B2 |
7599420 | Forenza et al. | Oct 2009 | B2 |
7599672 | Shoji et al. | Oct 2009 | B2 |
7610046 | Wala | Oct 2009 | B2 |
7627250 | George et al. | Dec 2009 | B2 |
7630690 | Kaewell, Jr. et al. | Dec 2009 | B2 |
7633934 | Kubler et al. | Dec 2009 | B2 |
7639982 | Wala | Dec 2009 | B2 |
7646743 | Kubler et al. | Jan 2010 | B2 |
7646777 | Hicks, III et al. | Jan 2010 | B2 |
7653397 | Pernu et al. | Jan 2010 | B2 |
7668565 | Ylänen et al. | Feb 2010 | B2 |
7675936 | Mizutani et al. | Mar 2010 | B2 |
7688811 | Kubler et al. | Mar 2010 | B2 |
7693486 | Kasslin et al. | Apr 2010 | B2 |
7697467 | Kubler et al. | Apr 2010 | B2 |
7697574 | Suematsu et al. | Apr 2010 | B2 |
7715375 | Kubler et al. | May 2010 | B2 |
7715722 | Hoke et al. | May 2010 | B1 |
7751374 | Donovan | Jul 2010 | B2 |
7751838 | Ramesh et al. | Jul 2010 | B2 |
7760703 | Kubler et al. | Jul 2010 | B2 |
7768951 | Kubler et al. | Aug 2010 | B2 |
7773573 | Chung et al. | Aug 2010 | B2 |
7778603 | Palin et al. | Aug 2010 | B2 |
7787823 | George et al. | Aug 2010 | B2 |
7787854 | Conyers et al. | Aug 2010 | B2 |
7809012 | Ruuska et al. | Oct 2010 | B2 |
7812766 | Leblanc et al. | Oct 2010 | B2 |
7812775 | Babakhani et al. | Oct 2010 | B2 |
7817958 | Scheinert et al. | Oct 2010 | B2 |
7817969 | Castaneda et al. | Oct 2010 | B2 |
7835328 | Stephens et al. | Nov 2010 | B2 |
7844273 | Scheinert | Nov 2010 | B2 |
7848316 | Kubler et al. | Dec 2010 | B2 |
7848731 | Dianda et al. | Dec 2010 | B1 |
7848770 | Scheinert | Dec 2010 | B2 |
7853234 | Afsahi | Dec 2010 | B2 |
7870321 | Rofougaran | Jan 2011 | B2 |
7880677 | Rofougaran et al. | Feb 2011 | B2 |
7881755 | Mishra et al. | Feb 2011 | B1 |
7894423 | Kubler et al. | Feb 2011 | B2 |
7899007 | Kubler et al. | Mar 2011 | B2 |
7907972 | Walton et al. | Mar 2011 | B2 |
7912043 | Kubler et al. | Mar 2011 | B2 |
7912506 | Lovberg et al. | Mar 2011 | B2 |
7916706 | Kubler et al. | Mar 2011 | B2 |
7917177 | Bauman | Mar 2011 | B2 |
7920553 | Kubler et al. | Apr 2011 | B2 |
7920858 | Sabat, Jr. et al. | Apr 2011 | B2 |
7924783 | Mahany et al. | Apr 2011 | B1 |
7929940 | Dianda et al. | Apr 2011 | B1 |
7936713 | Kubler et al. | May 2011 | B2 |
7948897 | Stuart et al. | May 2011 | B2 |
7949364 | Kasslin et al. | May 2011 | B2 |
7957777 | Vu et al. | Jun 2011 | B1 |
7962111 | Solum | Jun 2011 | B2 |
7969009 | Chandrasekaran | Jun 2011 | B2 |
7969911 | Mahany et al. | Jun 2011 | B2 |
7990925 | Tinnakomsrisuphap et al. | Aug 2011 | B2 |
7996020 | Chhabra | Aug 2011 | B1 |
8018907 | Kubler et al. | Sep 2011 | B2 |
8023886 | Rofougaran | Sep 2011 | B2 |
8027656 | Rofougaran et al. | Sep 2011 | B2 |
8031121 | Rofougaran et al. | Oct 2011 | B2 |
8036308 | Rofougaran | Oct 2011 | B2 |
8082353 | Huber et al. | Dec 2011 | B2 |
8086192 | Rofougaran et al. | Dec 2011 | B2 |
8107464 | Schmidt et al. | Jan 2012 | B2 |
8174428 | Wegener | May 2012 | B2 |
8274929 | Schmidt et al. | Sep 2012 | B2 |
8275265 | Kobyakov et al. | Sep 2012 | B2 |
8279800 | Schmidt et al. | Oct 2012 | B2 |
8310963 | Singh | Nov 2012 | B2 |
8346091 | Kummetz et al. | Jan 2013 | B2 |
8422884 | Mao | Apr 2013 | B2 |
8467823 | Seki et al. | Jun 2013 | B2 |
8548330 | Berlin et al. | Oct 2013 | B2 |
8548526 | Schmidt et al. | Oct 2013 | B2 |
8583100 | Koziy et al. | Nov 2013 | B2 |
8599794 | Ahmadi | Dec 2013 | B2 |
8634766 | Hobbs et al. | Jan 2014 | B2 |
8676214 | Fischer et al. | Mar 2014 | B2 |
8681917 | McAllister et al. | Mar 2014 | B2 |
8693342 | Uyehara et al. | Apr 2014 | B2 |
8694034 | Notargiacomo | Apr 2014 | B2 |
8699881 | Iannone | Apr 2014 | B1 |
8699982 | Singh | Apr 2014 | B2 |
8737300 | Stapleton et al. | May 2014 | B2 |
8792933 | Chen | Jul 2014 | B2 |
8873585 | Oren et al. | Oct 2014 | B2 |
8908607 | Kummetz et al. | Dec 2014 | B2 |
8913892 | Berlin et al. | Dec 2014 | B2 |
8948816 | Fischer et al. | Feb 2015 | B2 |
8958789 | Bauman et al. | Feb 2015 | B2 |
8976067 | Fischer | Mar 2015 | B2 |
9001811 | Wala et al. | Apr 2015 | B2 |
9130613 | Oren et al. | Sep 2015 | B2 |
9258052 | George et al. | Feb 2016 | B2 |
9432095 | Berlin et al. | Aug 2016 | B2 |
9525472 | George | Dec 2016 | B2 |
9531452 | George et al. | Dec 2016 | B2 |
9929786 | George | Mar 2018 | B2 |
20020009070 | Lindsay et al. | Jan 2002 | A1 |
20020075906 | Cole et al. | Jun 2002 | A1 |
20020085643 | Kitchener et al. | Jul 2002 | A1 |
20020092347 | Niekerk et al. | Jul 2002 | A1 |
20020111149 | Shoki | Aug 2002 | A1 |
20020111192 | Thomas et al. | Aug 2002 | A1 |
20020114038 | Amon et al. | Aug 2002 | A1 |
20020123365 | Thorson et al. | Sep 2002 | A1 |
20020126967 | Panak et al. | Sep 2002 | A1 |
20020128009 | Boch et al. | Sep 2002 | A1 |
20020130778 | Nicholson | Sep 2002 | A1 |
20020181668 | Masoian et al. | Dec 2002 | A1 |
20020190845 | Moore | Dec 2002 | A1 |
20030002604 | Fifield et al. | Jan 2003 | A1 |
20030007214 | Aburakawa et al. | Jan 2003 | A1 |
20030016418 | Westbrook et al. | Jan 2003 | A1 |
20030045284 | Copley et al. | Mar 2003 | A1 |
20030078074 | Sesay et al. | Apr 2003 | A1 |
20030112826 | Ashwood Smith et al. | Jun 2003 | A1 |
20030141962 | Barink | Jul 2003 | A1 |
20030161637 | Yamamoto et al. | Aug 2003 | A1 |
20030165287 | Krill et al. | Sep 2003 | A1 |
20030174099 | Bauer et al. | Sep 2003 | A1 |
20030209601 | Chung | Nov 2003 | A1 |
20040001719 | Sasaki | Jan 2004 | A1 |
20040008114 | Sawyer | Jan 2004 | A1 |
20040017785 | Zelst | Jan 2004 | A1 |
20040033076 | Song et al. | Feb 2004 | A1 |
20040037565 | Young et al. | Feb 2004 | A1 |
20040041714 | Forster | Mar 2004 | A1 |
20040043764 | Bigham et al. | Mar 2004 | A1 |
20040047313 | Rumpf et al. | Mar 2004 | A1 |
20040068751 | Basawapatna et al. | Apr 2004 | A1 |
20040078151 | Aljadeff et al. | Apr 2004 | A1 |
20040095907 | Agee et al. | May 2004 | A1 |
20040100930 | Shapira et al. | May 2004 | A1 |
20040102196 | Weckstrom et al. | May 2004 | A1 |
20040105435 | Morioka | Jun 2004 | A1 |
20040126068 | Van Bijsterveld | Jul 2004 | A1 |
20040126107 | Jay et al. | Jul 2004 | A1 |
20040139477 | Russell et al. | Jul 2004 | A1 |
20040146020 | Kubler et al. | Jul 2004 | A1 |
20040149736 | Clothier | Aug 2004 | A1 |
20040151164 | Kubler et al. | Aug 2004 | A1 |
20040151503 | Kashima et al. | Aug 2004 | A1 |
20040157623 | Splett | Aug 2004 | A1 |
20040160912 | Kubler et al. | Aug 2004 | A1 |
20040160913 | Kubler et al. | Aug 2004 | A1 |
20040162084 | Wang | Aug 2004 | A1 |
20040162115 | Smith et al. | Aug 2004 | A1 |
20040162116 | Han et al. | Aug 2004 | A1 |
20040164902 | Karlsson et al. | Aug 2004 | A1 |
20040165568 | Weinstein | Aug 2004 | A1 |
20040165573 | Kubler et al. | Aug 2004 | A1 |
20040175173 | Deas | Sep 2004 | A1 |
20040196404 | Loheit et al. | Oct 2004 | A1 |
20040202257 | Mehta et al. | Oct 2004 | A1 |
20040203703 | Fischer | Oct 2004 | A1 |
20040203704 | Ommodt et al. | Oct 2004 | A1 |
20040203846 | Caronni et al. | Oct 2004 | A1 |
20040204109 | Hoppenstein | Oct 2004 | A1 |
20040208526 | Mibu | Oct 2004 | A1 |
20040208643 | Roberts et al. | Oct 2004 | A1 |
20040218873 | Nagashima et al. | Nov 2004 | A1 |
20040233877 | Lee et al. | Nov 2004 | A1 |
20040258105 | Spathas et al. | Dec 2004 | A1 |
20050041693 | Priotti | Feb 2005 | A1 |
20050052287 | Whitesmith et al. | Mar 2005 | A1 |
20050058451 | Ross | Mar 2005 | A1 |
20050068179 | Roesner | Mar 2005 | A1 |
20050076982 | Metcalf et al. | Apr 2005 | A1 |
20050078006 | Hutchins | Apr 2005 | A1 |
20050093679 | Zai et al. | May 2005 | A1 |
20050099343 | Asrani et al. | May 2005 | A1 |
20050116821 | Wilsey et al. | Jun 2005 | A1 |
20050123232 | Piede et al. | Jun 2005 | A1 |
20050141545 | Fein et al. | Jun 2005 | A1 |
20050143077 | Charbonneau | Jun 2005 | A1 |
20050147071 | Karaoguz et al. | Jul 2005 | A1 |
20050148306 | Hiddink | Jul 2005 | A1 |
20050159108 | Fletcher | Jul 2005 | A1 |
20050174236 | Brookner | Aug 2005 | A1 |
20050176458 | Shklarsky et al. | Aug 2005 | A1 |
20050201761 | Bartur et al. | Sep 2005 | A1 |
20050219050 | Martin | Oct 2005 | A1 |
20050224585 | Durrant et al. | Oct 2005 | A1 |
20050226625 | Wake et al. | Oct 2005 | A1 |
20050232636 | Durrant et al. | Oct 2005 | A1 |
20050242188 | Vesuna | Nov 2005 | A1 |
20050252971 | Howarth et al. | Nov 2005 | A1 |
20050266797 | Utsumi et al. | Dec 2005 | A1 |
20050266854 | Niiho et al. | Dec 2005 | A1 |
20050269930 | Shimizu et al. | Dec 2005 | A1 |
20050271396 | Iannelli | Dec 2005 | A1 |
20050272439 | Picciriello et al. | Dec 2005 | A1 |
20060002326 | Vesuna | Jan 2006 | A1 |
20060014548 | Bolin | Jan 2006 | A1 |
20060017633 | Pronkine | Jan 2006 | A1 |
20060025101 | Li | Feb 2006 | A1 |
20060028352 | McNamara et al. | Feb 2006 | A1 |
20060045054 | Utsumi et al. | Mar 2006 | A1 |
20060046662 | Moulsley et al. | Mar 2006 | A1 |
20060056283 | Anikhindi et al. | Mar 2006 | A1 |
20060056327 | Coersmeier | Mar 2006 | A1 |
20060062579 | Kim et al. | Mar 2006 | A1 |
20060063494 | Zhang et al. | Mar 2006 | A1 |
20060094470 | Wake et al. | May 2006 | A1 |
20060104643 | Lee et al. | May 2006 | A1 |
20060120395 | Xing et al. | Jun 2006 | A1 |
20060128425 | Rooyen | Jun 2006 | A1 |
20060159388 | Kawase et al. | Jul 2006 | A1 |
20060182446 | Kim et al. | Aug 2006 | A1 |
20060182449 | Iannelli et al. | Aug 2006 | A1 |
20060189280 | Goldberg | Aug 2006 | A1 |
20060189354 | Lee et al. | Aug 2006 | A1 |
20060203836 | Kim | Sep 2006 | A1 |
20060217132 | Drummond-Murray et al. | Sep 2006 | A1 |
20060223439 | Pinel et al. | Oct 2006 | A1 |
20060233506 | Noonan et al. | Oct 2006 | A1 |
20060239630 | Hase et al. | Oct 2006 | A1 |
20060262014 | Shemesh et al. | Nov 2006 | A1 |
20060268738 | Goerke et al. | Nov 2006 | A1 |
20060274704 | Desai et al. | Dec 2006 | A1 |
20060276227 | Dravida | Dec 2006 | A1 |
20070008939 | Fischer | Jan 2007 | A1 |
20070009266 | Bothwell | Jan 2007 | A1 |
20070040687 | Reynolds | Feb 2007 | A1 |
20070054682 | Fanning et al. | Mar 2007 | A1 |
20070058978 | Lee et al. | Mar 2007 | A1 |
20070060045 | Prautzsch | Mar 2007 | A1 |
20070060055 | Desai et al. | Mar 2007 | A1 |
20070071128 | Meir et al. | Mar 2007 | A1 |
20070072646 | Kuwahara et al. | Mar 2007 | A1 |
20070076649 | Lin et al. | Apr 2007 | A1 |
20070093273 | Cai | Apr 2007 | A1 |
20070099578 | Adeney | May 2007 | A1 |
20070104165 | Hanaoka et al. | May 2007 | A1 |
20070135169 | Sychaleun et al. | Jun 2007 | A1 |
20070149250 | Crozzoli et al. | Jun 2007 | A1 |
20070155314 | Mohebbi | Jul 2007 | A1 |
20070166042 | Seeds et al. | Jul 2007 | A1 |
20070173288 | Skarby et al. | Jul 2007 | A1 |
20070182626 | Samavati et al. | Aug 2007 | A1 |
20070184841 | Choi et al. | Aug 2007 | A1 |
20070224954 | Gopi | Sep 2007 | A1 |
20070243899 | Hermel et al. | Oct 2007 | A1 |
20070248358 | Sauer | Oct 2007 | A1 |
20070253714 | Seeds et al. | Nov 2007 | A1 |
20070257796 | Easton et al. | Nov 2007 | A1 |
20070264009 | Sabat, Jr. et al. | Nov 2007 | A1 |
20070264011 | Sone et al. | Nov 2007 | A1 |
20070268846 | Proctor et al. | Nov 2007 | A1 |
20070274279 | Wood et al. | Nov 2007 | A1 |
20070280159 | Liu et al. | Dec 2007 | A1 |
20070280370 | Liu | Dec 2007 | A1 |
20070292143 | Yu et al. | Dec 2007 | A1 |
20070297005 | Montierth et al. | Dec 2007 | A1 |
20080002652 | Gupta et al. | Jan 2008 | A1 |
20080005219 | Nabar et al. | Jan 2008 | A1 |
20080007453 | Vassilakis et al. | Jan 2008 | A1 |
20080008134 | Satou et al. | Jan 2008 | A1 |
20080013473 | Proctor, Jr. et al. | Jan 2008 | A1 |
20080013909 | Kostet et al. | Jan 2008 | A1 |
20080013956 | Ware et al. | Jan 2008 | A1 |
20080013957 | Akers et al. | Jan 2008 | A1 |
20080014948 | Scheinert | Jan 2008 | A1 |
20080026765 | Charbonneau | Jan 2008 | A1 |
20080031628 | Dragas et al. | Feb 2008 | A1 |
20080043714 | Pernu | Feb 2008 | A1 |
20080056167 | Kim et al. | Mar 2008 | A1 |
20080058018 | Scheinert | Mar 2008 | A1 |
20080063397 | Hu et al. | Mar 2008 | A1 |
20080070502 | George et al. | Mar 2008 | A1 |
20080080863 | Sauer et al. | Apr 2008 | A1 |
20080084951 | Chen et al. | Apr 2008 | A1 |
20080089692 | Sorin | Apr 2008 | A1 |
20080089699 | Li et al. | Apr 2008 | A1 |
20080098203 | Master et al. | Apr 2008 | A1 |
20080107202 | Lee et al. | May 2008 | A1 |
20080118014 | Reunamaki et al. | May 2008 | A1 |
20080119198 | Hettstedt et al. | May 2008 | A1 |
20080124086 | Matthews | May 2008 | A1 |
20080124087 | Hartmann et al. | May 2008 | A1 |
20080129594 | Pera et al. | Jun 2008 | A1 |
20080129634 | Pera et al. | Jun 2008 | A1 |
20080134194 | Liu | Jun 2008 | A1 |
20080145061 | Lee et al. | Jun 2008 | A1 |
20080150514 | Codreanu et al. | Jun 2008 | A1 |
20080166094 | Bookbinder et al. | Jul 2008 | A1 |
20080194226 | Rivas et al. | Aug 2008 | A1 |
20080207253 | Jaakkola et al. | Aug 2008 | A1 |
20080212969 | Fasshauer et al. | Sep 2008 | A1 |
20080219670 | Kim et al. | Sep 2008 | A1 |
20080232799 | Kim | Sep 2008 | A1 |
20080233967 | Montojo et al. | Sep 2008 | A1 |
20080247716 | Thomas | Oct 2008 | A1 |
20080253280 | Tang et al. | Oct 2008 | A1 |
20080253351 | Pernu et al. | Oct 2008 | A1 |
20080253773 | Zheng | Oct 2008 | A1 |
20080260388 | Kim et al. | Oct 2008 | A1 |
20080261656 | Bella et al. | Oct 2008 | A1 |
20080268766 | Narkmon et al. | Oct 2008 | A1 |
20080268833 | Huang et al. | Oct 2008 | A1 |
20080273844 | Kewitsch | Nov 2008 | A1 |
20080279137 | Pernu et al. | Nov 2008 | A1 |
20080280569 | Hazani et al. | Nov 2008 | A1 |
20080291818 | Leisten | Nov 2008 | A1 |
20080291830 | Pernu et al. | Nov 2008 | A1 |
20080292322 | Daghighian et al. | Nov 2008 | A1 |
20080298813 | Song et al. | Dec 2008 | A1 |
20080304831 | Miller, II et al. | Dec 2008 | A1 |
20080310464 | Schneider | Dec 2008 | A1 |
20080310848 | Yasuda et al. | Dec 2008 | A1 |
20080311876 | Leenaerts et al. | Dec 2008 | A1 |
20090022304 | Kubler et al. | Jan 2009 | A1 |
20090028087 | Nguyen et al. | Jan 2009 | A1 |
20090028317 | Ling et al. | Jan 2009 | A1 |
20090041413 | Hurley | Feb 2009 | A1 |
20090047023 | Pescod et al. | Feb 2009 | A1 |
20090059903 | Kubler et al. | Mar 2009 | A1 |
20090061796 | Arkko et al. | Mar 2009 | A1 |
20090061939 | Andersson et al. | Mar 2009 | A1 |
20090073916 | Zhang et al. | Mar 2009 | A1 |
20090087179 | Underwood et al. | Apr 2009 | A1 |
20090088071 | Rofougaran | Apr 2009 | A1 |
20090092073 | Doppler et al. | Apr 2009 | A1 |
20090135078 | Lindmark et al. | May 2009 | A1 |
20090141780 | Cruz-Albrecht et al. | Jun 2009 | A1 |
20090149221 | Liu et al. | Jun 2009 | A1 |
20090154621 | Shapira et al. | Jun 2009 | A1 |
20090169163 | Abbott, III et al. | Jul 2009 | A1 |
20090175214 | Sfar et al. | Jul 2009 | A1 |
20090180407 | Sabat et al. | Jul 2009 | A1 |
20090218407 | Rofougaran | Sep 2009 | A1 |
20090218657 | Rofougaran | Sep 2009 | A1 |
20090237317 | Rofougaran | Sep 2009 | A1 |
20090239521 | Mohebbi | Sep 2009 | A1 |
20090245084 | Moffatt et al. | Oct 2009 | A1 |
20090245153 | Li et al. | Oct 2009 | A1 |
20090245221 | Piipponen | Oct 2009 | A1 |
20090247109 | Rofougaran | Oct 2009 | A1 |
20090252136 | Mahany et al. | Oct 2009 | A1 |
20090252204 | Shatara et al. | Oct 2009 | A1 |
20090252205 | Rheinfelder et al. | Oct 2009 | A1 |
20090258652 | Lambert et al. | Oct 2009 | A1 |
20090278596 | Rofougaran et al. | Nov 2009 | A1 |
20090279593 | Rofougaran et al. | Nov 2009 | A1 |
20090285147 | Subasic et al. | Nov 2009 | A1 |
20090316609 | Singh | Dec 2009 | A1 |
20100002626 | Schmidt et al. | Jan 2010 | A1 |
20100027443 | LoGalbo et al. | Feb 2010 | A1 |
20100056200 | Tolonen | Mar 2010 | A1 |
20100080154 | Noh et al. | Apr 2010 | A1 |
20100080182 | Kubler et al. | Apr 2010 | A1 |
20100091475 | Toms et al. | Apr 2010 | A1 |
20100118864 | Kubler et al. | May 2010 | A1 |
20100127937 | Chandrasekaran et al. | May 2010 | A1 |
20100134257 | Puleston et al. | Jun 2010 | A1 |
20100142598 | Murray et al. | Jun 2010 | A1 |
20100142955 | Yu et al. | Jun 2010 | A1 |
20100144285 | Behzad et al. | Jun 2010 | A1 |
20100148373 | Chandrasekaran | Jun 2010 | A1 |
20100150060 | Vitek | Jun 2010 | A1 |
20100156721 | Alamouti et al. | Jun 2010 | A1 |
20100159859 | Rofougaran | Jun 2010 | A1 |
20100188998 | Pernu et al. | Jul 2010 | A1 |
20100190509 | Davis | Jul 2010 | A1 |
20100202326 | Rofougaran et al. | Aug 2010 | A1 |
20100225413 | Rofougaran et al. | Sep 2010 | A1 |
20100225520 | Mohamadi et al. | Sep 2010 | A1 |
20100225556 | Rofougaran et al. | Sep 2010 | A1 |
20100225557 | Rofougaran et al. | Sep 2010 | A1 |
20100232323 | Kubler et al. | Sep 2010 | A1 |
20100246541 | Kim | Sep 2010 | A9 |
20100246558 | Harel | Sep 2010 | A1 |
20100255774 | Kenington | Oct 2010 | A1 |
20100258949 | Henderson et al. | Oct 2010 | A1 |
20100260063 | Kubler et al. | Oct 2010 | A1 |
20100261501 | Behzad et al. | Oct 2010 | A1 |
20100265874 | Palanki et al. | Oct 2010 | A1 |
20100284323 | Tang et al. | Nov 2010 | A1 |
20100290355 | Roy et al. | Nov 2010 | A1 |
20100309049 | Reunamäki et al. | Dec 2010 | A1 |
20100311472 | Rofougaran et al. | Dec 2010 | A1 |
20100311480 | Raines et al. | Dec 2010 | A1 |
20100329161 | Ylanen et al. | Dec 2010 | A1 |
20100329166 | Mahany et al. | Dec 2010 | A1 |
20110007724 | Mahany et al. | Jan 2011 | A1 |
20110007733 | Kubler et al. | Jan 2011 | A1 |
20110008042 | Stewart | Jan 2011 | A1 |
20110013904 | Khermosh et al. | Jan 2011 | A1 |
20110019999 | George et al. | Jan 2011 | A1 |
20110021146 | Pernu | Jan 2011 | A1 |
20110021224 | Koskinen et al. | Jan 2011 | A1 |
20110026932 | Yeh et al. | Feb 2011 | A1 |
20110065450 | Kazmi | Mar 2011 | A1 |
20110066774 | Rofougaran | Mar 2011 | A1 |
20110069668 | Chion et al. | Mar 2011 | A1 |
20110071734 | Van Wiemeersch et al. | Mar 2011 | A1 |
20110086614 | Brisebois et al. | Apr 2011 | A1 |
20110116572 | Lee et al. | May 2011 | A1 |
20110122912 | Benjamin et al. | May 2011 | A1 |
20110126071 | Han et al. | May 2011 | A1 |
20110135308 | Tarlazzi et al. | Jun 2011 | A1 |
20110149879 | Noriega et al. | Jun 2011 | A1 |
20110158298 | Djadi et al. | Jun 2011 | A1 |
20110182230 | Ohm et al. | Jul 2011 | A1 |
20110194475 | Kim et al. | Aug 2011 | A1 |
20110200325 | Kobyakov et al. | Aug 2011 | A1 |
20110201368 | Faccin et al. | Aug 2011 | A1 |
20110204504 | Henderson et al. | Aug 2011 | A1 |
20110206383 | Chien et al. | Aug 2011 | A1 |
20110211439 | Manpuria et al. | Sep 2011 | A1 |
20110215901 | Van Wiemeersch et al. | Sep 2011 | A1 |
20110222415 | Ramamurthi et al. | Sep 2011 | A1 |
20110222434 | Chen | Sep 2011 | A1 |
20110222616 | Jiang et al. | Sep 2011 | A1 |
20110222619 | Ramamurthi et al. | Sep 2011 | A1 |
20110223958 | Chen et al. | Sep 2011 | A1 |
20110223960 | Chen et al. | Sep 2011 | A1 |
20110223961 | Chen et al. | Sep 2011 | A1 |
20110227795 | Lopez et al. | Sep 2011 | A1 |
20110243201 | Phillips et al. | Oct 2011 | A1 |
20110244887 | Dupray et al. | Oct 2011 | A1 |
20110256878 | Zhu et al. | Oct 2011 | A1 |
20110268033 | Boldi et al. | Nov 2011 | A1 |
20110268446 | Cune et al. | Nov 2011 | A1 |
20110274021 | He et al. | Nov 2011 | A1 |
20110274433 | Presi et al. | Nov 2011 | A1 |
20110281536 | Lee et al. | Nov 2011 | A1 |
20110305284 | Mueck | Dec 2011 | A1 |
20120002750 | Hooli et al. | Jan 2012 | A1 |
20120046039 | Hagerman et al. | Feb 2012 | A1 |
20120087670 | Han et al. | Apr 2012 | A1 |
20120140660 | Kang et al. | Jun 2012 | A1 |
20120170542 | Zangi | Jul 2012 | A1 |
20120177026 | Uyehara et al. | Jul 2012 | A1 |
20120208581 | Ishida et al. | Aug 2012 | A1 |
20120213111 | Shimezawa | Aug 2012 | A1 |
20120243513 | Fujishima et al. | Sep 2012 | A1 |
20120314797 | Kummetz et al. | Dec 2012 | A1 |
20120327800 | Kim et al. | Dec 2012 | A1 |
20130017863 | Kummetz et al. | Jan 2013 | A1 |
20130095875 | Reuven | Apr 2013 | A1 |
20130101005 | Aryanfar | Apr 2013 | A1 |
20130150063 | Berlin et al. | Jun 2013 | A1 |
20130195000 | Shen | Aug 2013 | A1 |
20130235962 | O'Keefe | Sep 2013 | A1 |
20130343765 | Rohde et al. | Dec 2013 | A1 |
20140078920 | Tandra | Mar 2014 | A1 |
20140126914 | Berlin et al. | May 2014 | A1 |
20140211875 | Berlin et al. | Jul 2014 | A1 |
20140226698 | Negus | Aug 2014 | A1 |
20140269859 | Hanson et al. | Sep 2014 | A1 |
20140314061 | Trajkovic et al. | Oct 2014 | A1 |
20150003565 | George | Jan 2015 | A1 |
20150023283 | Liu et al. | Jan 2015 | A1 |
20150098351 | Zavadsky et al. | Apr 2015 | A1 |
20150098372 | Zavadksy et al. | Apr 2015 | A1 |
20150098419 | Zavadsky et al. | Apr 2015 | A1 |
20150256237 | George et al. | Sep 2015 | A1 |
20160036505 | George et al. | Feb 2016 | A1 |
20160134348 | George et al. | May 2016 | A1 |
20160173223 | Rosenfelder et al. | Jun 2016 | A1 |
20170093472 | George et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
645192 | Oct 1992 | AU |
731180 | Mar 1998 | AU |
2065090 | Feb 1998 | CA |
2242707 | Jan 1999 | CA |
20104862 | Aug 2001 | DE |
10249414 | May 2004 | DE |
0355328 | Feb 1990 | EP |
0477952 | Apr 1992 | EP |
0477952 | Apr 1992 | EP |
0709974 | May 1996 | EP |
0461583 | Mar 1997 | EP |
851618 | Jul 1998 | EP |
0687400 | Nov 1998 | EP |
0938204 | Aug 1999 | EP |
0993124 | Apr 2000 | EP |
1037411 | Sep 2000 | EP |
1085684 | Mar 2001 | EP |
1179895 | Feb 2002 | EP |
1267447 | Dec 2002 | EP |
1347584 | Sep 2003 | EP |
1363352 | Nov 2003 | EP |
1391897 | Feb 2004 | EP |
1443687 | Aug 2004 | EP |
1455550 | Sep 2004 | EP |
1501206 | Jan 2005 | EP |
1503451 | Feb 2005 | EP |
1530316 | May 2005 | EP |
1511203 | Mar 2006 | EP |
1267447 | Aug 2006 | EP |
1693974 | Aug 2006 | EP |
1742388 | Jan 2007 | EP |
1227605 | Jan 2008 | EP |
1954019 | Aug 2008 | EP |
1968250 | Sep 2008 | EP |
1056226 | Apr 2009 | EP |
1357683 | May 2009 | EP |
2219310 | Aug 2010 | EP |
2313020 | Nov 1997 | GB |
2323252 | Sep 1998 | GB |
2399963 | Sep 2004 | GB |
2428149 | Jan 2007 | GB |
H4189036 | Jul 1992 | JP |
05252559 | Sep 1993 | JP |
05260018 | Oct 1993 | JP |
05327569 | Dec 1993 | JP |
05327576 | Dec 1993 | JP |
09083450 | Mar 1997 | JP |
09162810 | Jun 1997 | JP |
09200840 | Jul 1997 | JP |
11068675 | Mar 1999 | JP |
2000152300 | May 2000 | JP |
2000341744 | Dec 2000 | JP |
2002264617 | Sep 2002 | JP |
2002353813 | Dec 2002 | JP |
2003148653 | May 2003 | JP |
2003172827 | Jun 2003 | JP |
2004172734 | Jun 2004 | JP |
2004245963 | Sep 2004 | JP |
2004247090 | Sep 2004 | JP |
2004264901 | Sep 2004 | JP |
2004265624 | Sep 2004 | JP |
2004317737 | Nov 2004 | JP |
2004349184 | Dec 2004 | JP |
2005018175 | Jan 2005 | JP |
2005087135 | Apr 2005 | JP |
2005134125 | May 2005 | JP |
2007228603 | Sep 2007 | JP |
2008172597 | Jul 2008 | JP |
20010055088 | Jul 2001 | KR |
20110087949 | Aug 2011 | KR |
9603823 | Feb 1996 | WO |
9613102 | May 1996 | WO |
9804054 | Jan 1998 | WO |
9810600 | Mar 1998 | WO |
00042721 | Jul 2000 | WO |
0072475 | Nov 2000 | WO |
0178434 | Oct 2001 | WO |
0184760 | Nov 2001 | WO |
0186755 | Nov 2001 | WO |
0221183 | Mar 2002 | WO |
0230141 | Apr 2002 | WO |
02091619 | Nov 2002 | WO |
02102102 | Dec 2002 | WO |
03024027 | Mar 2003 | WO |
03098175 | Nov 2003 | WO |
2004030154 | Apr 2004 | WO |
2004047472 | Jun 2004 | WO |
2004056019 | Jul 2004 | WO |
2004059934 | Jul 2004 | WO |
2004086795 | Oct 2004 | WO |
2004093471 | Oct 2004 | WO |
2004107783 | Dec 2004 | WO |
2005062505 | Jul 2005 | WO |
2005069203 | Jul 2005 | WO |
2005073897 | Aug 2005 | WO |
2005079386 | Sep 2005 | WO |
2005101701 | Oct 2005 | WO |
2005111959 | Nov 2005 | WO |
2006011778 | Feb 2006 | WO |
2006018592 | Feb 2006 | WO |
2006019392 | Feb 2006 | WO |
2006039941 | Apr 2006 | WO |
2006051262 | May 2006 | WO |
2006060754 | Jun 2006 | WO |
2006094441 | Sep 2006 | WO |
2006105185 | Oct 2006 | WO |
2006133609 | Dec 2006 | WO |
2006136811 | Dec 2006 | WO |
2007048427 | May 2007 | WO |
2007075579 | Jul 2007 | WO |
2007077451 | Jul 2007 | WO |
2007088561 | Aug 2007 | WO |
2007091026 | Aug 2007 | WO |
2007133630 | Nov 2007 | WO |
2008008249 | Jan 2008 | WO |
2008027213 | Mar 2008 | WO |
2008033298 | Mar 2008 | WO |
2008039830 | Apr 2008 | WO |
2008116014 | Sep 2008 | WO |
2006046088 | May 2009 | WO |
2009100395 | Aug 2009 | WO |
2009100396 | Aug 2009 | WO |
2009100397 | Aug 2009 | WO |
2009100398 | Aug 2009 | WO |
2010087919 | Aug 2010 | WO |
2010090999 | Aug 2010 | WO |
2010132739 | Nov 2010 | WO |
2011005162 | Jan 2011 | WO |
2011043172 | Apr 2011 | WO |
2011100095 | Aug 2011 | WO |
2011112373 | Sep 2011 | WO |
2011139939 | Nov 2011 | WO |
2011158302 | Dec 2011 | WO |
2011160117 | Dec 2011 | WO |
2012024345 | Feb 2012 | WO |
2012054553 | Apr 2012 | WO |
2012148256 | Nov 2012 | WO |
2012148938 | Nov 2012 | WO |
2012148940 | Nov 2012 | WO |
2012170865 | Dec 2012 | WO |
2013009283 | Jan 2013 | WO |
2013009835 | Jan 2013 | WO |
2014070236 | May 2014 | WO |
2014082070 | May 2014 | WO |
2014082072 | May 2014 | WO |
2014082075 | May 2014 | WO |
2014144314 | Sep 2014 | WO |
2015054162 | Apr 2015 | WO |
2015054164 | Apr 2015 | WO |
2015054165 | Apr 2015 | WO |
Entry |
---|
Fan et al; “Spectrally Efficient 60-GHZ XY-MIMO Data Transport Over a Radio-Over-Fiber System for Gigabit Wireless Local Area Networks”; IEEE 2010; 4 Pages. |
Lee et al; “Evaluation of 60 GHZ MIMO Channel Capacity in the Conference Room STA-STA Scenario”; 2011 IEEE; 5 Pages. |
Sheldon et al; “A 60GHZ Line-of-Sight 2X2 MIMO Link Operating at 1.2GBPS”; IEEE Xplore; IEEE 2008; 4 Pages. |
Arredondo, Albedo et al., “Techniques for Improving In-Building Radio Coverage Using Fiber-Fed Distributed Antenna Networks,” IEEE 46th Vehicular Technology Conference, Atlanta, Georgia, Apr. 28-May 1, 1996, pp. 1540-1543, vol. 3. |
Bakaul, M., et al., “Efficient Multiplexing Scheme for Wavelength-Interleaved DWDM Millimeter-Wave Fiber-Radio Systems,” IEEE Photonics Technology Letters, Dec. 2005, vol. 17, No. 12, pp. 2718-2720. |
Cho, Bong Youl et al. “The Forward Link Performance of a PCS System with an AGC,” 4th CDMA International Conference and Exhibition, “The Realization of IMT-2000,” 1999, 10 pages. |
Chu, Ta-Shing et al. “Fiber optic microcellular radio”, IEEE Transactions on Vehicular Technology, Aug. 1991, pp. 599-606, vol. 40, Issue 3. |
Cooper, A.J., “Fiber/Radio for the Provision of Cordless/Mobile Telephony Services in the Access Network,” Electronics Letters, 1990, pp. 2054-2056, vol. 26. |
Cutrer, David M. et al., “Dynamic Range Requirements for Optical Transmitters in Fiber-Fed Microcellular Networks,” IEEE Photonics Technology Letters, May 1995, pp. 564-566, vol. 7, No. 5. |
Dolmans, G. et al. “Performance study of an adaptive dual antenna handset for indoor communications”, IEE Proceedings: Microwaves, Antennas and Propagation, Apr. 1999, pp. 138-144, vol. 146, Issue 2. |
Ellinger, Frank et al., “A 5.2 GHz variable gain LNA MMIC for adaptive antenna combining”, IEEE MTT-S International Microwave Symposium Digest, Anaheim, California, Jun. 13-19, 1999, pp. 501-504, vol. 2. |
Fan, J.C. et al., “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links”, IEEE Transactions on Microwave Theory and Techniques, Aug. 1997, pp. 1390-1397, vol. 45, Issue 8. |
Gibson, B.C., et al., “Evanescent Field Analysis of Air-Silica Microstructure Waveguides,” The 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 1-7803-7104-4/01, Nov. 12-13, 2001, vol. 2, pp. 709-710. |
Huang, C., et al., “A WLAN-Used Helical Antenna Fully Integrated with the PCMCIA Carrier,” IEEE Transactions on Antennas and Propagation, Dec. 2005, vol. 53, No. 12, pp. 4164-4168. |
Kojucharow, K., et al., “Millimeter-Wave Signal Properties Resulting from Electrooptical Upconversion,” IEEE Transaction on Microwave Theory and Techniques, Oct. 2001, vol. 49, No. 10, pp. 1977-1985. |
Monro, T.M., et al., “Holey Fibers with Random Cladding Distributions,” Optics Letters, Feb. 15, 2000, vol. 25, No. 4, pp. 206-208. |
Moreira, J.D., et al., “Diversity Techniques for OFDM Based WLAN Systems,” The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 15-18, 2002, vol. 3, pp. 1008-1011. |
Niiho, T., et al., “Multi-Channel Wireless LAN Distributed Antenna System based on Radio-Over-Fiber Techniques,” The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Nov. 2004, vol. 1, pp. 57-58. |
Author Unknown, “ITU-T G.652, Telecommunication Standardization Sector of ITU, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Single-Mode Optical Fiber and Cable,” ITU-T Recommendation G.652, International Telecommunication Union, Jun. 2005, 22 pages. |
Author Unknown, “ITU-T G.657, Telecommunication Standardization Sector of ITU, Dec. 2006, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Bending Loss Insensitive Single Mode Optical Fibre and Cable for the Access Network,” ITU-T Recommendation G.657, International Telecommunication Union, 20 pages. |
International Search Report and Written Opinion for International patent application PCT/US2007/013802 dated May 8, 2008, 12 pages. |
Opatic, D., “Radio over Fiber Technology for Wireless Access,” Ericsson, Oct. 17, 2009, 6 pages. |
Paulraj, A.J., et al., “An Overview of MIMO Communications—A Key to Gigabit Wireless,” Proceedings of the IEEE, Feb. 2004, vol. 92, No. 2, 34 pages. |
Pickrell, G.R., et al., “Novel Techniques for the Fabrication of Holey Optical Fibers,” Proceedings of SPIE, Oct. 28-Nov. 2, 2001, vol. 4578, 2001, pp. 271-282. |
Roh, W., et al., “MIMO Channel Capacity for the Distributed Antenna Systems,” Proceedings of the 56th IEEE Vehicular Technology Conference, Sep. 2002, vol. 2, pp. 706-709. |
Schweber, Bill, “Maintaining cellular connectivity indoors demands sophisticated design,” EDN Network, Dec. 21, 2000, 2 pages, http://www.edn.com/design/integrated-circuit-design/4362776/Maintaining-cellular-connectivity-indoors-demands-sophisticated-design. |
Seto, I., et al., “Antenna-Selective Transmit Diversity Technique for OFDM-Based WLANs with Dual-Band Printed Antennas,” 2005 IEEE Wireless Communications and Networking Conference, Mar. 13-17, 2005, vol. 1, pp. 51-56. |
Shen, C., et al., “Comparison of Channel Capacity for MIMO-DAS versus MIMO-CAS,” The 9th Asia-Pacific Conference on Communications, Sep. 21-24, 2003, vol. 1, pp. 113-118. |
Wake, D. et al., “Passive Picocell: A New Concept n Wireless Network Infrastructure,” Electronics Letters, Feb. 27, 1997, vol. 33, No. 5, pp. 404-406. |
Windyka, John et al., “System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications,” Contractor Report 204132, National Aeronautics and Space Administration, Jul. 1997, 94 pages. |
Winters, J., et al., “The Impact of Antenna Diversity on the Capacity of Wireless Communications Systems,” IEEE Transcations on Communications, vol. 42, No. 2/3/4, Feb./Mar./Apr. 1994, pp. 1740-1751. |
Yu et al., “A Novel Scheme to Generate Single-Sideband Millimeter-Wave Signals by Using Low-Frequency Local Oscillator Signal,” IEEE Photonics Technology Letters, vol. 20, No. 7, Apr. 1, 2008, pp. 478-480. |
Second Office Action for Chinese patent application 20078002293.6 dated Aug. 30, 2012, 10 pages. |
International Search Report for PCT/US2010/022847 dated Jul. 12, 2010, 3 pages. |
International Search Report for PCT/US2010/022857 dated Jun. 18, 2010, 3 pages. |
Decision on Appeal for U.S. Appl. No. 11/451,237 dated Mar. 19, 2013, 7 pages. |
Decision on Rejection for Chinese patent application 200780022093.6 dated Feb. 5, 2013, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 15/655,228, dated May 18, 2018, 17 pages. |
Notice of Allowance for U.S. Appl. No. 15/655,228, dated Sep. 14, 2018, 9 pages. |
Final Office Action for U.S. Appl. No. 15/271,843, dated Feb. 7, 2018, 13 pages. |
Attygalle et al., “Extending Optical Transmission Distance in Fiber Wireless Links Using Passive Filtering in Conjunction with Optimized Modulation,” Journal of Lightwave Technology, vol. 24, No. 4, Apr. 2006, 7 pages. |
Bo Zhang et al., “Reconfigurable Multifunctional Operation Using Optical Injection-Locked Vertical-Cavity Surface-Emitting Lasers,” Journal of Lightwave Technology, vol. 27, No. 15, Aug. 2009, 6 pages. |
Chang-Hasnain, et al., “Ultrahigh-speed laser modulation by injection locking,” Chapter 6, Optical Fiber Telecommunication V A: Components and Subsystems, Elsevier Inc., 2008, 20 pages. |
Cheng Zhang et al., “60 GHz Millimeter-wave Generation by Two-mode Injection-locked Fabry-Perot Laser Using Second-Order Sideband Injection in Radio-over-Fiber System,” Conference on Lasers and Electro-Optics and Quantum Electronics, Optical Society of America, May 2008, 2 pages. |
Chrostowski, “Optical Injection Locking of Vertical Cavity Surface Emitting Lasers,” Fall 2003, PhD dissertation University of California at Berkely, 122 pages. |
Dang et al., “Radio-over-Fiber based architecture for seamless wireless indoor communication in the 60GHz band,” Computer Communications, Elsevier B.V., Amsterdam, NL, vol. 30, Sep. 8, 2007, pp. 3598-3613. |
Hyuk-Kee Sung et al., “Optical Single Sideband Modulation Using Strong Optical Injection-Locked Semiconductor Lasers,” IEEE Photonics Technology Letters, vol. 19, No. 13, Jul. 1, 2007, 4 pages. |
Lim et al., “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Transactions of Microwave Theory and Techniques, vol. 54, No. 5, May 2006, 7 pages. |
Lu H H et al., “Improvement of radio-on-multimode fiber systems based on light injection and optoelectronic feedback techniques,” Optics Communications, vol. 266, No. 2, Elsevier B.V., Oct. 15, 2006, 4 pages. |
Pleros et al., “A 60 GHz Radio-Over-Fiber Network Architecture for Seamless Communication With High Mobility,” Journal of Lightwave Technology, vol. 27, No. 12, IEEE, Jun. 15, 2009, pp. 1957-1967. |
Reza et al., “Degree-of-Polarization-Based PMD Monitoring for Subcarrier-Multiplexed Signals Via Equalized Carrier/Sideband Filtering,” Journal of Lightwave Technology, vol. 22, No. 4, IEEE, Apr. 2004, 8 pages. |
Zhao, “Optical Injection Locking on Vertical-Cavity Surface-Emitting Lasers (VCSELs): Physics and Applications,” Fall 2008, PhD dissertation University of California at Berkeley, pp. 1-209. |
Advisory Action for U.S. Appl. No. 12/712,758 dated Sep. 16, 2013, 3 pages. |
Final Office Action for U.S. Appl. No. 12/712,758 dated May 24, 2013, 17 pages. |
Non-final Office Action for U.S. Appl. No. 12/712,758 dated Jan. 10, 2012, 14 pages. |
Examination Report for European patent application 07835803.3 dated Aug. 13, 2013, 6 pages. |
Extended European Search Report for patent application 10014262.9 dated Mar. 14, 2011, 6 pages. |
International Search Report and Written Opinion for PCT/US2012/034853 dated Aug. 6, 2012, 12 pages. |
International Search Report and Written Opinion for PCT/US2012/034855 dated Jul. 26, 2012, 10 pages. |
Written Opinion of the International Searching Authority for European patent application 11701916.6 dated Sep. 21, 2012, 10 pages. |
International Search Report for PCT/US2011/021799 dated Apr. 6, 2011, 4 pages. |
Examination Report for European patent application 10702806.0 dated Sep. 12, 2013, 11 pages. |
Non-final Office Action for U.S. Appl. No. 13/194,429 dated Mar. 1, 2013, 22 pages. |
Notice of Allowance for U.S. Appl. No. 13/194,429 dated Jul. 9, 2013, 9 pages. |
International Search Report for PCT/US2011/043405 dated Apr. 25, 2012, 4 pages. |
Non-final Office Action for U.S. Appl. No. 11/958,062 dated Nov. 6, 2013, 16 pages. |
Chowdhury et al., “Multi-service Multi-carrier Broadband MIMO Distributed Antenna Systems for In-building Optical Wireless Access,” Presented at the 2010 Conference on Optical Fiber Communication and National Fiber Optic Engineers Conference, Mar. 21-25, 2010, San Diego, California, IEEE, pp. 1-3. |
International Search Report and Written Opinion for PCT/US2007/025855 dated Mar. 19, 2008, 14 pages. |
International Preliminary Report on Patentability for PCT/US2007/025855 dated Jul. 2, 2009, 9 pages. |
Bahl et al. “Enhancements to the RADAR User Location and Tracking System,” Microsoft Research Technical Report, Feb. 2000, pp. 1-13. |
Frikel et al, “A Robust Mobile Positioning Algorithm,” EURASIP Proceedings, ISCCSP 2006, pp. 1-4. |
Pahlavan et al, “An Overview of Wireless Indoor Geolocation Techniques and Systems,” LNCS 1818, pp. 1-13, 2000. |
Wann et al, “Hybrid TDOA/AOA Indoor Positioning and Tracking Using Extended Kalman Filters,” 63rd IEEE VTC 2006, pp. 1058-1062. |
Ibernon-Fernandez, R., et al., “Comparison Between Measurements and Simulations of Conventional and Distributed MIMO System,” IEEE Antennas and Wireless Propagation Letters, vol. 7, Aug. 2008, pp. 546-549. |
Tarlazzi L., et al., “Characterization of an Interleaved F-DAS MIMO Indoor Propagation Channel,” Loughborough Antennas & Propagation Conference, Nov. 2010, Loughborough, United Kingdom, IEEE, pp. 505-508. |
Tolli, Antti, “Resource Management in Cooperative MIMO-OFDM Cellular Systems,” Academic Dissertation—ACTA Universitatis Ouluensis, No. C Technica 296, Apr. 11, 2008, pp. 1-198. |
Vitucci, E.M., et al., “Analysis of the Performance of LTE Systems in an Interleaved F-DAS MIMO Indoor Environment,” Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Apr. 11-15, 2011, Rome, Italy, IEEE, pp. 2184-2186. |
Wei, Xinning, et al., “Cooperative communication with partial channel-state information in multiuser MIMO systems,” International Journal of Electronics and Communications, vol. 65, No. 4, Apr. 2011 (available online May 15, 2010), Elsevier GmbH, pp. 349-360. |
International Search Report for PCT/US2013/070489 dated Feb. 24, 2014, 4 pages. |
Biton et al., “Challenge: CeTV and Ca-Fi—Cellular and Wi-Fi over CATV,” Proceedings of the Eleventh Annual International Conference on Mobile Computing and Networking, Aug. 28-Sep. 2, 2005, Cologne, Germany, Association for Computing Machinery, 8 pages. |
Hansryd, Jonas et al., “Microwave capacity evolution,” Ericsson Review, Jun. 21, 2011, 6 pages. |
Seto et al., “Optical Subcarrier Multiplexing Transmission for Base Station With Adaptive Array Antenna,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 10, Oct. 2001, pp. 2036-2041. |
Examination Report for European Patent Application No. 11733965.5 dated Oct. 10, 2014, 6 pages. |
International Search Report for PCT/US2013/034328 dated Jul. 3, 2013, 5 pages. |
International Preliminary Report on Patentability for PCT/US2013/034328 dated Oct. 1, 2014, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 14/078,949 dated Sep. 10, 2015, 29 pages. |
Notice of Allowance for U.S. Appl. No. 13/598,078 dated May 12, 2015, 8 pages. |
Non-final Office Action for U.S. Appl. No. 14/148,908 dated May 22, 2015, 20 pages. |
Notice of Allowance for U.S. Appl. No. 14/242,139 dated Oct. 22, 2014, 12 pages. |
Diehm, et al., “The FUTON Prototype: Broadband Communication through Coordinated Multi-Point using a Novel Integrated Optical/Wireless Architecture,” Presented at Globecom Workshops, Dec. 6-10, 2010, Miami, Florida, IEEE, pp. 757-762. |
Fan, Shu-Hao et al., “Spectrally Efficient 60-GHz xy-MIMO Data Transport over a Radio-Over-Fiber System for Gigabit Wireless Local Area Networks,” Presented at IEEE Global Telecommunications Conference, Dec. 6-10, 2010, Miami, Florida, IEEE, 4 pages. |
Lee et al., “Evaluation of 60 GHz MIMO Channel Capacity in the Conference Room STA-STA Scenario,” Vehicular Technology Conference (VTC Sping), 2011 IEEE 73rd, pp. 1-5, May 15-18, 2011. |
Sheldon, C. et al., “A 60GHz Line-of-Sight 2x2 MIMO Link Operating at 1.2 Gbps,” Presented at Antennas and Propogation Society International Symposium, Jul. 5-11, 2008, San Diego, California, IEEE, 4 pages. |
Written Opinion for European Patent Application No. 13798863.0 dated Aug. 6, 2015, 10 pages. |
Non-final Office Action for U.S. Appl. No. 14/487,232 dated Jun. 23, 2015, 15 pages. |
Notice of Allowance for U.S. Appl. No. 14/227,108 dated Nov. 18, 2015, 8 pages. |
Final Office Action for U.S. Appl. No. 14/487,232 dated Oct. 15, 2015, 7 pages. |
Author Unknown, “Fiber Optic Distributed Antenna System,” Installation and Users Guide, ERAU Version 1.5, May 2002, Andrews Corporation, 53 pages. |
Heath, Robert, et al., “Multiuser MIMO in Distributed Antenna Systems with Out-of-Cell Interference,” IEEE Transactions on Signal Processing, vol. 59, Issue 10, Oct. 2011, IEEE, 4885-4899. |
Notice of Allowance for U.S. Appl. No. 14/078,949 dated Feb. 3, 2016, 9 pages. |
Non-final Office Action for U.S. Appl. No. 14/079,977 dated Mar. 4, 2016, 21 pages. |
Notice of Allowance for U.S. Appl. No. 14/079,977 dated Apr. 29, 2016, 8 pages. |
Non-final Office Action for U.S. Appl. No. 14/447,014 dated Jan. 20, 2016, 6 pages. |
Non-final Office Action for U.S. Appl. No. 14/721,357, dated Jan. 4, 2016, 10 pages. |
Final Office Action for U.S. Appl. No. 14/721,357 dated Mar. 1, 2016, 12 pages. |
Advisory Action for U.S. Appl. No. 14/721,357, dated Jun. 30, 2016, 3 pages. |
Notice of Allowance for U.S. Appl. No. 14/721,357, dated Aug. 16, 2016, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 14/962,279, dated Jan. 27, 2017, 18 pages. |
Non-Final Office Action for U.S. Appl. No. 14/997,694, dated Feb. 8, 2017, 16 pages. |
Notice of Allowance for U.S. Appl. No. 14/962,279, dated May 12, 2017, 8 pages. |
Notice of Allowance for U.S. Appl. No. 14/997,694, dated Jul. 5, 2017, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/271,843, dated Jun. 21, 2017, 21 pages. |
Non-Final Office Action for U.S. Appl. No. 15/372,490, dated Aug. 21, 2017, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20180198498 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15372490 | Dec 2016 | US |
Child | 15914088 | US | |
Parent | 14447014 | Jul 2014 | US |
Child | 15372490 | US |