Reducing out-of-channel noise in a wireless distribution system (WDS)

Information

  • Patent Grant
  • 10236924
  • Patent Number
    10,236,924
  • Date Filed
    Thursday, March 31, 2016
    8 years ago
  • Date Issued
    Tuesday, March 19, 2019
    5 years ago
Abstract
Embodiments of the disclosure relate to reducing out-of-channel noise in a wireless distribution system (WDS). A digital filter in a remote unit is configured to suppress out-of-channel noise in a downlink digital communications signal based on at least one filter configuration parameter received from a control circuit. The control circuit is configured to determine the filter configuration parameter based on physical characteristics of the downlink digital communications signal. By suppressing the out-of-channel noise of the downlink digital communications signal, it is possible to provide a downlink RF communications signal communicated from the remote unit that complies with a spectrum emission mask (SEM). Further, by suppressing the out-of-channel noise at the remote unit, it is not necessary for a central unit to perform digital filtering before distributing the downlink digital communications signal to the remote unit, thus helping reduce complexity, cost, physical size, and power consumption of the central unit.
Description
BACKGROUND

The disclosure relates generally to reducing out-of-channel noise in a wireless distribution system (WDS), such as a distributed antenna system (DAS) and, more particularly, to reducing out-of-channel noise using digital filtering in remote units in the WDS.


Wireless customers are increasingly demanding digital data services, such as streaming video signals. At the same time, some wireless customers use their wireless communications devices in areas that are poorly serviced by conventional cellular networks, such as inside certain buildings or areas where there is little cellular coverage. One response to the intersection of these two concerns has been the use of distributed antenna systems (DASs). DASs include remote units configured to receive and transmit communications signals to client devices within the antenna range of the remote units. DASs can be particularly useful when deployed inside buildings or other indoor environments where the wireless communications devices may not otherwise be able to effectively receive radio frequency (RF) signals from a source.


In this regard, FIG. 1 illustrates distribution of communications services to remote coverage areas 100(1)-100(N) of a wireless distribution system (WDS) provided in the form of a DAS 102, wherein ‘N’ is the number of remote coverage areas. These communications services can include cellular services, wireless services, such as RF identification (RFID) tracking, Wireless Fidelity (Wi-Fi), local area network (LAN), and wireless LAN (WLAN), wireless solutions (Bluetooth, Wi-Fi Global Positioning System (GPS) signal-based, and others) for location-based services, and combinations thereof, as examples. The remote coverage areas 100(1)-100(N) may be remotely located. In this regard, the remote coverage areas 100(1)-100(N) are created by and centered on remote units 104(1)-104(N) connected to a head-end equipment (HEE) 106 (e.g., a head-end controller, a head-end unit, or a central unit). The HEE 106 may be communicatively coupled to a signal source 108, for example, a base transceiver station (BTS) or a baseband unit (BBU). In this regard, the HEE 106 receives downlink communications signals 110D from the signal source 108 to be distributed to the remote units 104(1)-104(N). The remote units 104(1)-104(N) are configured to receive the downlink communications signals 110D from the HEE 106 over a communications medium 112 to be distributed to the respective remote coverage areas 100(1)-100(N) of the remote units 104(1)-104(N). In a non-limiting example, the communications medium 112 may be a wired communications medium, a wireless communications medium, or an optical fiber-based communications medium. Each of the remote units 104(1)-104(N) may include an RF transmitter/receiver (not shown) and a respective antenna 114(1)-114(N) operably connected to the RF transmitter/receiver to wirelessly distribute the communications services to client devices 116 within the respective remote coverage areas 100(1)-100(N). The remote units 104(1)-104(N) are also configured to receive uplink communications signals 110U from the client devices 116 in the respective remote coverage areas 100(1)-100(N) to be distributed to the signal source 108. The size of each of the remote coverage areas 100(1)-100(N) is determined by amount of RF power transmitted by the respective remote units 104(1)-104(N), receiver sensitivity, antenna gain, and RF environment, as well as by RF transmitter/receiver sensitivity of the client devices 116. The client devices 116 usually have a fixed maximum RF receiver sensitivity, so that the above-mentioned properties of the remote units 104(1)-104(N) mainly determine the size of the respective remote coverage areas 100(1)-100(N).


With reference to FIG. 1, the downlink communications signals 110D transmitted to the client devices 116 from the remote units 104(1)-104(N) may be required to comply with a spectrum emission mask (SEM), which is conventionally mandated by regulatory authorities such as the Federal Communications Commission (FCC) of the United States. The SEM is a mathematically defined emission ceiling applied to transmissions of the downlink communications signals 110D. The SEM is intended to reduce adjacent channel interference by limiting excessive emission beyond the intended bandwidth of the downlink communications signals 110D (also referred to as “out-of-channel” emission). In this regard, it may be desired to provide the downlink communications signals 110D in the DAS 102 to be transmitted in compliance with the SEM corresponding to the communications services.


No admission is made that any reference cited herein constitutes prior art. Applicant expressly reserves the right to challenge the accuracy and pertinency of any cited documents.


SUMMARY

Embodiments of the disclosure relate to reducing out-of-channel noise in a wireless distribution system (WDS), such as a distributed antenna system (DAS), for example. In a WDS, a plurality of remote units communicatively coupled to a head unit are each configured to receive a downlink digital communications signal in a predefined frequency channel(s) having a predefined bandwidth from a central unit. The remote units are configured to convert the downlink digital communications signal into a downlink radio frequency (RF) communications signal and amplify the downlink RF communications signal before distributing the downlink RF communications signal to respective client devices in the WDS. The downlink digital communications signal may contain analog components that introduce out-of-channel noise, such as energy leaking beyond the predefined bandwidth of the predefined frequency channel(s), third order intermodulation products, spectral regrowth, and/or spectral spurs, into the downlink RF communications signal. Thus, this out-of-channel noise is amplified along with amplification of the downlink RF communications signal, which may lead to the amplified downlink RF communications signal being non-compliant with a spectrum emission mask (SEM).


In this regard, in one aspect, digital filtering is provided by the remote units in the WDS to suppress out-of-channel noise in received downlink digital communications signal based on at least one filter configuration parameter received from one or more control circuits. The control circuit(s) is configured to determine the at least one filter configuration parameter based on physical characteristics (e.g., center frequency, bandwidth, power level, communication standard, etc.) of the downlink digital communications signal. By suppressing the out-of-channel noise associated with the downlink digital communications signal in the remote units, the downlink RF communications signal may more easily comply with a SEM when the downlink RF communications signal is amplified in the remote units for distribution to respective client devices. Further, as an example, by suppressing out-of-channel noise at the remote units in the WDS, it may not be necessary for the central unit to perform digital filtering before distributing the downlink digital communications signal to the remote units, thus helping to reduce complexity, cost, physical size, and/or power consumption of the central unit.


One embodiment of the disclosure relates to a remote unit in a WDS configured to exchange communications signals with a plurality of remote units. The remote unit comprises a digital filter. The digital filter is configured to receive a downlink digital communications signal in a predefined frequency channel having a predefined bandwidth for at least one communications service from a central unit in the WDS. The digital filter is also configured to output a modified downlink digital communications signal based on the downlink digital communications signal and at least one filter configuration parameter received from a control circuit configured to determine the at least one filter configuration parameter based on one or more physical characteristics of the downlink digital communications signal to suppress out-of-channel noise in the downlink digital communications signal. The remote unit also comprises a digital-to-analog converter (DAC) configured to convert the modified downlink digital communications signal into a downlink RF communications signal. The remote unit also comprises a power amplifier configured to generate an amplified downlink RF communications signal based on the downlink RF communications signal for communication to one or more client devices in the WDS. The digital filter is also configured to suppress the out-of-channel noise in the downlink digital communications signal to provide for the amplified downlink RF communications signal to comply with a SEM for the at least one communications service.


Another embodiment of the disclosure relates to a method for reducing out-of-channel noise in a remote unit in a WDS comprising a plurality of remote units. The method comprises receiving a downlink digital communications signal in a predefined frequency channel having a predefined bandwidth for at least one communications service. The method also comprises outputting a modified downlink digital communications signal based on the downlink digital communications signal and at least one filter configuration parameter determined based on one or more physical characteristics of the downlink digital communications signal to suppress out-of-channel noise in the downlink digital communications signal. The method also comprises converting the modified downlink digital communications signal into a downlink RF communications signal. The method also comprises generating an amplified downlink RF communications signal based on the downlink RF communications signal for communication to one or more client devices in the WDS. The method also comprises suppressing the out-of-channel noise in the downlink digital communications signal to provide for the amplified downlink RF communications signal to comply with a SEM for the at least one communications service.


Another embodiment of the disclosure relates to a WDS. The WDS comprises a central unit configured to communicate one or more downlink digital communications signals to a central unit communications interface communicatively coupled to at least one downlink communications medium. The WDS also comprises a plurality of remote units. Each of the plurality of remote units comprises a remote unit communications interface communicatively coupled to the at least one downlink communications medium to receive a downlink digital communications signal among the one or more downlink digital communications signals communicated by the central unit. Each of the plurality of remote units also comprises a digital filter. The digital filter is configured to receive the downlink digital communications signal in a predefined frequency channel having a predefined bandwidth for at least one communications service. The digital filter is also configured to output a modified downlink digital communications signal based on the downlink digital communications signal and at least one filter configuration parameter received from a control circuit configured to determine the at least one filter configuration parameter based on one or more physical characteristics of the downlink digital communications signal to suppress out-of-channel noise in the downlink digital communications signal. Each of the plurality of remote units also comprises a DAC configured to convert the modified downlink digital communications signal into a downlink RF communications signal. Each of the plurality of remote units also comprises a power amplifier configured to generate an amplified downlink RF communications signal based on the downlink RF communications signal for communication to one or more client devices in the WDS. The digital filter is further configured to suppress the out-of-channel noise in the downlink digital communications signal to provide for the amplified downlink RF communications signal to comply with a SEM for at least one communications service.


Additional features and advantages will be set forth in the detailed description which follows and, in part, will be readily apparent to those skilled in the art from the description or recognized by practicing the embodiments as described in the written description and claims hereof, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description are merely exemplary and are intended to provide an overview or framework to understand the nature and character of the claims.


The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiment(s), and together with the description serve to explain principles and operation of the various embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of an exemplary wireless distribution system (WDS);



FIG. 2A is a schematic diagram of an exemplary WDS that includes a plurality of remote units configured to receive and distribute one or more downlink digital communications signals without suppressing out-of-channel noise associated with the one or more downlink digital communications signals;



FIG. 2B is an exemplary plot illustrating an exemplary spectrum emission mask (SEM) for a single-channel RF communications signal;



FIG. 2C is an exemplary plot illustrating an exemplary SEM for a multi-channel RF communications signal;



FIG. 3 is a schematic diagram of an exemplary WDS including a plurality of remote units employing a plurality of digital filters to suppress out-of-channel noise that may be associated with one or more downlink digital communications signals to provide a communications service(s) via a plurality of amplified downlink RF communications signals that complies with the SEMs of FIGS. 2B and 2C;



FIG. 4 is a flowchart of an exemplary out-of-channel noise reduction process that may be employed in one or more of the plurality of remote units in the WDS of FIG. 3, to reduce the out-of-channel noise associated with the one or more downlink digital communications signals;



FIG. 5 is a schematic diagram of an exemplary WDS in which a plurality of remote units includes a plurality of signal analysis circuits, respectively, for determining one or more physical characteristics of each of the one or more downlink digital communications signals;



FIG. 6 is a partial schematic cut-away diagram of an exemplary building infrastructure in which WDSs configured to suppress the out-of-channel noise associated with the one or more downlink digital communications signals, including the WDSs of FIGS. 3 and 5, can be provided; and



FIG. 7 is a schematic diagram representation of additional detail illustrating an exemplary computer system that could be employed in a control circuit(s) in the plurality of remote units of FIGS. 3 and 5, for reducing the out-of-channel noise associated with the one or more downlink digital communications signals.





DETAILED DESCRIPTION

Embodiments of the disclosure relate to reducing out-of-channel noise in a wireless distribution system (WDS), such as a distributed antenna system (DAS), for example. In a WDS, a plurality of remote units communicatively coupled to a head end unit are each configured to receive a downlink digital communications signal in a predefined frequency channel(s) having a predefined bandwidth from a central unit. The remote units are configured to convert the downlink digital communications signal into a downlink radio frequency (RF) communications signal and amplify the downlink RF communications signal before distributing the downlink RF communications signal to respective client devices in the WDS. The downlink digital communications signals may contain analog components that introduce out-of-channel noise, such as energy leaking beyond the predefined bandwidth of the predefined frequency channel(s), third order intermodulation products, spectral regrowth, and/or spectral spurs, into the downlink RF communications signal. Thus, this out-of-channel noise is amplified along with amplification of the downlink RF communications signal, which may lead to the amplified downlink RF communications signal being non-compliant with a spectrum emission mask (SEM).


In this regard, in one aspect, digital filtering is provided by the remote units in the WDS to suppress out-of-channel noise in received downlink digital communications signal based on at least one filter configuration parameter received from one or more control circuits. The control circuit(s) is configured to determine the at least one filter configuration parameter based on physical characteristics (e.g., center frequency, bandwidth, power level, communication standard, etc.) of the downlink digital communications signal. By suppressing the out-of-channel noise associated with the downlink digital communications signal in the remote units, the downlink RF communications signal may more easily comply with a SEM when the downlink RF communications signal is amplified in the remote units for distribution to respective client devices. Further, as an example, by suppressing out-of-channel noise at the remote units in the WDS, it may not be necessary for the central unit to perform digital filtering before distributing the downlink digital communications signal to the remote units, thus helping to reduce complexity, cost, physical size, and/or power consumption of the central unit.


Before discussing examples of reducing out-of-channel noise in a WDS (e.g., a DAS) employing digital filtering in one or more remote units to reduce out-of-channel noise of a downlink digital communications signal starting at FIG. 3, an overview of an exemplary WDS for distributing one or more downlink digital communications signals without suppressing out-of-channel noise in the downlink digital communications signals is first discussed with reference to FIGS. 2A-2C.


In this regard, FIG. 2A is a schematic diagram of an exemplary WDS 200. The WDS 200 includes a plurality of remote units 202(1)-202(N) configured to receive and distribute one or more downlink digital communications signals 204(1)-204(M) without suppressing out-of-channel noise associated with the downlink digital communications signals 204(1)-204(M). The WDS 200 includes a central unit 206. The central unit 206 includes a digital signal interface 208 and an analog signal interface 210. The digital signal interface 208 may be communicatively coupled to a digital signal source 212 to receive a digital downlink communications signal 214. In a non-limiting example, the digital signal source 212 may be a baseband unit (BBU), and the digital downlink communications signal 214 may be provided according to a common public radio interface (CPRI) protocol. The analog signal interface 210 may be communicatively coupled to an RF signal source 216 to receive an analog downlink communications signal 218. In a non-limiting example, the RF signal source 216 may be a base transceiver station (BTS). In this regard, the central unit 206 may receive the digital downlink communications signal 214 and the analog downlink communications signal 218 concurrently for distribution in the WDS 200.


The central unit 206 also includes a central unit communications interface 220. The central unit communications interface 220 is coupled to at least one downlink communications medium 222. In this example, the downlink communications medium 222 is comprised of a plurality of downlink communications media 222(1)-222(N) each dedicated to a link to a remote unit 202 among the remote units 202(1)-202(N). In a non-limiting example, the central unit communications interface 220 is a digital communications interface for distributing the downlink digital communications signals 204(1)-204(M) to the remote units 202(1)-202(N). Since the central unit 206 may concurrently receive the digital downlink communications signal 214 and the analog downlink communications signal 218, the downlink digital communications signals 204(1)-204(M) may include both the digital downlink communications signal 214 and the analog downlink communications signal 218. As such, an analog-to-digital converter (ADC) 224 is provided in the central unit 206 to convert the analog downlink communications signal 218 into a second digital downlink communications signal 226. In this regard, the downlink digital communications signals 204(1)-204(M) may include the digital downlink communications signal 214 and/or the second digital downlink communications signal 226.


The downlink digital communications signals 204(1)-204(M) occupy one or more frequency channels (not shown) each having a predefined bandwidth 228(1)-228(M) (228(2)-228(M) not shown). For example, the downlink digital communications signal 204(1) may occupy a seven hundred forty-eight megahertz (748 MHz) channel with a predefined bandwidth 228(1) of five MHz (5 MHz). The downlink digital communications signal 204(2) may occupy a seven hundred sixty-two MHz (762 MHz) channel with a predefined bandwidth 228(2) of ten MHz (10 MHz). For the convenience of discussion and illustration, the downlink digital communications signal 204(1) and the remote unit 202(1) are discussed hereinafter as non-limiting examples.


With continuing reference to FIG. 2A, the downlink digital communications signal 204(1) is received by the central unit 206 via the analog signal interface 210. As such, the downlink digital communications signal 204(1) may contain analog components (not shown) that may be distorted due to imperfections of analog processing elements, thus creating out-of-channel noise 230 outside the predefined bandwidth 228(1) of the downlink digital communications signal 204(1). In a non-limiting example, non-linearity in a power amplifier (not shown) in a downlink signal path 232, may distort the downlink digital communications signal 204(1). In this regard, the out-of-channel noise 230 includes energy leaking beyond the predefined bandwidth 228(1) of a predefined frequency channel (e.g., 748 MHz channel). In one example, the out-of-channel noise 230 includes third order intermodulation products 233 that may be created above and below the predefined bandwidth 228(1) when the downlink digital communications signal 204(1) and the downlink digital communications signal 204(2) are fed through the non-linear power amplifier. For example, the downlink digital communications signal 204(1) and the downlink digital communications signal 204(2) correspond to center frequencies f1 and f2, respectively. The third order intermodulation products 233 will occur at frequencies (2f1-f2) and (2f2—In another example, the out-of-channel noise 230 may include inherent noise associated with the analog processing elements (e.g., the power amplifier and the ADC 224) and the downlink signal path 232. In another example, the out-of-channel noise 230 may include spectral regrowth and/or spectral spur (not shown), which is created by the non-linear power amplifier when the downlink digital communications signal 204(1) and the downlink digital communications signal 204(2) are varying envelope signals. In this regard, the out-of-channel noise 230 includes the energy leaking beyond the predefined bandwidth 228(1) of a predefined frequency channel, the third order intermodulation products 233, and the spectral regrowth and/or spectral spur.


With continuing reference to FIG. 2A, the remote units 202(1)-202(N) include a plurality of remote unit communications interfaces 234(1)-234(N), respectively. The remote unit communications interfaces 234(1)-234(N) are each communicatively coupled to the downlink communications medium 222 to receive the downlink digital communications signals 204(1)-204(M). The remote units 202(1)-202(N) include a plurality of baseband circuits 236(1)-236(N), a plurality of digital-to-analog converters (DACs) 238(1)-238(N), and a plurality of power amplifiers 240(1)-240(N), respectively. The baseband circuits 236(1)-236(N) further include a plurality of digital filters 242(1)-242(N), respectively. The DACs 238(1)-238(N) generate a plurality of downlink RF communications signals 244(1)-244(N), respectively. The power amplifiers 240(1)-240(N) amplify the downlink RF communications signals 244(1)-244(N) to generate a plurality of amplified downlink RF communications signals 246(1)-246(N), respectively. The remote unit 202(1) receives the downlink digital communications signal 204(1) via the remote unit communications interface 234(1). The out-of-channel noise 230 in the received downlink digital communications signal 204(1) may have increased further due to inherent noise associated with the downlink communications medium 222. The downlink digital communications signal 204(1) may pass through the digital filter 242(1) in the baseband circuit 236(1) without adequate suppression of the out-of-channel noise 230. The DAC 238(1) converts the downlink digital communications signal 204(1) into the downlink RF communications signal 244(1). The downlink RF communications signal 244(1) is amplified by the power amplifier 240(1) to generate the amplified downlink RF communications signal 246(1) for distribution to one or more client devices (not shown) in the WDS 200.


Some regulatory authorities, such as the Federal Communications Commission (FCC) of the United States, mandate that the amplified downlink RF communications signals 246(1)-246(N) be transmitted in compliance with a spectrum emission mask (SEM). As such, the amplified downlink RF communications signal 246(1) must comply with the SEM determined by the regulatory authorities. However, the out-of-channel noise 230 present in the amplified downlink RF communications signal 246(1) may cause the amplified downlink RF communications signal 246(1) not be in compliance with the SEM for the communications service provided by the amplified downlink RF communications signal 246(1).


In this regard, FIG. 2B is an exemplary plot illustrating a SEM 248 for a single-channel RF communications signal 250. The SEM 248 is a mathematically defined emission ceiling applied to transmissions of the single-channel RF communications signal 250. To comply with the SEM 248, energy emissions from the single-channel RF communications signal 250 must stay below the SEM 248 in an in-channel region 252, which is within a predefined bandwidth 254. The energy emissions from the single-channel RF communications signal 250 must also stay below the SEM 248 in out-of-channel regions 256 that fall outside the predefined bandwidth 254. The SEM 248 may be associated with a specific communications technology, such as long-term evolution (LTE), and/or a specific RF spectrum (e.g., 748 MHz channel or 762 MHz channel). In a non-limiting example, the single-channel RF communications signal 250 may be the same as the amplified downlink RF communications signal 246(1) of FIG. 2A. In this regard, energy emissions of the amplified downlink RF communications signal 246(1) must stay below the SEM 248 in both the in-channel region 252 and the out-of-channel regions 256 to satisfy the mandatory regulatory requirements.


In a non-limiting example, the amplified downlink RF communications signal 246(1) may be transmitted over multiple frequency channels (not shown). In this regard, FIG. 2C is an exemplary plot illustrating a SEM 258 for a multi-channel RF communications signal 260. With reference to FIG. 2C, the multi-channel RF communications signal 260 occupies a plurality of frequency channels 262(1)-262(0). To comply with the SEM 258, energy emissions from the multi-channel RF communications signal 260 must stay below the SEM 258 in an in-channel region 264, which is within a predefined bandwidth 266 corresponding to the frequency channels 262(1)-262(0), and in out-of-channel regions 268 that fall outside the predefined bandwidth 266. In a non-limiting example, the multi-channel RF communications signal 260 may be the same as the amplified downlink RF communications signal 246(1) of FIG. 2A. In this regard, energy emissions of the amplified downlink RF communications signal 246(1) must stay below the SEM 258 in both the in-channel region 264 and the out-of-channel regions 268 to satisfy the mandatory regulatory requirements.


With reference back to FIG. 2A, to provide for compliance of the amplified downlink RF communications signal 246(1) with the SEM 248 of FIG. 2B or the SEM 258 of FIG. 2C, it may be necessary to adequately suppress the out-of-channel noise 230 associated with the downlink digital communications signal 204(1). Specifically, it may be desired to adequately suppress the out-of-channel noise 230 before converting the downlink digital communications signal 204(1) into the downlink RF communications signal 244(1) and amplifying the downlink RF communications signal 244(1) to generate the amplified downlink RF communications signal 246(1). In a conventional WDS like the WDS 200, it may be possible to adequately suppress the out-of-channel noise 230 using one of (or a combination of) the methods described below.


In one aspect, the digital filter 242(1) in the remote unit 202(1) could be enhanced to provide a sharper cut-off of the out-of-channel noise 230. However, upgrading the digital filter 242(1) to a sharp filter may lead to increased processing delay and higher component costs of the remote unit 202(1). According to another aspect, it may be possible to adequately suppress the out-of-channel noise 230 in the central unit 206 before providing the downlink digital communications signals 204(1)-204(M) to the central unit communications interface 220. However, since the downlink digital communications signals 204(1)-204(M) may occupy a much wider spectrum, a broadband digital filter or multiple narrowband digital filters may be required. In this regard, the central unit 206 would require higher performance circuits to support the broadband digital filter or the multiple narrowband digital filters. As a result, it may be necessary to upgrade the central unit 206, thus leading to increased complexity, cost, physical size, and power consumption of the central unit 206. Furthermore, digital filtering performed at the central unit 206 will not prevent inherent noise associated with the downlink communications medium 222 from being added to the downlink digital communications signals 204(1)-204(M).


Hence, it may be desired to provide an alternative solution to adequately suppress the out-of-channel noise 230 in the downlink digital communications signals 204(1)-204(M) while overcoming the shortcomings associated with the above two conventional methods. In this regard, FIG. 3 is a schematic diagram of an exemplary WDS 300 including a plurality of remote units 302(1)-302(N) configured to suppress out-of-channel noise 304 that may be associated with one or more downlink digital communications signals 306(1)-306(M) to provide a communications service(s) via a plurality of amplified downlink RF communications signals 308(1)-308(N) that complies with the SEM 248 of FIG. 2B and the SEM 258 of FIG. 2C. By suppressing the out-of-channel noise 304 associated with the downlink digital communications signals 306(1)-306(M) in the remote units 302(1)-302(N), the amplified downlink RF communications signals 308(1)-308(N) may more easily comply with the SEM 248 and the SEM 258 when the amplified downlink RF communications signals 308(1)-308(N) are distributed from the remote units 302(1)-302(N) to respective client devices. Further, as an example, by suppressing out-of-channel noise 304 at the remote units 302(1)-302(N), it is not necessary for a central unit 310 in the WDS 300 to perform digital filtering before distributing the downlink digital communications signals 306(1)-306(M) to the remote units 302(1)-302(N), thus helping to reduce complexity, cost, physical size, and/or power consumption of the central unit 310.


With continuing reference to FIG. 3, the central unit 310 includes a digital signal interface 312 and an analog signal interface 314. The digital signal interface 312 is communicatively coupled to a digital signal source 316 to receive a digital downlink communications signal 318. In a non-limiting example, the digital signal source 316 may be a BBU, and the digital downlink communications signal 318 may be provided according to the CPRI protocol, an open base station architecture initiative (OBSAI) protocol, an open radio equipment interface (ORI) protocol, or a proprietary protocol. The analog signal interface 314 is communicatively coupled to an RF signal source 320 to receive an analog downlink communications signal 322. In a non-limiting example, the RF signal source 320 may be a BTS. In this regard, the central unit 310 may receive the digital downlink communications signal 318 and the analog downlink communications signal 322 concurrently for distribution in the WDS 300.


The central unit 310 also includes a central unit communications interface 324. The central unit communications interface 324 is coupled to at least one downlink communications medium 326. In this example, the downlink communications medium 326 is comprised of a plurality of downlink communications media 326(1)-326(N) each dedicated to communicatively couple to a remote unit 302 among the remote units 302(1)-302(N). In a non-limiting example, the central unit communications interface 324 is a digital communications interface for distributing the downlink digital communications signals 306(1)-306(M) to the remote units 302(1)-302(N). Since the central unit 310 may concurrently receive the digital downlink communications signal 318 and the analog downlink communications signal 322, the downlink digital communications signals 306(1)-306(M) may include both the digital downlink communications signal 318 and the analog downlink communications signal 322. As such, an analog-to-digital converter (ADC) 328 is provided in the central unit 310 to convert the analog downlink communications signal 322 into a second digital downlink communications signal 330, which may be a digital replica of the analog downlink communications signal 322. In this regard, the downlink digital communications signals 306(1)-306(M) may include the digital downlink communications signal 318 and/or the second digital downlink communications signal 330.


The downlink digital communications signals 306(1)-306(M) occupy one or more frequency channels each having a predefined bandwidth 332(1)-332(M) (332(2)-332(M) not shown). For example, the downlink digital communications signal 306(1) may have a predefined bandwidth 332(1). The downlink digital communications signal 306(1) is received by the central unit 310 via the analog signal interface 314. As such, the downlink digital communications signal 306(1) may contain analog components that are distorted due to imperfections of analog processing elements, thus creating the out-of-channel noise 304 outside the predefined bandwidth 332(1) of the downlink digital communications signal 306(1). In this regard, the out-of-channel noise 304 includes energy leaking beyond the predefined bandwidth 332(1). In one example, the out-of-channel noise 304 may include third order intermodulation products 333 that may be created above and below the predefined bandwidth 332(1). In another example, the out-of-channel noise 304 may include spectral regrowth and/or spectral spur (not shown) resulting from all other intermodulation products. In this regard, the out-of-channel noise 304 includes the energy leaking beyond the predefined bandwidth 332(1), the third order intermodulation products 333, and the spectral regrowth and/or spectral spur.


With continuing reference to FIG. 3, the remote units 302(1)-302(N) include a plurality of remote unit communications interfaces 334(1)-334(N), respectively. The remote unit communications interfaces 334(1)-334(N) are each communicatively coupled to the downlink communications media 326(1)-326(N) to receive the downlink digital communications signals 306(1)-306(M), respectively. The remote units 302(1)-302(N) include a plurality of baseband circuits 336(1)-336(N), a plurality of digital-to-analog converters (DACs) 338(1)-338(N), and a plurality of power amplifiers 340(1)-340(N), respectively. The baseband circuits 336(1)-336(N) are configured to provide digital processing to the downlink digital communications signals 306(1)-306(M) (e.g., frequency downshifting, demodulation, error correction, etc.). The baseband circuits 336(1)-336(N) include a plurality of digital filters 342(1)-342(N), respectively. In a non-limiting example, the digital filters 342(1)-342(N) are Butterworth filters and/or Chebyshev filters. The digital filters 342(1)-342(N) are coupled to a plurality of control circuits 344(1)-344(N), respectively. In one example, the control circuits 344(1)-344(N) may be located outside remote unit among the remote units 302(1)-302(N), such as the control circuit 344(1) in the remote unit 302(1). In another example, the control circuits 344(1)-344(N) may be located inside a remote unit among the remote units 302(1)-302(N), such as the control circuit 344(N) illustrated in the remote unit 302(N). The remote units 302(1)-302(N) include a plurality of analog-to-digital converters (ADCs) 355(1)-355(N). The ADCs 355(1)-355(N) enables feedback from the power amplifiers 340(1)-340(N) to the control circuits 344(1)-344(N), respectively.


For the convenience of discussion and illustration, the downlink digital communications signal 306(1) and the remote unit 302(1) are discussed hereinafter as a non-limiting example. It shall be appreciated that aspects discussed with references to the downlink digital communications signal 306(1) and the remote unit 302(1) are applicable to any of the other downlink digital communications signals 306(2)-306(M) and remote units 302(2)-302(N). It shall also be appreciated multiple downlink communications signals among the downlink digital communications signals 306(1)-306(M) may be distributed to the remote unit 302(1).


With continuing reference to FIG. 3, the remote unit 302(1) receives the downlink digital communications signal 306(1), which may be associated with the out-of-channel noise 304. The digital filter 342(1) in the remote unit 302(1) is configured to receive the downlink digital communications signal 306(1) via the remote unit communications interface 334(1). The digital filter 342(1) includes a set of filter configuration parameters that can be dynamically configured by the control circuit 344(1). The control circuit 344(1) is configured to dynamically determine at least one filter configuration parameter 346(1) based on one or more physical characteristics 348(1) of the downlink digital communications signal 306(1). In a non-limiting example, the physical characteristics 348(1) of the downlink digital communications signal 306(1) may include center frequency, bandwidth, power level, and/or communication technology of the downlink digital communications signal 306(1). In a non-limiting example, the control circuit 344(1) uses the center frequency and bandwidth of the downlink digital communications signal 306(1) to configure bandwidth and allowed passband ripple of the digital filter 342(1), thus suppressing the out-of-channel noise 304. For example, the downlink digital communications signal 306(1) may include a long-term evolution (LTE) communications signal or a wideband code division multiple access (WCDMA) communications signal. The LTE communications signal has a center frequency of one thousand nine hundred ninety-two point five megahertz (1992.5 MHz) and a five megahertz (5 MHz) bandwidth. The WCDMA communications signal has a center frequency of one thousand nine hundred sixty-two point five megahertz (1962.5 MHz) and a three point eight four megahertz (3.84 MHz) bandwidth. Based on the center frequency and the bandwidth of the downlink digital communications signal 306(1), the control circuit 344(1) can configure stop band attenuation and order of the digital filter 342(1) accordingly to suppress the out-of-channel noise 304. In this regard, when the physical characteristics 348(1) indicate that the downlink digital communications signal 306(1) is the LTE communications signal, the control circuit 344(1) configures the digital filter 342(1) to operate at 1992.5 MHz center frequency with 5 MHz bandwidth. As such, the digital filter 342(1) can effectively suppress out-of-channel noise 304 located below one thousand nine hundred ninety megahertz (1990 MHz) and above one thousand nine hundred ninety five megahertz (1995 MHz). Likewise, when the physical characteristics 348(1) indicate that the downlink digital communications signal 306(1) is the WCDMA communications signal, the control circuit 344(1) configures the digital filter 342(1) to operate at 1962.5 MHz center frequency with 3.84 MHz bandwidth. As a result, the digital filter 342(1) can effectively suppress out-of-channel noise 304 located below one thousand nine hundred sixty point five eight megahertz (1960.58 MHz) and above one thousand nine hundred sixty-four point four two megahertz (1964.42 MHz). In addition, the control circuit 344(1) may determine the filter configuration parameter 346(1) by further taking into consideration additional information 350(1), which may include adjacent channel power ratio (ACPR) for the downlink digital communications signal 306(1), for example.


With continuing reference to FIG. 3, the digital filter 342(1) is configured to output a modified downlink digital communications signal 352(1) based on the downlink digital communications signal 306(1) and the filter configuration parameter 346(1) received from the control circuit 344(1). In this regard, by reconfiguring the digital filter 342(1) based on the filter configuration parameter 346(1) determined according to the physical characteristics 348(1) of the downlink digital communications signal 306(1), it is possible to adequately suppress the out-of-channel noise 304 in the modified downlink digital communications signal 352(1). In this regard, the modified downlink digital communications signal 352(1) is “cleaner” than the downlink digital communications signal 306(1) as a result of adequate suppression of the out-of-channel noise 304 by the digital filter 342(1). By being “cleaner,” the out-of-channel noise 304 in the modified downlink digital communications signal 352(1) is substantially lower than the out-of-channel noise 304 in the downlink digital communications signal 306(1). As such, it may not be necessary for the central unit 310 to suppress the out-of-channel noise 304 before providing the downlink digital communications signal 306(1) to the central unit communications interface 324, thus helping reduce complexity, cost, physical size, and power consumption of the central unit 310. Furthermore, it may also not be necessary to replace the digital filter 342(1) with a sharp digital filter at the remote unit 302(1). As a result, it may help relax digital signal processor (DSP) (e.g., field-programmable gate array (FPGA)) processing loads, thus avoiding unnecessary processing delays that may result from the sharp digital filter.


With continuing reference to FIG. 3, the DAC 338(1) receives and converts the modified downlink digital communications signal 352(1) into a downlink RF communications signal 354(1). The power amplifier 340(1) is configured to amplify the downlink RF communications signal 354(1) to generate the amplified downlink RF communications signal 308(1). As discussed above, the physical characteristics 348(1) of the downlink digital communications signal 306(1) may include center frequency, bandwidth, power level, and/or communication technology of the downlink digital communications signal 306(1). Based on the communication technology, the center frequency, and the bandwidth of the downlink digital communications signal 306(1), the control circuit 344(1) is able to determine the exact spectral emission requirements associated with the SEM 248 of FIG. 2B and/or the SEM 258 of FIG. 2C. Based on the power level of the downlink digital communications signal 306(1) as indicated in the physical characteristics 348(1), the control circuit 344(1) is able to control the power amplifier 340(1) to provide the amplified downlink RF communications signal 308(1) in compliance with the SEM 248 of FIG. 2B and/or the SEM 258 of FIG. 2C.


In a non-limiting example, the control circuit 344(1) is configured to control the power amplifier 340(1) based on the physical characteristics 348(1) of the downlink digital communications signal 306(1) via a control signal 356(1). Additionally, the control circuit 344(1) may receive a SEM feedback signal 358(1) indicating a power level of the amplified downlink RF communications signal 308(1). The ADC 355(1) is configured to convert the amplified downlink RF communications signal 308(1) into the SEM feedback signal 358(1) indicating the power level of the amplified downlink RF communications signal 308(1). Based on the SEM feedback signal 358(1) and the power level of the downlink digital communications signal 306(1), the control circuit 344(1) can adjust the digital filter 342(1) via the filter configuration parameter 346(1) and/or adjust the power amplifier 340(1) via the control signal 356(1) when the control circuit 344(1) determines that the amplified downlink RF communications signal 308(1) exceeds the SEM 248 of FIG. 2B and/or the SEM 258 of FIG. 2C.


With continuing reference to FIG. 3, the control circuits 344(1)-344(N) are communicatively coupled to at least one signal analysis circuit 360. In a non-limiting example, the signal analysis circuit 360 may be provided in the central unit 310 or be collocated with the central unit 310. The signal analysis circuit 360 is configured to determine the physical characteristics 348(1)-340(N) for the downlink digital communications signals 306(1)-306(M). In a non-limiting example, the signal analysis circuit 360 is configured to determine each of the physical characteristics 348(1)-348(M) for each of the downlink digital communications signals 306(1)-306(M) using techniques such as Fast Fourier Transform (FFT). In this regard, the control circuit 344(1) in the remote unit 302(1) receives the physical characteristics 348(1) of the downlink digital communications signal 306(1) from the signal analysis circuit 360. In a non-limiting example, the remote unit 302(1) receives the physical characteristics 348(1) from the signal analysis circuit 360 via the downlink communications medium 326(1).


In one non-limiting example, the signal analysis circuit 360 is communicatively coupled to the central unit communications interface 324. In this regard, the signal analysis circuit 360 can determine the physical characteristics 348(1)-348(M) for the digital downlink communications signal 318 and the second digital downlink communications signal 330 converted from the analog downlink communications signal 322. In another non-limiting example, the signal analysis circuit 360 may be communicatively coupled to the digital signal interface 312. In this regard, the signal analysis circuit 360 can determine the physical characteristics 348(1)-348(M) for the digital downlink communications signal 318.


The remote unit 302(1) may be configured to suppress the out-of-channel noise 304 according to an out-of-channel noise reduction process. In this regard, FIG. 4 is a flowchart of an exemplary out-of-channel noise reduction process 400 that may be employed in each of the remote units 302(1)-302(N) of FIG. 3 to reduce the out-of-channel noise 304 associated with the downlink digital communications signals 306(1)-306(M).


With reference to FIG. 4, the remote unit 302(1) among the remote units 302(1)-302(N) is configured to receive the downlink digital communications signal 306(1) in the predefined frequency channel (e.g., 748 MHz channel) having the predefined bandwidth 332(1) for at least one communications service (block 402). The digital filter 342(1) is configured to output the modified downlink digital communications signal 352(1) based on the downlink digital communications signal 306(1) and the filter configuration parameter 346(1) determined based on the physical characteristics 348(1) of the downlink digital communications signal 306(1) to suppress the out-of-channel noise 304 in the downlink digital communications signal 306(1) (block 404). The DAC 338(1) is configured to convert the modified downlink digital communications signal 352(1) into the downlink RF communications signal 354(1) (block 406). The power amplifier 340(1) is configured to generate the amplified downlink RF communications signal 308(1) based on the downlink RF communications signal 354(1) (block 408). The digital filter 342(1) is further configured to suppress the out-of-channel noise 304 in the downlink digital communications signal 306(1) to provide for the amplified downlink RF communications signal 308(1) to comply with the SEM 248 of FIG. 2B or the SEM 258 of FIG. 2C for the at least one communications service (block 410).


With reference back to FIG. 3, in a non-limiting example, the WDS 300 is provided as an optical fiber-based WDS. In this regard, the downlink communications medium 326(1) may be an optical fiber-based downlink communications medium. Accordingly, the central unit 310 may include an electrical-to-optical (E/O) converter 366 configured to convert the downlink digital communications signals 306(1)-306(M) into one or more optical downlink digital communications signals 368(1)-368(M). The E/O converter 366 then provides the optical downlink digital communications signals 368(1)-368(M) to the central unit communications interface 324. The remote unit 302(1) includes an optical-to-electrical (0/E) converter 370(1) configured to receive the optical downlink digital communications signal 368(1) among the optical downlink digital communications signals 368(1)-368(M) from the remote unit communications interface 334(1). The O/E converter 370(1) is then configured to convert the optical downlink digital communications signal 368(1) into the downlink digital communications signal 306(1).


Alternative to providing the signal analysis circuit 360 of FIG. 3 in the central unit 310, or co-locating the signal analysis circuit 360 with the central unit 310, it is also possible to deploy the signal analysis circuit 360 in one or more of the remote units 302(1)-302(N). This may provide more flexibility when the WDS 300 is gradually upgraded to eliminate the analog downlink communications signal 322. In this regard, FIG. 5 is a schematic diagram of an exemplary WDS 500 in which a plurality of remote units 502(1)-502(N) includes a plurality of signal analysis circuits 504(1)-504(N), respectively, for determining the physical characteristics 348(1)-348(M) of each of the downlink digital communications signals 306(1)-306(M). Common elements between FIGS. 3 and 5 are shown therein with common element numbers and will not be re-described herein.


With reference to FIG. 5, the signal analysis circuit 504(1) in the remote unit 302(1) is configured to determine the physical characteristics 348(1) of the downlink digital communications signal 306(1). In one non-limiting example, the signal analysis circuit 504(1) in the remote unit 302(1) may be integrated with a baseband circuit 506(1). In another non-limiting example, the signal analysis circuit 504(N) in the remote unit 302(N) may be provided outside the baseband circuit 506(N).


The WDS 300 of FIG. 3 and the WDS 500 of FIG. 5, which are configured to reduce the out-of-channel noise 304 in the downlink digital communications signals 306(1)-306(M), may be provided in an indoor environment, as illustrated in FIG. 6. FIG. 6 is a partial schematic cut-away diagram of an exemplary building infrastructure 600 in which WDSs configured to suppress the out-of-channel noise 304 associated with the downlink digital communications signals 306(1)-306(M), including the WDS 300 of FIG. 3 and the WDS 500 of FIG. 5, can be employed. The building infrastructure 600 in this embodiment includes a first (ground) floor 602(1), a second floor 602(2), and a third floor 602(3). The floors 602(1)-602(3) are serviced by a central unit 604 to provide antenna coverage areas 606 in the building infrastructure 600. The central unit 604 is communicatively coupled to a base station 608 to receive downlink communications signals 610D from the base station 608. The central unit 604 is communicatively coupled to a plurality of remote units 612 to distribute the downlink communications signals 610D to the remote units 612 and to receive uplink communications signals 610U from the remote units 612, as previously discussed above. The downlink communications signals 610D and the uplink communications signals 610U communicated between the central unit 604 and the remote units 612 are carried over a riser cable 614. The riser cable 614 may be routed through interconnect units (ICUs) 616(1)-616(3) dedicated to each of the floors 602(1)-602(3) that route the downlink communications signals 610D and the uplink communications signals 610U to the remote units 612 and also provide power to the remote units 612 via array cables 618.



FIG. 7 is a schematic diagram representation of additional detail illustrating an exemplary computer system 700 that could be employed in a controller, including the control circuits 344(1)-344(N) in the remote units 302(1)-302(N) of FIG. 3 and the remote units 502(1)-502(N) of FIG. 5, for reducing the out-of-channel noise 304 associated with the downlink digital communications signals 306(1)-306(M). In this regard, the computer system 700 is adapted to execute instructions from an exemplary computer-readable medium to perform these and/or any of the functions or processing described herein.


In this regard, the computer system 700 in FIG. 7 may include a set of instructions that may be executed to predict frequency interference to avoid or reduce interference in a multi-frequency DAS. The computer system 700 may be connected (e.g., networked) to other machines in a LAN, an intranet, an extranet, or the Internet. While only a single device is illustrated, the term “device” shall also be taken to include any collection of devices that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein. The computer system 700 may be a circuit or circuits included in an electronic board card, such as, a printed circuit board (PCB), a server, a personal computer, a desktop computer, a laptop computer, a personal digital assistant (PDA), a computing pad, a mobile device, or any other device, and may represent, for example, a server or a user's computer.


The exemplary computer system 700 in this embodiment includes a processing device or processor 702, a main memory 704 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM), such as synchronous DRAM (SDRAM), etc.), and a static memory 706 (e.g., flash memory, static random access memory (SRAM), etc.), which may communicate with each other via a data bus 708. Alternatively, the processor 702 may be connected to the main memory 704 and/or the static memory 706 directly or via some other connectivity means. The processor 702 may be a controller, and the main memory 704 or the static memory 706 may be any type of memory.


The processor 702 represents one or more general-purpose processing devices, such as a microprocessor, central processing unit, or the like. More particularly, the processor 702 may be a complex instruction set computing (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a processor implementing other instruction sets, or other processors implementing a combination of instruction sets. The processor 702 is configured to execute processing logic in instructions for performing the operations and steps discussed herein.


The computer system 700 may further include a network interface device 710. The computer system 700 also may or may not include an input 712, configured to receive input and selections to be communicated to the computer system 700 when executing instructions. The computer system 700 also may or may not include an output 714, including but not limited to a display, a video display unit (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device (e.g., a keyboard), and/or a cursor control device (e.g., a mouse).


The computer system 700 may or may not include a data storage device that includes instructions 716 stored in a computer-readable medium 718. The instructions 716 may also reside, completely or at least partially, within the main memory 704 and/or within the processor 702 during execution thereof by the computer system 700, the main memory 704 and the processor 702 also constituting computer-readable medium. The instructions 716 may further be transmitted or received over a network 720 via the network interface device 710.


While the computer-readable medium 718 is shown in an exemplary embodiment to be a single medium, the term “computer-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-readable medium” shall also be taken to include any medium that is capable of storing, encoding, or carrying a set of instructions for execution by the processing device and that cause the processing device to perform any one or more of the methodologies of the embodiments disclosed herein. The term “computer-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical medium, and magnetic medium.


The embodiments disclosed herein include various steps. The steps of the embodiments disclosed herein may be formed by hardware components or may be embodied in machine-executable instructions, which may be used to cause a general-purpose or special-purpose processor programmed with the instructions to perform the steps. Alternatively, the steps may be performed by a combination of hardware and software.


The embodiments disclosed herein may be provided as a computer program product, or software, that may include a machine-readable medium (or computer-readable medium) having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to the embodiments disclosed herein. A machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium includes: a machine-readable storage medium (e.g., ROM, random access memory (“RAM”), a magnetic disk storage medium, an optical storage medium, flash memory devices, etc.); and the like.


Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps, or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is in no way intended that any particular order be inferred.


It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the invention. Since modifications, combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and their equivalents.

Claims
  • 1. A remote unit in a wireless distribution system (WDS) configured to exchange communications signals with a plurality of remote units, comprising: a digital filter configured to: receive a downlink digital communications signal in a predefined frequency channel having a predefined bandwidth for at least one communications service from a central unit in the WDS; andoutput a modified downlink digital communications signal based on the downlink digital communications signal and at least one filter configuration parameter received from a control circuit configured to determine the at least one filter configuration parameter based on one or more physical characteristics of the downlink digital communications signal to suppress out-of-channel noise in the downlink digital communications signal;a digital-to-analog converter (DAC) configured to convert the modified downlink digital communications signal into a downlink radio frequency (RF) communications signal; anda power amplifier configured to generate an amplified downlink RF communications signal based on the downlink RF communications signal for communication to one or more client devices in the WDS;wherein the digital filter is further configured to suppress the out-of-channel noise in the downlink digital communications signal to provide for the amplified downlink RF communications signal to comply with a spectrum emission mask (SEM) for the at least one communications service.
  • 2. The remote unit of claim 1, where the digital filter is configured to receive the downlink digital communications signal via a remote unit communications interface communicatively coupled to the central unit.
  • 3. The remote unit of claim 1, wherein the one or more physical characteristics of the downlink digital communications signal are comprised of center frequency of the downlink digital communications signal.
  • 4. The remote unit of claim 1, wherein the one or more physical characteristics of the downlink digital communications signal are comprised of bandwidth of the downlink digital communications signal.
  • 5. The remote unit of claim 1, wherein the one or more physical characteristics of the downlink digital communications signal are comprised of power level of the downlink digital communications signal.
  • 6. The remote unit of claim 1, wherein the one or more physical characteristics of the downlink digital communications signal are comprised of communication technology of the downlink digital communications signal.
  • 7. The remote unit of claim 1, wherein the control circuit is configured to determine the at least one filter configuration parameter based on an adjacent channel power ratio (ACPR) for the downlink digital communications signal.
  • 8. The remote unit of claim 1, wherein the control circuit is further configured to control the power amplifier to generate the amplified downlink RF communications signal that complies with the SEM.
  • 9. The remote unit of claim 8, wherein the control circuit is configured to control the power amplifier based on the one or more physical characteristics of the downlink digital communications signal.
  • 10. The remote unit of claim 1, wherein the control circuit is further configured to: receive a feedback signal indicating power level of the amplified downlink RF communications signal; andadjust the at least one filter configuration parameter when the control circuit determines that the power level of the amplified downlink RF communications signal exceeds the SEM.
  • 11. The remote unit of claim 1 further comprising the control circuit.
  • 12. The remote unit of claim 1, further comprising: a baseband circuit configured to provide digital processing to the downlink digital communications signal;wherein the baseband circuit comprises the digital filter.
  • 13. The remote unit of claim 1, wherein the out-of-channel noise comprises energy leaked beyond the predefined bandwidth of the predefined frequency channel of the downlink digital communications signal.
  • 14. The remote unit of claim 1, wherein the out-of-channel noise comprises third order intermodulation products.
  • 15. The remote unit of claim 1, wherein the out-of-channel noise comprises spectral regrowth and spectral spur.
  • 16. The remote unit of claim 1 further comprising an optical-to-electrical (O/E) converter configured to convert an optical downlink digital communications signal received from the central unit into the downlink digital communications signal comprising the optical downlink digital communications signal.
  • 17. A method for reducing out-of-channel noise in a remote unit in a wireless distribution system (WDS) comprising a plurality of remote units, comprising: receiving a downlink digital communications signal in a predefined frequency channel having a predefined bandwidth for at least one communications service;outputting a modified downlink digital communications signal based on the downlink digital communications signal and at least one filter configuration parameter determined based on one or more physical characteristics of the downlink digital communications signal to suppress out-of-channel noise in the downlink digital communications signal;converting the modified downlink digital communications signal into a downlink radio frequency (RF) communications signal;generating an amplified downlink RF communications signal based on the downlink RF communications signal for communication to one or more client devices in the WDS; andsuppressing the out-of-channel noise in the downlink digital communications signal to provide for the amplified downlink RF communications signal to comply with a spectrum emission mask (SEM) for the at least one communications service.
  • 18. The method of claim 17, comprising determining the at least one filter configuration parameter based on center frequency of the downlink digital communications signal.
  • 19. The method of claim 17, comprising determining the at least one filter configuration parameter based on bandwidth of the downlink digital communications signal.
  • 20. The method of claim 17, comprising determining the at least one filter configuration parameter based on power level of the downlink digital communications signal.
  • 21. The method of claim 17, comprising determining the at least one filter configuration parameter based on communication technology of the downlink digital communications signal.
  • 22. The method of claim 17, comprising determining the at least one filter configuration parameter based on an adjacent channel power ratio (ACPR) for the downlink digital communications signal.
  • 23. The method of claim 17, further comprising: receiving a feedback signal indicating power level of the amplified downlink RF communications signal; andadjusting the at least one filter configuration parameter when the power level of the amplified downlink RF communications signal is determined to exceed the SEM.
US Referenced Citations (881)
Number Name Date Kind
3663762 Joel, Jr. May 1972 A
4365865 Stiles Dec 1982 A
4449246 Seiler et al. May 1984 A
4573212 Lipsky Feb 1986 A
4665560 Lange May 1987 A
4812851 Giubardo Mar 1989 A
4867527 Dotti et al. Sep 1989 A
4889977 Haydon Dec 1989 A
4896939 O'Brien Jan 1990 A
4916460 Powell Apr 1990 A
4939852 Brenner Jul 1990 A
4972346 Kawano et al. Nov 1990 A
5039195 Jenkins et al. Aug 1991 A
5042086 Cole et al. Aug 1991 A
5056109 Gilhousen et al. Oct 1991 A
5059927 Cohen Oct 1991 A
5125060 Edmundson Jun 1992 A
5187803 Sohner et al. Feb 1993 A
5189718 Barrett et al. Feb 1993 A
5189719 Coleman et al. Feb 1993 A
5206655 Caille et al. Apr 1993 A
5208812 Dudek et al. May 1993 A
5210812 Nilsson et al. May 1993 A
5260957 Hakimi Nov 1993 A
5263108 Kurokawa et al. Nov 1993 A
5267122 Glover et al. Nov 1993 A
5268971 Nilsson et al. Dec 1993 A
5278690 Vella-Coleiro Jan 1994 A
5278989 Burke et al. Jan 1994 A
5280472 Gilhousen et al. Jan 1994 A
5299947 Barnard Apr 1994 A
5301056 O'Neill Apr 1994 A
5325223 Bears Jun 1994 A
5339058 Lique Aug 1994 A
5339184 Tang Aug 1994 A
5343320 Anderson Aug 1994 A
5377035 Wang et al. Dec 1994 A
5379455 Koschek Jan 1995 A
5381459 Lappington Jan 1995 A
5396224 Dukes et al. Mar 1995 A
5400391 Emura et al. Mar 1995 A
5420863 Taketsugu et al. May 1995 A
5424864 Emura Jun 1995 A
5444564 Newberg Aug 1995 A
5457557 Zarem et al. Oct 1995 A
5459727 Vannucci Oct 1995 A
5469523 Blew et al. Nov 1995 A
5519830 Opoczynski May 1996 A
5543000 Lique Aug 1996 A
5546443 Raith Aug 1996 A
5557698 Gareis et al. Sep 1996 A
5574815 Kneeland Nov 1996 A
5598288 Collar Jan 1997 A
5606725 Hart Feb 1997 A
5615034 Hori Mar 1997 A
5627879 Russell et al. May 1997 A
5640678 Ishikawa et al. Jun 1997 A
5642405 Fischer et al. Jun 1997 A
5644622 Russell et al. Jul 1997 A
5648961 Ebihara Jul 1997 A
5651081 Blew et al. Jul 1997 A
5657374 Russell et al. Aug 1997 A
5668562 Cutrer et al. Sep 1997 A
5677974 Elms et al. Oct 1997 A
5682256 Motley et al. Oct 1997 A
5694232 Parsay et al. Dec 1997 A
5703602 Casebott Dec 1997 A
5708681 Malkemes et al. Jan 1998 A
5726984 Kubler et al. Mar 1998 A
5765099 Georges et al. Jun 1998 A
5790536 Mahany et al. Aug 1998 A
5790606 Dent Aug 1998 A
5793772 Burke et al. Aug 1998 A
5802173 Hamilton-Piercy et al. Sep 1998 A
5802473 Rutledge et al. Sep 1998 A
5805975 Green, Sr. et al. Sep 1998 A
5805983 Naidu et al. Sep 1998 A
5809395 Hamilton-Piercy et al. Sep 1998 A
5809431 Bustamante et al. Sep 1998 A
5812296 Tarusawa et al. Sep 1998 A
5818619 Medved et al. Oct 1998 A
5818883 Smith et al. Oct 1998 A
5821510 Cohen et al. Oct 1998 A
5825651 Gupta et al. Oct 1998 A
5838474 Stilling Nov 1998 A
5839052 Dean et al. Nov 1998 A
5852651 Fischer et al. Dec 1998 A
5854986 Dorren et al. Dec 1998 A
5859719 Dentai et al. Jan 1999 A
5862460 Rich Jan 1999 A
5867485 Chambers et al. Feb 1999 A
5867763 Dean et al. Feb 1999 A
5881200 Burt Mar 1999 A
5883882 Schwartz Mar 1999 A
5896568 Tseng et al. Apr 1999 A
5903834 Wallstedt et al. May 1999 A
5910776 Black Jun 1999 A
5913003 Arroyo et al. Jun 1999 A
5917636 Wake et al. Jun 1999 A
5930682 Schwartz et al. Jul 1999 A
5936754 Ariyavisitakul et al. Aug 1999 A
5943372 Gans et al. Aug 1999 A
5946622 Bojeryd Aug 1999 A
5949564 Wake Sep 1999 A
5953670 Newson Sep 1999 A
5959531 Gallagher, III et al. Sep 1999 A
5960344 Mahany Sep 1999 A
5969837 Farber et al. Oct 1999 A
5983070 Georges et al. Nov 1999 A
5987303 Dutta et al. Nov 1999 A
6005884 Cook et al. Dec 1999 A
6006069 Langston et al. Dec 1999 A
6006105 Rostoker et al. Dec 1999 A
6011980 Nagano et al. Jan 2000 A
6014546 Georges et al. Jan 2000 A
6016426 Bodell Jan 2000 A
6023625 Myers, Jr. Feb 2000 A
6037898 Parish et al. Mar 2000 A
6061161 Yang et al. May 2000 A
6069721 Oh et al. May 2000 A
6088381 Myers, Jr. Jul 2000 A
6118767 Shen et al. Sep 2000 A
6122529 Sabat, Jr. et al. Sep 2000 A
6127917 Tuttle Oct 2000 A
6128470 Naidu et al. Oct 2000 A
6128477 Freed Oct 2000 A
6148041 Dent Nov 2000 A
6150921 Werb et al. Nov 2000 A
6157810 Georges et al. Dec 2000 A
6192216 Sabat, Jr. et al. Feb 2001 B1
6194968 Winslow Feb 2001 B1
6212397 Langston et al. Apr 2001 B1
6222503 Gietema Apr 2001 B1
6223201 Reznak Apr 2001 B1
6232870 Garber et al. May 2001 B1
6236789 Fitz May 2001 B1
6236863 Waldroup et al. May 2001 B1
6240274 Izadpanah May 2001 B1
6246500 Ackerman Jun 2001 B1
6268946 Larkin et al. Jul 2001 B1
6275990 Dapper et al. Aug 2001 B1
6279158 Geile et al. Aug 2001 B1
6286163 Trimble Sep 2001 B1
6292673 Maeda et al. Sep 2001 B1
6295451 Mimura Sep 2001 B1
6301240 Slabinski et al. Oct 2001 B1
6307669 Flood Oct 2001 B1
6307869 Pawelski Oct 2001 B1
6314163 Acampora Nov 2001 B1
6317599 Rappaport et al. Nov 2001 B1
6323980 Bloom Nov 2001 B1
6324391 Bodell Nov 2001 B1
6330241 Fort Dec 2001 B1
6330244 Swartz et al. Dec 2001 B1
6334219 Hill et al. Dec 2001 B1
6336021 Nukada Jan 2002 B1
6336042 Dawson et al. Jan 2002 B1
6337754 Imajo Jan 2002 B1
6340932 Rodgers et al. Jan 2002 B1
6353406 Lanzl et al. Mar 2002 B1
6353600 Schwartz et al. Mar 2002 B1
6359714 Imajo Mar 2002 B1
6370203 Boesch et al. Apr 2002 B1
6374078 Williams et al. Apr 2002 B1
6374124 Slabinski Apr 2002 B1
6389010 Kubler et al. May 2002 B1
6400318 Kasami et al. Jun 2002 B1
6400418 Wakabayashi Jun 2002 B1
6404775 Leslie et al. Jun 2002 B1
6405018 Reudink et al. Jun 2002 B1
6405058 Bobier Jun 2002 B2
6405308 Gupta et al. Jun 2002 B1
6414624 Endo et al. Jul 2002 B2
6415132 Sabat, Jr. Jul 2002 B1
6421327 Lundby et al. Jul 2002 B1
6438301 Johnson et al. Aug 2002 B1
6438371 Fujise et al. Aug 2002 B1
6448558 Greene Sep 2002 B1
6452915 Jorgensen Sep 2002 B1
6459519 Sasai et al. Oct 2002 B1
6459526 Minelly Oct 2002 B1
6459989 Kirkpatrick et al. Oct 2002 B1
6472952 Sakai et al. Oct 2002 B1
6477154 Cheong et al. Nov 2002 B1
6480702 Sabat, Jr. Nov 2002 B1
6486907 Farber et al. Nov 2002 B1
6496290 Lee Dec 2002 B1
6501965 Lucidarme Dec 2002 B1
6504636 Seto et al. Jan 2003 B1
6504831 Greenwood et al. Jan 2003 B1
6512478 Chien Jan 2003 B1
6519395 Bevan et al. Feb 2003 B1
6519449 Zhang et al. Feb 2003 B1
6525855 Westbrook et al. Feb 2003 B1
6529715 Kitko Mar 2003 B1
6535330 Lelic et al. Mar 2003 B1
6535720 Kintis et al. Mar 2003 B1
6556551 Schwartz Apr 2003 B1
6570913 Chen May 2003 B1
6577794 Currie et al. Jun 2003 B1
6577801 Broderick et al. Jun 2003 B2
6580402 Navarro et al. Jun 2003 B2
6580905 Naidu et al. Jun 2003 B1
6580918 Leickel et al. Jun 2003 B1
6583763 Judd Jun 2003 B2
6587514 Wright Jul 2003 B1
6594496 Schwartz Jul 2003 B2
6597325 Judd et al. Jul 2003 B2
6598009 Yang Jul 2003 B2
6606430 Bartur et al. Aug 2003 B2
6615074 Mickle et al. Sep 2003 B2
6628732 Takaki Sep 2003 B1
6634811 Gertel et al. Oct 2003 B1
6636747 Harada et al. Oct 2003 B2
6640103 Inman et al. Oct 2003 B1
6643437 Park Nov 2003 B1
6652158 Bartur et al. Nov 2003 B2
6654590 Boros et al. Nov 2003 B2
6654616 Pope, Jr. et al. Nov 2003 B1
6657535 Magbie et al. Dec 2003 B1
6658269 Golemon et al. Dec 2003 B1
6665308 Rakib et al. Dec 2003 B1
6670930 Navarro Dec 2003 B2
6674966 Koonen Jan 2004 B1
6675294 Gupta et al. Jan 2004 B1
6678509 Skarman et al. Jan 2004 B2
6687437 Starnes et al. Feb 2004 B1
6690328 Judd Feb 2004 B2
6701137 Judd et al. Mar 2004 B1
6704298 Matsumiya et al. Mar 2004 B1
6704545 Wala Mar 2004 B1
6710366 Lee et al. Mar 2004 B1
6714800 Johnson et al. Mar 2004 B2
6731880 Westbrook et al. May 2004 B2
6745013 Porter et al. Jun 2004 B1
6758913 Tunney et al. Jul 2004 B1
6763226 McZeal, Jr. Jul 2004 B1
6771862 Kamik et al. Aug 2004 B2
6771933 Eng et al. Aug 2004 B1
6784802 Stanescu Aug 2004 B1
6785558 Stratford et al. Aug 2004 B1
6788666 Linebarger et al. Sep 2004 B1
6801767 Schwartz et al. Oct 2004 B1
6807188 Blahut Oct 2004 B1
6807374 Imajo et al. Oct 2004 B1
6812824 Goldinger et al. Nov 2004 B1
6812905 Thomas et al. Nov 2004 B2
6823174 Masenten et al. Nov 2004 B1
6826163 Mani et al. Nov 2004 B2
6826164 Mani et al. Nov 2004 B2
6826337 Linnell Nov 2004 B2
6836660 Wala Dec 2004 B1
6836673 Trott Dec 2004 B1
6842433 West et al. Jan 2005 B2
6847856 Bohannon Jan 2005 B1
6850510 Kubler Feb 2005 B2
6865390 Goss et al. Mar 2005 B2
6873823 Hasarchi Mar 2005 B2
6876056 Tilmans et al. Apr 2005 B2
6879290 Toutain et al. Apr 2005 B1
6882311 Walker et al. Apr 2005 B2
6883710 Chung Apr 2005 B2
6885344 Mohamadi Apr 2005 B2
6885846 Panasik et al. Apr 2005 B1
6889060 Fernando et al. May 2005 B2
6909399 Zegelin et al. Jun 2005 B1
6915058 Pons Jul 2005 B2
6915529 Suematsu et al. Jul 2005 B1
6919858 Rofougaran Jul 2005 B2
6920330 Caronni et al. Jul 2005 B2
6924997 Chen et al. Aug 2005 B2
6930987 Fukuda et al. Aug 2005 B1
6931183 Panak et al. Aug 2005 B2
6931659 Kinemura Aug 2005 B1
6933849 Sawyer Aug 2005 B2
6934511 Lovinggood et al. Aug 2005 B1
6934541 Miyatani Aug 2005 B2
6941112 Hasegawa Sep 2005 B2
6946989 Vavik Sep 2005 B2
6961312 Kubler et al. Nov 2005 B2
6963289 Aljadeff et al. Nov 2005 B2
6963552 Sabat, Jr. et al. Nov 2005 B2
6965718 Koertel Nov 2005 B2
6967347 Estes et al. Nov 2005 B2
6968107 Belardi et al. Nov 2005 B2
6970652 Zhang et al. Nov 2005 B2
6973243 Koyasu et al. Dec 2005 B2
6974262 Rickenbach Dec 2005 B1
6977502 Hertz Dec 2005 B1
7002511 Ammar et al. Feb 2006 B1
7006465 Toshimitsu et al. Feb 2006 B2
7013087 Suzuki et al. Mar 2006 B2
7015826 Chan et al. Mar 2006 B1
7020473 Splett Mar 2006 B2
7020488 Bleile et al. Mar 2006 B1
7024166 Wallace Apr 2006 B2
7035512 Van Bijsterveld Apr 2006 B2
7035671 Solum Apr 2006 B2
7039399 Fischer May 2006 B2
7043271 Seto et al. May 2006 B1
7047028 Cagenius et al. May 2006 B2
7050017 King et al. May 2006 B2
7053838 Judd May 2006 B2
7054513 Herz et al. May 2006 B2
7069577 Geile et al. Jun 2006 B2
7072586 Aburakawa et al. Jul 2006 B2
7082320 Kattukaran et al. Jul 2006 B2
7084769 Bauer et al. Aug 2006 B2
7093985 Lord et al. Aug 2006 B2
7103119 Matsuoka et al. Sep 2006 B2
7103377 Bauman et al. Sep 2006 B2
7106252 Smith et al. Sep 2006 B2
7106931 Sutehall et al. Sep 2006 B2
7110795 Doi Sep 2006 B2
7114859 Tuohimaa et al. Oct 2006 B1
7127175 Mani et al. Oct 2006 B2
7127176 Sasaki Oct 2006 B2
7142503 Grant et al. Nov 2006 B1
7142535 Kubler et al. Nov 2006 B2
7142619 Sommer et al. Nov 2006 B2
7146506 Hannah et al. Dec 2006 B1
7160032 Nagashima et al. Jan 2007 B2
7171244 Bauman Jan 2007 B2
7184728 Solum Feb 2007 B2
7190748 Kim et al. Mar 2007 B2
7194023 Norrell et al. Mar 2007 B2
7199443 Elsharawy Apr 2007 B2
7200305 Dion et al. Apr 2007 B2
7200391 Chung et al. Apr 2007 B2
7228072 Mickelsson et al. Jun 2007 B2
7263293 Ommodt et al. Aug 2007 B2
7269311 Kim et al. Sep 2007 B2
7280011 Bayar et al. Oct 2007 B2
7286843 Scheck Oct 2007 B2
7286854 Ferrato et al. Oct 2007 B2
7295119 Rappaport et al. Nov 2007 B2
7310430 Mallya et al. Dec 2007 B1
7313415 Wake et al. Dec 2007 B2
7315735 Graham Jan 2008 B2
7324730 Varkey et al. Jan 2008 B2
7343164 Kallstenius Mar 2008 B2
7348843 Qiu et al. Mar 2008 B1
7349633 Lee et al. Mar 2008 B2
7359408 Kim Apr 2008 B2
7359674 Markki et al. Apr 2008 B2
7366150 Lee et al. Apr 2008 B2
7366151 Kubler et al. Apr 2008 B2
7369526 Lechleider et al. May 2008 B2
7379669 Kum May 2008 B2
7388892 Nishiyama et al. Jun 2008 B2
7392025 Rooyen et al. Jun 2008 B2
7392029 Pronkine Jun 2008 B2
7394883 Funakubo et al. Jul 2008 B2
7403156 Coppi et al. Jul 2008 B2
7409159 Izadpanah Aug 2008 B2
7412224 Kotola et al. Aug 2008 B2
7424228 Williams et al. Sep 2008 B1
7444051 Tatat et al. Oct 2008 B2
7450853 Kim et al. Nov 2008 B2
7450854 Lee et al. Nov 2008 B2
7451365 Wang et al. Nov 2008 B2
7454222 Huang et al. Nov 2008 B2
7460507 Kubler et al. Dec 2008 B2
7460829 Utsumi et al. Dec 2008 B2
7460831 Hasarchi Dec 2008 B2
7466925 Iannelli Dec 2008 B2
7469105 Wake et al. Dec 2008 B2
7477597 Segel Jan 2009 B2
7483504 Shapira et al. Jan 2009 B2
7483711 Burchfiel Jan 2009 B2
7489641 Miller et al. Feb 2009 B2
7496070 Vesuna Feb 2009 B2
7496384 Seto et al. Feb 2009 B2
7505747 Solum Mar 2009 B2
7512419 Solum Mar 2009 B2
7522552 Fein et al. Apr 2009 B2
7539509 Bauman et al. May 2009 B2
7542452 Penumetsa Jun 2009 B2
7546138 Bauman Jun 2009 B2
7548138 Kamgaing Jun 2009 B2
7548695 Wake Jun 2009 B2
7551641 Pirzada et al. Jun 2009 B2
7557758 Rofougaran Jul 2009 B2
7580384 Kubler et al. Aug 2009 B2
7586861 Kubler et al. Sep 2009 B2
7590354 Sauer et al. Sep 2009 B2
7593704 Pinel et al. Sep 2009 B2
7599420 Forenza et al. Oct 2009 B2
7599672 Shoji et al. Oct 2009 B2
7610046 Wala Oct 2009 B2
7630690 Kaewell, Jr. et al. Dec 2009 B2
7633934 Kubler et al. Dec 2009 B2
7639982 Wala Dec 2009 B2
7646743 Kubler et al. Jan 2010 B2
7646777 Hicks, III et al. Jan 2010 B2
7653397 Pemu et al. Jan 2010 B2
7668565 Ylänen et al. Feb 2010 B2
7672643 Loh Mar 2010 B2
7675936 Mizutani et al. Mar 2010 B2
7688811 Kubler et al. Mar 2010 B2
7693486 Casslin et al. Apr 2010 B2
7697467 Kubler et al. Apr 2010 B2
7697574 Suematsu et al. Apr 2010 B2
7715375 Kubler et al. May 2010 B2
7720510 Pescod et al. May 2010 B2
7751374 Donovan Jul 2010 B2
7751838 Ramesh et al. Jul 2010 B2
7756480 Loh Jul 2010 B2
7760703 Kubler et al. Jul 2010 B2
7761093 Sabat, Jr. et al. Jul 2010 B2
7768951 Kubler et al. Aug 2010 B2
7773573 Chung et al. Aug 2010 B2
7778603 Patin et al. Aug 2010 B2
7787823 George et al. Aug 2010 B2
7805073 Sabat, Jr. et al. Sep 2010 B2
7809012 Ruuska et al. Oct 2010 B2
7812766 Leblanc et al. Oct 2010 B2
7812775 Babakhani et al. Oct 2010 B2
7817969 Castaneda et al. Oct 2010 B2
7835328 Stephens et al. Nov 2010 B2
7848316 Kubler et al. Dec 2010 B2
7848770 Scheinert Dec 2010 B2
7853234 Afsahi Dec 2010 B2
7870321 Rofougaran Jan 2011 B2
7880677 Rofougaran et al. Feb 2011 B2
7881755 Mishra et al. Feb 2011 B1
7894423 Kubler et al. Feb 2011 B2
7899007 Kubler et al. Mar 2011 B2
7907972 Walton et al. Mar 2011 B2
7912043 Kubler et al. Mar 2011 B2
7912506 Lovberg et al. Mar 2011 B2
7916706 Kubler et al. Mar 2011 B2
7917177 Bauman Mar 2011 B2
7920553 Kubler et al. Apr 2011 B2
7920858 Sabat, Jr. et al. Apr 2011 B2
7924783 Mahany et al. Apr 2011 B1
7936713 Kubler et al. May 2011 B2
7949364 Kasslin et al. May 2011 B2
7957777 Vu et al. Jun 2011 B1
7962111 Solum Jun 2011 B2
7969009 Chandrasekaran Jun 2011 B2
7969911 Mahany et al. Jun 2011 B2
7990925 Tinnakornsrisuphap et al. Aug 2011 B2
7996020 Chhabra Aug 2011 B1
8018907 Kubler et al. Sep 2011 B2
8023886 Rofougaran Sep 2011 B2
8027656 Rofougaran et al. Sep 2011 B2
8036308 Rofougaran Oct 2011 B2
8082353 Huber et al. Dec 2011 B2
8086192 Rofougaran et al. Dec 2011 B2
8135102 Wiwel et al. Mar 2012 B2
8175535 Mu May 2012 B2
8213401 Fischer et al. Jul 2012 B2
8223795 Cox et al. Jul 2012 B2
8226003 Frederick et al. Jul 2012 B2
8238463 Arslan et al. Aug 2012 B1
8270387 Cannon et al. Sep 2012 B2
8290447 Sutton Oct 2012 B2
8290483 Sabat, Jr. et al. Oct 2012 B2
8306563 Zavadsky et al. Nov 2012 B2
8346278 Wala et al. Jan 2013 B2
8428201 McHann, Jr. et al. Apr 2013 B1
8428510 Stratford et al. Apr 2013 B2
8462683 Uyehara et al. Jun 2013 B2
8472579 Uyehara et al. Jun 2013 B2
8509215 Stuart Aug 2013 B2
8509850 Zavadsky et al. Aug 2013 B2
8526970 Wala et al. Sep 2013 B2
8532242 Fischer et al. Sep 2013 B2
8626245 Zavadsky et al. Jan 2014 B2
8634766 Hobbs et al. Jan 2014 B2
8737454 Wala et al. May 2014 B2
8743718 Grenier et al. Jun 2014 B2
8743756 Uyehara et al. Jun 2014 B2
8837659 Uyehara et al. Sep 2014 B2
8837940 Smith et al. Sep 2014 B2
8873585 Oren et al. Oct 2014 B2
8903346 Fischer et al. Dec 2014 B2
8909133 Hobbs et al. Dec 2014 B2
8929288 Stewart et al. Jan 2015 B2
8982995 Van Cai Mar 2015 B1
9042838 Braithwaite May 2015 B2
9178635 Ben-Shlomo Nov 2015 B2
9203462 Petrovic et al. Dec 2015 B2
9246721 Martinez Jan 2016 B1
9247543 Berlin Jan 2016 B2
9385763 Shi Jul 2016 B1
9455760 Dick Sep 2016 B1
9807700 Harel Oct 2017 B2
20010036163 Sabat, Jr. et al. Nov 2001 A1
20010036199 Terry Nov 2001 A1
20020003645 Kim et al. Jan 2002 A1
20020009070 Indsay et al. Jan 2002 A1
20020012336 Hughes et al. Jan 2002 A1
20020012495 Sasai et al. Jan 2002 A1
20020016827 McCabe et al. Feb 2002 A1
20020045519 Watterson et al. Apr 2002 A1
20020048071 Suzuki et al. Apr 2002 A1
20020051434 Ozluturk et al. May 2002 A1
20020075906 Cole et al. Jun 2002 A1
20020092347 Niekerk et al. Jul 2002 A1
20020097564 Struhsaker et al. Jul 2002 A1
20020103012 Kim et al. Aug 2002 A1
20020111149 Shoki Aug 2002 A1
20020111192 Thomas et al. Aug 2002 A1
20020114038 Amon et al. Aug 2002 A1
20020123365 Thorson et al. Sep 2002 A1
20020126967 Panak et al. Sep 2002 A1
20020128009 Boch et al. Sep 2002 A1
20020130778 Nicholson Sep 2002 A1
20020181668 Masoian et al. Dec 2002 A1
20020190845 Moore Dec 2002 A1
20020191710 Jeckeln Dec 2002 A1
20020197984 Monin et al. Dec 2002 A1
20030002604 Fifield et al. Jan 2003 A1
20030007214 Aburakawa et al. Jan 2003 A1
20030016418 Westbrook et al. Jan 2003 A1
20030022645 Runzo Jan 2003 A1
20030045284 Copley et al. Mar 2003 A1
20030069922 Arunachalam Apr 2003 A1
20030078074 Sesay et al. Apr 2003 A1
20030112826 Ashwood Smith et al. Jun 2003 A1
20030141962 Barink Jul 2003 A1
20030161637 Yamamoto et al. Aug 2003 A1
20030165287 Krill et al. Sep 2003 A1
20030174099 Bauer et al. Sep 2003 A1
20030209601 Chung Nov 2003 A1
20030216129 Khalil Nov 2003 A1
20040001719 Sasaki Jan 2004 A1
20040008114 Sawyer Jan 2004 A1
20040017785 Zelst Jan 2004 A1
20040037565 Young et al. Feb 2004 A1
20040041714 Forster Mar 2004 A1
20040043764 Bigham et al. Mar 2004 A1
20040047313 Rumpf et al. Mar 2004 A1
20040078151 Edjadeff et al. Apr 2004 A1
20040095907 Agee et al. May 2004 A1
20040100930 Shapira et al. May 2004 A1
20040106435 Bauman et al. Jun 2004 A1
20040126068 Van Bijsterveld Jul 2004 A1
20040126107 Jay et al. Jul 2004 A1
20040139477 Russell et al. Jul 2004 A1
20040146020 Kubler et al. Jul 2004 A1
20040149736 Clothier Aug 2004 A1
20040151164 Kubler et al. Aug 2004 A1
20040151503 Kashima et al. Aug 2004 A1
20040157623 Splett Aug 2004 A1
20040160912 Kubler et al. Aug 2004 A1
20040160913 Kubler et al. Aug 2004 A1
20040162084 Wang Aug 2004 A1
20040162115 Smith et al. Aug 2004 A1
20040162116 Han et al. Aug 2004 A1
20040165573 Kubler et al. Aug 2004 A1
20040175173 Deas Sep 2004 A1
20040196404 Loheit et al. Oct 2004 A1
20040202257 Mehta et al. Oct 2004 A1
20040203703 Fischer Oct 2004 A1
20040203704 Ommodt et al. Oct 2004 A1
20040203846 Caronni et al. Oct 2004 A1
20040204109 Hoppenstein Oct 2004 A1
20040208526 Mibu Oct 2004 A1
20040208643 Roberts et al. Oct 2004 A1
20040215723 Chadha Oct 2004 A1
20040218873 Nagashima et al. Nov 2004 A1
20040233877 Lee et al. Nov 2004 A1
20040252786 McHenry Dec 2004 A1
20040258105 Spathas et al. Dec 2004 A1
20040267971 Seshadri Dec 2004 A1
20050052287 Whitesmith et al. Mar 2005 A1
20050058451 Ross Mar 2005 A1
20050068179 Roesner Mar 2005 A1
20050076982 Metcalf et al. Apr 2005 A1
20050078006 Hutchins Apr 2005 A1
20050085186 Sandrin Apr 2005 A1
20050093679 Zai et al. May 2005 A1
20050099343 Asrani et al. May 2005 A1
20050116821 Wilsey et al. Jun 2005 A1
20050123232 Piede et al. Jun 2005 A1
20050141545 Fein et al. Jun 2005 A1
20050143077 Charbonneau Jun 2005 A1
20050147067 Mani et al. Jul 2005 A1
20050147071 Karaoguz et al. Jul 2005 A1
20050148306 Hiddink Jul 2005 A1
20050159108 Fletcher Jul 2005 A1
20050174236 Brookner Aug 2005 A1
20050176458 Shklarsky et al. Aug 2005 A1
20050201323 Mani et al. Sep 2005 A1
20050201761 Bartur et al. Sep 2005 A1
20050219050 Martin Oct 2005 A1
20050224585 Durrant et al. Oct 2005 A1
20050226625 Wake et al. Oct 2005 A1
20050232636 Durrant et al. Oct 2005 A1
20050242188 Vesuna Nov 2005 A1
20050252971 Howarth et al. Nov 2005 A1
20050266797 Utsumi et al. Dec 2005 A1
20050266854 Niiho et al. Dec 2005 A1
20050269930 Shimizu et al. Dec 2005 A1
20050271396 Iannelli Dec 2005 A1
20050272439 Picciriello et al. Dec 2005 A1
20060002326 Vesuna Jan 2006 A1
20060014548 Bolin Jan 2006 A1
20060017633 Pronkine Jan 2006 A1
20060028352 McNamara et al. Feb 2006 A1
20060045054 Utsumi et al. Mar 2006 A1
20060045524 Lee et al. Mar 2006 A1
20060045525 Lee et al. Mar 2006 A1
20060053324 Giat et al. Mar 2006 A1
20060056327 Coersmeier Mar 2006 A1
20060062579 Kim et al. Mar 2006 A1
20060083520 Healey et al. Apr 2006 A1
20060094470 Wake et al. May 2006 A1
20060104643 Lee et al. May 2006 A1
20060159388 Kawase et al. Jul 2006 A1
20060160550 Edwards Jul 2006 A1
20060172775 Conyers et al. Aug 2006 A1
20060182446 Kim et al. Aug 2006 A1
20060182449 Iannelli et al. Aug 2006 A1
20060189354 Lee et al. Aug 2006 A1
20060209745 MacMullan et al. Sep 2006 A1
20060223439 Pinel et al. Oct 2006 A1
20060233506 Noonan et al. Oct 2006 A1
20060239630 Hase et al. Oct 2006 A1
20060268738 Goerke et al. Nov 2006 A1
20060274704 Desai et al. Dec 2006 A1
20070009266 Bothwell Jan 2007 A1
20070050451 Caspi et al. Mar 2007 A1
20070054682 Fanning et al. Mar 2007 A1
20070058978 Lee et al. Mar 2007 A1
20070060045 Prautzsch Mar 2007 A1
20070060055 Desai et al. Mar 2007 A1
20070071128 Meir et al. Mar 2007 A1
20070076649 Lin et al. Apr 2007 A1
20070093273 Cai Apr 2007 A1
20070149250 Crozzoli et al. Jun 2007 A1
20070166042 Seeds et al. Jul 2007 A1
20070173288 Skarby et al. Jul 2007 A1
20070174889 Kim et al. Jul 2007 A1
20070224954 Gopi Sep 2007 A1
20070230328 Saitou Oct 2007 A1
20070243899 Hermel et al. Oct 2007 A1
20070248358 Sauer Oct 2007 A1
20070253714 Seeds et al. Nov 2007 A1
20070254592 McCallister Nov 2007 A1
20070257796 Easton et al. Nov 2007 A1
20070264009 Sabat, Jr. et al. Nov 2007 A1
20070264011 Sone et al. Nov 2007 A1
20070268846 Proctor et al. Nov 2007 A1
20070274279 Wood et al. Nov 2007 A1
20070292143 Yu et al. Dec 2007 A1
20070297005 Montierth et al. Dec 2007 A1
20080002652 Gupta et al. Jan 2008 A1
20080007453 Vassilakis et al. Jan 2008 A1
20080013909 Kostet et al. Jan 2008 A1
20080013956 Ware et al. Jan 2008 A1
20080013957 Akers et al. Jan 2008 A1
20080014948 Scheinert Jan 2008 A1
20080026765 Charbonneau Jan 2008 A1
20080031628 Dragas et al. Feb 2008 A1
20080043714 Pemu Feb 2008 A1
20080056167 Kim et al. Mar 2008 A1
20080058018 Scheinert Mar 2008 A1
20080063397 Hu et al. Mar 2008 A1
20080070502 George et al. Mar 2008 A1
20080080863 Sauer et al. Apr 2008 A1
20080098203 Master et al. Apr 2008 A1
20080118014 Reunamaki et al. May 2008 A1
20080119198 Hettstedt et al. May 2008 A1
20080124086 Matthews May 2008 A1
20080124087 Hartmann et al. May 2008 A1
20080129634 Pera et al. Jun 2008 A1
20080134194 Liu Jun 2008 A1
20080145061 Lee et al. Jun 2008 A1
20080150514 Codreanu et al. Jun 2008 A1
20080166094 Bookbinder et al. Jul 2008 A1
20080194226 Rivas et al. Aug 2008 A1
20080207253 Jaakkola et al. Aug 2008 A1
20080212969 Fasshauer et al. Sep 2008 A1
20080219670 Kim et al. Sep 2008 A1
20080232305 Oren et al. Sep 2008 A1
20080232799 Kim Sep 2008 A1
20080247716 Thomas Oct 2008 A1
20080253280 Tang et al. Oct 2008 A1
20080253351 Pemu et al. Oct 2008 A1
20080253773 Zheng Oct 2008 A1
20080260388 Kim et al. Oct 2008 A1
20080261656 Bella et al. Oct 2008 A1
20080268766 Narkmon et al. Oct 2008 A1
20080268833 Huang et al. Oct 2008 A1
20080273844 Kewitsch Nov 2008 A1
20080279137 Pemu et al. Nov 2008 A1
20080280569 Hazani et al. Nov 2008 A1
20080291830 Pemu et al. Nov 2008 A1
20080292322 Daghighian et al. Nov 2008 A1
20080298813 Song et al. Dec 2008 A1
20080304831 Miller, II et al. Dec 2008 A1
20080310464 Schneider Dec 2008 A1
20080310848 Yasuda et al. Dec 2008 A1
20080311876 Leenaerts et al. Dec 2008 A1
20080311944 Hansen et al. Dec 2008 A1
20090006194 Sridharan et al. Jan 2009 A1
20090022304 Kubler et al. Jan 2009 A1
20090028087 Nguyen et al. Jan 2009 A1
20090028317 Ling et al. Jan 2009 A1
20090041413 Hurley Feb 2009 A1
20090047023 Pescod et al. Feb 2009 A1
20090059903 Kubler et al. Mar 2009 A1
20090061796 Arkko et al. Mar 2009 A1
20090061939 Andersson et al. Mar 2009 A1
20090061940 Scheinert et al. Mar 2009 A1
20090067402 Forenza et al. Mar 2009 A1
20090073916 Zhang et al. Mar 2009 A1
20090081985 Rofougaran et al. Mar 2009 A1
20090087179 Underwood et al. Apr 2009 A1
20090088071 Rofougaran Apr 2009 A1
20090088072 Rofougaran et al. Apr 2009 A1
20090135078 Lindmark et al. May 2009 A1
20090141780 Cruz-Albrecht et al. Jun 2009 A1
20090149221 Liu et al. Jun 2009 A1
20090154621 Shapira et al. Jun 2009 A1
20090169163 Abbott, III et al. Jul 2009 A1
20090175214 Sfar et al. Jul 2009 A1
20090180407 Sabat et al. Jul 2009 A1
20090180426 Sabat et al. Jul 2009 A1
20090218407 Rofougaran Sep 2009 A1
20090218657 Rofougaran Sep 2009 A1
20090237317 Rofougaran Sep 2009 A1
20090245084 Moffatt et al. Oct 2009 A1
20090245153 Li et al. Oct 2009 A1
20090245221 Piipponen Oct 2009 A1
20090247109 Rofougaran Oct 2009 A1
20090252136 Mahany et al. Oct 2009 A1
20090252139 Ludovico et al. Oct 2009 A1
20090252205 Rheinfelder et al. Oct 2009 A1
20090258652 Lambert et al. Oct 2009 A1
20090274073 Sutton Nov 2009 A1
20090278596 Rofougaran et al. Nov 2009 A1
20090279593 Rofougaran et al. Nov 2009 A1
20090285147 Subasic et al. Nov 2009 A1
20090316608 Singh et al. Dec 2009 A1
20090319909 Hsueh et al. Dec 2009 A1
20100002626 Schmidt et al. Jan 2010 A1
20100002661 Schmidt et al. Jan 2010 A1
20100002662 Schmidt et al. Jan 2010 A1
20100014494 Schmidt et al. Jan 2010 A1
20100027443 LoGalbo et al. Feb 2010 A1
20100056200 Tolonen Mar 2010 A1
20100080154 Noh et al. Apr 2010 A1
20100080182 Kubler et al. Apr 2010 A1
20100091475 Toms et al. Apr 2010 A1
20100118864 Kubler et al. May 2010 A1
20100127937 Chandrasekaran et al. May 2010 A1
20100131214 Seely May 2010 A1
20100134257 Puleston et al. Jun 2010 A1
20100142598 Murray et al. Jun 2010 A1
20100142955 Yu et al. Jun 2010 A1
20100144285 Behzad et al. Jun 2010 A1
20100148373 Chandrasekaran Jun 2010 A1
20100156721 Alamouti et al. Jun 2010 A1
20100159859 Rofougaran Jun 2010 A1
20100188998 Pernu et al. Jul 2010 A1
20100189439 Novak et al. Jul 2010 A1
20100190509 Davis Jul 2010 A1
20100202326 Rofougaran et al. Aug 2010 A1
20100225413 Rofougaran et al. Sep 2010 A1
20100225520 Mohamadi et al. Sep 2010 A1
20100225556 Rofougaran et al. Sep 2010 A1
20100225557 Rofougaran et al. Sep 2010 A1
20100227575 Rofougaran Sep 2010 A1
20100232323 Kubler et al. Sep 2010 A1
20100246558 Harel Sep 2010 A1
20100255774 Kenington Oct 2010 A1
20100258949 Henderson et al. Oct 2010 A1
20100260063 Kubler et al. Oct 2010 A1
20100261501 Behzad et al. Oct 2010 A1
20100266287 Adhikari et al. Oct 2010 A1
20100278530 Kummetz et al. Nov 2010 A1
20100284323 Tang et al. Nov 2010 A1
20100290355 Roy et al. Nov 2010 A1
20100309049 Reunamäki et al. Dec 2010 A1
20100311472 Rofougaran et al. Dec 2010 A1
20100311480 Raines et al. Dec 2010 A1
20100329161 Ylanen et al. Dec 2010 A1
20100329166 Mahany et al. Dec 2010 A1
20100329680 Presi et al. Dec 2010 A1
20110002687 Sabat, Jr. et al. Jan 2011 A1
20110007724 Mahany et al. Jan 2011 A1
20110007733 Kubler et al. Jan 2011 A1
20110008042 Stewart Jan 2011 A1
20110019999 George et al. Jan 2011 A1
20110021146 Pemu Jan 2011 A1
20110021224 Koskinen et al. Jan 2011 A1
20110026844 Francois et al. Feb 2011 A1
20110026932 Yeh et al. Feb 2011 A1
20110032879 Beaudin Feb 2011 A1
20110045767 Rofougaran et al. Feb 2011 A1
20110051906 Cioffi Mar 2011 A1
20110065450 Kazmi Mar 2011 A1
20110066774 Rofougaran Mar 2011 A1
20110069668 Chion et al. Mar 2011 A1
20110071734 Van Wiemeersch et al. Mar 2011 A1
20110086614 Brisebois et al. Apr 2011 A1
20110116393 Hong et al. May 2011 A1
20110116572 Lee et al. May 2011 A1
20110122912 Benjamin et al. May 2011 A1
20110126071 Han et al. May 2011 A1
20110130163 Saban Jun 2011 A1
20110149879 Noriega et al. Jun 2011 A1
20110158081 Wang Jun 2011 A1
20110158298 Djadi et al. Jun 2011 A1
20110182230 Ohm et al. Jul 2011 A1
20110194475 Kim et al. Aug 2011 A1
20110200328 In De Betou et al. Aug 2011 A1
20110201368 Faccin et al. Aug 2011 A1
20110204504 Henderson et al. Aug 2011 A1
20110206383 Chien et al. Aug 2011 A1
20110211439 Manpuria et al. Sep 2011 A1
20110215901 Van Wiemeersch et al. Sep 2011 A1
20110222415 Ramamurthi et al. Sep 2011 A1
20110222434 Chen Sep 2011 A1
20110222619 Ramamurthi et al. Sep 2011 A1
20110227795 Lopez et al. Sep 2011 A1
20110244887 Dupray et al. Oct 2011 A1
20110256878 Zhu et al. Oct 2011 A1
20110268033 Boldi et al. Nov 2011 A1
20110268446 Cune et al. Nov 2011 A1
20110274021 He et al. Nov 2011 A1
20110281536 Lee et al. Nov 2011 A1
20120052892 Braithwaite Mar 2012 A1
20120099490 Kummetz et al. Apr 2012 A1
20120100813 Mow et al. Apr 2012 A1
20120155572 Kim Jun 2012 A1
20120177026 Uyehara et al. Jul 2012 A1
20130012195 Sabat, Jr. et al. Jan 2013 A1
20130070816 Aoki et al. Mar 2013 A1
20130071112 Melester et al. Mar 2013 A1
20130089332 Sauer et al. Apr 2013 A1
20130095870 Phillips et al. Apr 2013 A1
20130107926 Xia May 2013 A1
20130210490 Fischer et al. Aug 2013 A1
20130252651 Zavadsky et al. Sep 2013 A1
20130260705 Stratford Oct 2013 A1
20130273854 Zhang et al. Oct 2013 A1
20130295980 Reuven et al. Nov 2013 A1
20140016583 Smith Jan 2014 A1
20140031031 Gauvreau Jan 2014 A1
20140037292 Stapleton Feb 2014 A1
20140072064 Lemson et al. Mar 2014 A1
20140112667 Neukirch et al. Apr 2014 A1
20140140225 Wala May 2014 A1
20140146797 Zavadsky et al. May 2014 A1
20140146905 Zavadsky et al. May 2014 A1
20140146906 Zavadsky et al. May 2014 A1
20140219140 Uyehara et al. Aug 2014 A1
20140341315 Cova Nov 2014 A1
20140378180 Schwent Dec 2014 A1
20150011233 Kazmi Jan 2015 A1
20150016441 Hanson et al. Jan 2015 A1
20150031316 Berlin et al. Jan 2015 A1
20150055580 Lim Feb 2015 A1
20150061762 Charlon Mar 2015 A1
20150063323 Sadek Mar 2015 A1
20150171878 Schafferer Jun 2015 A1
20150195055 Ben-Shlomo Jul 2015 A1
20150229386 Lange Aug 2015 A1
20160088569 Frank Mar 2016 A1
20160094267 Petrovic et al. Mar 2016 A1
20160105816 Berlin et al. Apr 2016 A1
20160134325 Tageman May 2016 A1
20160212640 Kim Jul 2016 A1
20160226653 Bharadia et al. Aug 2016 A1
20160249346 Harel Aug 2016 A1
20160278019 Langer Sep 2016 A1
20160301436 Zou et al. Oct 2016 A1
20160329631 Rheinfelder Nov 2016 A1
20160352497 Daniel Dec 2016 A1
20170064565 Berlin et al. Mar 2017 A1
20170135058 Ghannouchi May 2017 A1
20170208622 Mizrahi Jul 2017 A1
20170288716 Daniel Oct 2017 A1
20170318561 Harel Nov 2017 A1
20170331599 Tang Nov 2017 A1
Foreign Referenced Citations (136)
Number Date Country
645192 Oct 1992 AU
731180 Mar 1998 AU
2065090 Feb 1998 CA
2242707 Jan 1999 CA
101389148 Mar 2009 CN
101547447 Sep 2009 CN
20104862 Aug 2001 DE
10249414 May 2004 DE
0477952 Apr 1992 EP
0477952 Apr 1992 EP
0461583 Mar 1997 EP
851618 Jul 1998 EP
0687400 Nov 1998 EP
0993124 Apr 2000 EP
1037411 Sep 2000 EP
1179895 Feb 2002 EP
1267447 Dec 2002 EP
1347584 Sep 2003 EP
1363352 Nov 2003 EP
1391897 Feb 2004 EP
1443687 Aug 2004 EP
1455550 Sep 2004 EP
1501206 Jan 2005 EP
1503451 Feb 2005 EP
1530316 May 2005 EP
1511203 Mar 2006 EP
1267447 Aug 2006 EP
1693974 Aug 2006 EP
1742388 Jan 2007 EP
1227605 Jan 2008 EP
1954019 Aug 2008 EP
1968250 Sep 2008 EP
1056226 Apr 2009 EP
1357683 May 2009 EP
2081334 Jul 2009 EP
2276298 Jan 2011 EP
1570626 Nov 2013 EP
3166231 May 2017 EP
3166231 May 2017 EP
2323252 Sep 1998 GB
2370170 Jun 2002 GB
2399963 Sep 2004 GB
2428149 Jan 2007 GB
H4189036 Jul 1992 JP
05260018 Oct 1993 JP
09083450 Mar 1997 JP
09162810 Jun 1997 JP
09200840 Jul 1997 JP
11068675 Mar 1999 JP
2000152300 May 2000 JP
2000341744 Dec 2000 JP
2002264617 Sep 2002 JP
2002353813 Dec 2002 JP
2003148653 May 2003 JP
2003172827 Jun 2003 JP
2004172734 Jun 2004 JP
2004245963 Sep 2004 JP
2004247090 Sep 2004 JP
2004264901 Sep 2004 JP
2004265624 Sep 2004 JP
2004317737 Nov 2004 JP
2004349184 Dec 2004 JP
2005018175 Jan 2005 JP
2005087135 Apr 2005 JP
2005134125 May 2005 JP
2007228603 Sep 2007 JP
2008172597 Jul 2008 JP
2013062558 Apr 2013 JP
20010055088 Jul 2001 KR
9603823 Feb 1996 WO
9729608 Aug 1997 WO
9810600 Mar 1998 WO
00042721 Jul 2000 WO
0072475 Nov 2000 WO
0178434 Oct 2001 WO
0184760 Nov 2001 WO
0221183 Mar 2002 WO
0230141 Apr 2002 WO
02091599 Nov 2002 WO
02102102 Dec 2002 WO
03024027 Mar 2003 WO
03098175 Nov 2003 WO
2004030154 Apr 2004 WO
2004047472 Jun 2004 WO
2004056019 Jul 2004 WO
2004059934 Jul 2004 WO
2004086795 Oct 2004 WO
2004093471 Oct 2004 WO
2005062505 Jul 2005 WO
2005069203 Jul 2005 WO
2005073897 Aug 2005 WO
2005079386 Sep 2005 WO
2005101701 Oct 2005 WO
2005111959 Nov 2005 WO
2006011778 Feb 2006 WO
2006018592 Feb 2006 WO
2006019392 Feb 2006 WO
2006039941 Apr 2006 WO
2006051262 May 2006 WO
2006060754 Jun 2006 WO
2006077569 Jul 2006 WO
2006105185 Oct 2006 WO
2006133609 Dec 2006 WO
2006136811 Dec 2006 WO
2007048427 May 2007 WO
2007077451 Jul 2007 WO
2007088561 Aug 2007 WO
2007091026 Aug 2007 WO
2008008249 Jan 2008 WO
2008027213 Mar 2008 WO
2008033298 Mar 2008 WO
2008039830 Apr 2008 WO
2008116014 Sep 2008 WO
2009029077 Mar 2009 WO
2006046088 May 2009 WO
2010022156 Feb 2010 WO
2010090999 Aug 2010 WO
2010126667 Nov 2010 WO
2010132739 Nov 2010 WO
2010151849 Dec 2010 WO
2011023592 Mar 2011 WO
2011100095 Aug 2011 WO
2011139939 Nov 2011 WO
2012058061 May 2012 WO
2012148938 Nov 2012 WO
2012148940 Nov 2012 WO
2013028197 Feb 2013 WO
2013096563 Jun 2013 WO
2013122915 Aug 2013 WO
2013184801 Dec 2013 WO
2014072947 May 2014 WO
2015011702 Jan 2015 WO
2015089719 Jun 2015 WO
WO 2015183791 Dec 2015 WO
WO-2015183791 Dec 2015 WO
2016124248 Aug 2016 WO
Non-Patent Literature Citations (76)
Entry
3GPP TS 36.101 version 12.6.0 Release 12, Apr. 2015.
Notice of Allowance for U.S. Appl. No. 13/873,927, dated Mar. 10, 2017, 8 pages (Cited in the Applicant's IDS , dated Jun. 11, 2018).
Final Office Action for U.S. Appl. No. 15/042,532, dated Mar. 17, 2017, 16 pages (Cited in the Applicant's IDS, dated Jun. 11, 2018).
Non-Final Office Action for U.S. Appl. No. 15/794,605, dated Apr. 19, 2018, 22 pages (Cited in the Applicant's IDS, dated Jun. 11, 2018).
Notice of Allowance for U.S. Appl. No. 15/350,503, dated Jan. 10, 2018, 8 pages (Cited in the Applicant's IDS, dated Jun. 11, 2018).
Non-Final Office Action for U.S. Appl. No. 15/350,503, dated Jul. 3, 2017, 9 pages (Cited in the Applicant's IDS, dated Jun. 11, 2018).
Non-Final Office Action for U.S. Appl. No. 15/350,503, dated Jul. 3, 2017, 9 pages (Cited in the Applicant's IDS, dated Jun. 23, 2018).
Author Unknown, “Fiber Optic Distributed Antenna System,” Installation and Users Guide, ERAU Version 1.5, May 2002, Andrews Corporation, 53 pages.
Notice of Allowance for U.S. Appl. No. 13/873,927, dated Mar. 10, 2017, 8 pages.
Final Office Action for U.S. Appl. No. 15/042,532, dated Mar. 17, 2017, 16 pages.
Non-Final Office Action for U.S. Appl. No. 15/794,605, dated Apr. 19, 2018, 22 pages.
Notice of Allowance for U.S. Appl. No. 15/350,503, dated Jan. 10, 2018, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/350,503, dated Jul. 3, 2017, 9 pages.
Arredondo, Albedo et al., “Techniques for Improving In-Building Radio Coverage Using Fiber-Fed Distributed Antenna Networks,” IEEE 46th Vehicular Technology Conference, Atlanta, Georgia, Apr. 28-May 1, 1996, pp. 1540-1543, vol. 3.
Bakaul, M., et al., “Efficient Multiplexing Scheme for Wavelength-Interleaved DWDM Millimeter-Wave Fiber-Radio Systems,” IEEE Photonics Technology Letters, Dec. 2005, vol. 17, No. 12, pp. 2718-2720.
Cho, Bong Youl et al. “The Forward Link Performance of a PCS System with an AGC,” 4th CDMA International Conference and Exhibition, “The Realization of IMT-2000,” 1999, 10 pages.
Chu, Ta-Shing et al. “Fiber optic microcellular radio”, IEEE Transactions on Vehicular Technology, Aug. 1991, pp. 599-606, vol. 40, Issue 3.
Cooper, A.J., “Fiber/Radio for the Provision of Cordless/Mobile Telephony Services in the Access Network,” Electronics Letters, 1990, pp. 2054-2056, vol. 26.
Cutrer, David M. et al., “Dynamic Range Requirements for Optical Transmitters in Fiber-Fed Microcellular Networks,” IEEE Photonics Technology Letters, May 1995, pp. 564-566, vol. 7, No. 5.
Dolmans, G. et al. “Performance study of an adaptive dual antenna handset for indoor communications”, IEE Proceedings: Microwaves, Antennas and Propagation, Apr. 1999, pp. 138-144, vol. 146, Issue 2.
Ellinger, Frank et al., “A 5.2 GHz variable gain LNA MMIC for adaptive antenna combining”, IEEE MTT-S International Microwave Symposium Digest, Anaheim, California, Jun. 13-19, 1999, pp. 501-504, vol. 2.
Fan, J.C. et al., “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links”, IEEE Transactions on Microwave Theory and Techniques, Aug. 1997, pp. 1390-1397, vol. 45, Issue 8.
Gibson, B.C., et al., “Evanescent Field Analysis of Air-Silica Microstructure Waveguides,” The 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 1-7803-7104-4/01, Nov. 12-13, 2001, vol. 2, pp. 709-710.
Huang, C., et al., “A WLAN-Used Helical Antenna Fully Integrated with the PCMCIA Carrier,” IEEE Transactions on Antennas and Propagation, Dec. 2005, vol. 53, No. 12, pp. 4164-4168.
Kojucharow, K., et al., “Millimeter-Wave Signal Properties Resulting from Electrooptical Upconversion,” IEEE Transaction on Microwave Theory and Techniques, Oct. 2001, vol. 49, No. 10, pp. 1977-1985.
Monro, T.M., et al., “Holey Fibers with Random Cladding Distributions,” Optics Letters, Feb. 15, 2000, vol. 25, No. 4, pp. 206-208.
Moreira, J.D., et al., “Diversity Techniques for OFDM Based WLAN Systems,” The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 15-18, 2002, vol. 3, pp. 1008-1011.
Niiho, T., et al., “Multi-Channel Wireless LAN Distributed Antenna System Based on Radio-Over-Fiber Techniques,” The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Nov. 2004, vol. 1, pp. 57-58.
Author Unknown, “ITU-T G.652, Telecommunication Standardization Sector of ITU, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Single-Mode Optical Fiber and Cable,” ITU-T Recommendation G.652, International Telecommunication Union, Jun. 2005, 22 pages.
Author Unknown, “ITU-T G.657, Telecommunication Standardization Sector of ITU, Dec. 2006, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Bending Loss Insensitive Single Mode Optical Fibre and Cable for the Access Network,” ITU-T Recommendation G.657, International Telecommunication Union, 20 pages.
Author Unknown, RFID Technology Overview, Date Unknown, 11 pages.
Opatic, D., “Radio over Fiber Technology for Wireless Access,” Ericsson, Oct. 17, 2009, 6 pages.
Paulraj, A.J., et al., “An Overview of MIMO Communications—A Key to Gigabit Wireless,” Proceedings of the IEEE, Feb. 2004, vol. 92, No. 2, 34 pages.
Pickrell, G.R., et al., “Novel Techniques for the Fabrication of Holey Optical Fibers,” Proceedings of SPIE, Oct. 28-Nov. 2, 2001, vol. 4578, 2001, pp. 271-282.
Roh, W., et al., “MIMO Channel Capacity for the Distributed Antenna Systems,” Proceedings of the 56th IEEE Vehicular Technology Conference, Sep. 2002, vol. 2, pp. 706-709.
Schweber, Bill, “Maintaining cellular connectivity indoors demands sophisticated design,” EDN Network, Dec. 21, 2000, 2 pages, http://www.edn.com/design/integrated-circuit-design/4362776/Maintaining-cellular-connectivity-indoors-demands-sophisticated-design.
Seto, I., et al., “Antenna-Selective Transmit Diversity Technique for OFDM-Based WLANs with Dual-Band Printed Antennas,” 2005 IEEE Wireless Communications and Networking Conference, Mar. 13-17, 2005, vol. 1, pp. 51-56.
Shen, C., et al., “Comparison of Channel Capacity for MIMO-DAS versus MIMO-CAS,” The 9th Asia-Pacific Conference on Communications, Sep. 21-24, 2003, vol. 1, pp. 113-118.
Wake, D. et al., “Passive Picocell: A New Concept n Wireless Network Infrastructure,” Electronics Letters, Feb. 27, 1997, vol. 33, No. 5, pp. 404-406.
Windyka, John et al., “System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications,” Contractor Report 204132, National Aeronautics and Space Administration, Jul. 1997, 94 pages.
Winters, J., et al., “The Impact of Antenna Diversity on the Capacity of Wireless Communications Systems,” IEEE Transcations on Communications, vol. 42, No. 2/3/4, Feb./Mar./Apr. 1994, pp. 1740-1751.
Yu et al., “A Novel Scheme to Generate Single-Sideband Milimeter-Wave Signals by Using Low-Frequency Local Oscillator Signal,” IEEE Photonics Technology Letters, vol. 20, No. 7, Apr. 1, 2008, pp. 478-480.
Attygalle et al., “Extending Optical Transmission Distance in Fiber Wireless Links Using Passive Filtering in Conjunction with Optimized Modulation,” Journal of Lightwave Technology, vol. 24, No. 4, Apr. 2006, 7 pages.
Bo Zhang et al., “Reconfigurable Multifunctional Operation Using Optical Injection-Locked Vertical-Cavity Surface-Emitting Lasers,” Journal of Lightwave Technology, vol. 27, No. 15, Aug. 2009, 6 pages.
Cang-Hasnain, et al., “Ultrahigh-speed laser modulation by injection locking,” Chapter 6, Optical Fiber Telecommunication V A: Components and Subsystems, Elsevier Inc., 2008, 20 pages.
Cheng Zhang et al., “60 GHz Millimeter-wave Generation by Two-mode Injection-locked Fabry-Perot Laser Using Second-Order Sideband Injection in Radio-over-Fiber System,” Conference on Lasers and Electro-Optics and Quantum Electronics, Optical Society of America, May 2008, 2 pages.
Chrostowski, “Optical Injection Locking of Vertical Cavity Surface Emitting Lasers,” Fall 2003, PhD dissertation University of California at Berkely, 122 pages.
Dang et al., “Radio-over-Fiber based architecture for seamless wireless indoor communication in the 60GHz band,” Computer Communications, Elsevier B.V., Amsterdam, NL, vol. 30, Sep. 8, 2007, pp. 3598-3613.
Hyuk-Kee Sung et al., “Optical Single Sideband Modulation Using Strong Optical Injection-Locked Semiconductor Lasers,” IEEE Photonics Technology Letters, vol. 19, No. 13, Jul. 1, 2007, 4 pages.
Lim et al., “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Transactions of Microwave Theory and Techniques, vol. 54, No. 5, May 2006, 7 pages.
Lu H H et al., “Improvement of radio-on-multimode fiber systems based on light injection and optoelectronic feedback techniques,” Optics Communications, vol. 266, No. 2, Elsevier B.V., Oct. 15, 2006, 4 pages.
Pleros et al., “A 60 GHz Radio-Over-Fiber Network Architecture for Seamless Communication With High Mobility,” Journal of Lightwave Technology, vol. 27, No. 12, IEEE, Jun. 15, 2009, pp. 1957-1967.
Reza et al., “Degree-of-Polarization-Based PMD Monitoring for Subcarrier-Multiplexed Signals Via Equalized Carrier/Sideband Filtering,” Journal of Lightwave Technology, vol. 22, No. 4, IEEE, Apr. 2004, 8 pages.
Zhao, “Optical Injection Locking on Vertical-Cavity Surface-Emitting Lasers (VCSELs): Physics and Appications,” Fall 2008, PhD dissertation University of California at Berkeley, pp. 1-209.
Author Unknown, “VCSEL Chaotic Synchronization and Modulation Characteristics,” Master's Thesis, Southwest Jiatong University, Professor Pan Wei, Apr. 2006, 8 pages (machine translation).
Chowdhury et al., “Mufti-service Multi-carrier Broadband MIMO Distributed Antenna Systems for In-building Optical Wireless Access,” Presented at the 2010 Conference on Optical Fiber Communication and National Fiber Optic Engineers Conference, Mar. 21-25, 2010, San Diego, California, IEEE, pp. 1-3.
Seto et al., “Optical Subcarrier Multiplexing Transmission for Base Station With Adaptive Array Antenna,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 10, Oct. 2001, pp. 2036-2041.
Biton et al., “Challenge: CeTV and Ca-Fi—Cellular and Wi-Fi over CATV,” Proceedings of the Eleventh Annual International Conference on Mobile Computing and Networking, Aug. 28-Sep. 2, 2005, Cologne, Germany, Association for Computing Machinery, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/948,536, dated Jan. 16, 2015, 13 pages.
International Search Report for PCT/IL2014/050657, dated Dec. 1, 2014, 4 pages.
Notice of Allowance for U.S. Appl. No. 13/948,536, dated May 28, 2015, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/948,536, dated Oct. 7, 2015, 7 pages.
Notice of Allowance for U.S. Appl. No. 14/146,964, dated Jul. 14, 2015, 9 pages.
Author Unknown, “DECT: The standard explained,” DECT Forum, Feb. 1997, Solothum, Switzerland, 16 pages.
Tekmar Sistemi s.r.l., “Definition of Wideband Distribution Systems,” R4-020721, TSG-RAN Working Group 4 (Radio), meeting #23, Gyeongju, Korea, May 13-17, 2002, 12 pages.
International Search Report for PCT/US2013/038843 dated Jul. 18, 2013, 4 pages.
Non-final Office Action for U.S. Appl. No. 13/873,927 dated Aug. 14, 2015, 19 pages.
Final Office Action for U.S. Appl. No. 13/873,927 dated Feb. 8, 2016, 24 pages.
Advisory Action for U.S. Appl. No. 13/873,927 dated Apr. 14, 2016, 3 pages.
Non-final Office Action for U.S. Appl. No. 13/873,927 dated May 12, 2016, 23 pages.
Notice of Allowance for U.S. Appl. No. 13/873,927, dated Nov. 4, 2016, 8 pages.
Non-final Office Action for U.S. Appl. No. 14/972,149, dated Apr. 7, 2016, 9 pages.
Notice of Allowance for U.S. Appl. No. 14/972,149, dated Aug. 15, 2016, 9 pages.
Non-Final Office Action for U.S. Appl. No. 15/042,532, dated Sep. 30, 2016, 13 pages.
Final Office Action for U.S. Appl. No. 15/794,605, dated Oct. 26, 2018, 11 pages.
Notice of Allowance for U.S. Appl, No. 15/974,007, dated Jan. 7, 2019, 7 pages.
Related Publications (1)
Number Date Country
20170288716 A1 Oct 2017 US