1. Field of the Invention
The present invention relates to memory, in particular, to reducing a memory device's power consumption.
2. Description of the Related Art
Memory is a significant consumer of power in typical processing systems. Often the same memory solution is required to operate at a wide frequency range within the same application or in multiple applications. Typical memory designed for a high-speed application incurs a significant static power component. The static power component refers to power required to power the memory when idle so that the memory's data is not lost. Static power drives the minimum power consumption “floor” of the memory. Memory performance also varies across process corners, voltages, and temperatures (PVT). Generally memory performance is slowest in slow silicon and low voltage, but memory power leakage is lowest with slow silicon and low voltage. Memory power leakage is generally highest with fast silicon, high voltage, and high temperature.
Power management strategies might reduce memory power consumption. Conventional memory power-gating does not account for PVT, and often requires changes to a system-on-chip (SOC) in order to take advantage of power-gating signals. Power consumption might be reduced by reducing the operating frequency of the memory until dynamic power equals static power. While this solution reduces power consumption, the solution does not result in significant power savings for the corresponding reduction in the operating frequency range of the memory.
Transparent source bias (TSB) might also be incorporated in memory array circuitry to reduce power leakage, but TSB reduces the speed of a memory circuit.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
Described embodiments provide for a memory system having a transparent source bias (TSB) circuit. A monitor in the memory system monitors a process, temperature, and/or a leakage current of the memory. The system determines whether at least one of the monitored process, temperature, and leakage current reaches a corresponding threshold. The threshold is set based on a power budget of the memory. If the corresponding threshold is not reached, the TSB is disabled and the memory operates at a relatively high speed. If the corresponding threshold is reached, the TSB is enabled and the memory operates at a relatively low speed.
Other aspects, features, and advantages of the present invention will become more fully apparent from the following detailed description, the appended claims, and the accompanying drawings in which like reference numerals identify similar or identical elements.
Described embodiments provide for a memory system having a transparent source bias (TSB) circuit. A monitor in the memory system monitors a process, temperature, and/or a leakage current of the memory. The system determines whether at least one of the monitored process, temperature, and leakage current reaches a corresponding threshold. The threshold is set based on a power budget of the memory. If the corresponding threshold is reached, the TSB is disabled and the memory operates at a relatively high speed. If the corresponding threshold is not reached, the TSB is enabled and the memory operates at a relatively low speed. Embodiments of the present invention use TSB to selectively reduce power consumption, resulting in power efficient memories of all speeds.
Chip process monitor 104 monitors process characteristics for an application or a chip when, for example, multiple memory modules are employed for memory 110. In other embodiments of the present invention, automatic test equipment (ATE) might read the output from process monitor 104 to determine, for example, whether the process meets a process threshold required to enable a sleep mode. For example, if chip process monitor 104 determines the process meets the threshold, it might instruct efuse controller 106 to apply signal Fast to memory wrapper 102. The signal Set eFuse is used to burn the signature of “Fast” into eFuse, where the eFuse signature is downloaded to control logic during chip power-up. In response, control logic 108 might provide signal Sleep to memory 110. Signal Sleep that is provided to memory 110 might also be gated by an external Enable/Disable signal provided by processor 112, described subsequently herein. Enable/Disable signal might be used by processor 112 to enable or disable a mode that adapts to process characteristics. Exemplary process thresholds are based on a variety of factors including application requirements and power reduction targets. In a memory comprising multiple memory groups, each group might have an associated threshold. Additionally, although
Some embodiments of the present invention employ a high-speed memory clock and much lower speed chip clock, for example, to implement power-gating process 200. For example, a chip clock in processor 112 (
Some embodiments of the present invention extend power-gating to memories of varying speeds, for example, to apply power-gating and conserve power at memory clock speeds that are marginally faster than chip clock speeds. Embodiments evaluate process corners, voltages, and temperatures (PVT) to selectively apply power-gating to memories, which might result in power efficient memories of all speeds. For example, at certain PVT, embodiments of the present invention allow memories to wake up from a low-power sleep mode and perform data access within one clock cycle, if a system determines that a memory's wake-up time plus data access time is greater than one clock cycle at a specific PVT, some embodiments might not use power gating at that PVT. Memory system 100 is an example of an embodiment which might determine whether to enable or disable a power-gating feature based on a predetermined process threshold, regardless of voltage and temperature. For example, a process threshold might be based on an application requirement or a power consumption target. Although memory system 100 shows one memory 110, the invention is not so limited, as there might be multiple memory groups associated with one or more memory wrappers, and each memory group might have an associated process threshold. Chip process monitor 104 might determine a process threshold for an application or a chip. If a memory module of memory 110 at least meets the threshold, efuse 106 might be set by signal Set efuse generated by monitor 104 to enable power-gating for each memory module of memory 110 that at least meets the threshold. Each memory module or memory 110 might have a different threshold, and therefore there might be multiple Enable signals corresponding to each memory or to a sub-group of memory.
In another embodiment of the present invention, voltage and temperature are taken into account to determine whether power-gating is enabled.
Some embodiments of the present invention that utilize a transparent source bias (TSB) circuit to reduce memory power leakage include a memory whose internal timing is set to a higher speed when TSB is disabled. Such embodiments might disable the TSB, for example, when power consumption is less of a priority than high speed operation. For example, internal timing of memory wrapper 102 might be set to a higher speed whenever TSB is disabled. Several conditions might be employed alone or in combination to enable/disable TSB with corresponding change in internal timing speed.
Monitor 104 might disable TSB when data for process and temperature information indicate that maximum power is not a priority, thereby allowing for an increase of the speed of memory 110. For example, TSB might be disabled when a process metric is below a predetermined threshold. Such process metric data might be taken at a wafer probe. The wafer probe process metric data is used to characterize the speed of the processed transistors to disable TSB for a processing metric below a certain value, where leakage reduction due to slow enough processing meets a maximum power specification without enabling TSB.
Alternatively, monitor 104 might also utilize an SoC temperature sensor to disable TSB when the temperature is below a predetermined temperature, thereby allowing processor 118 to access memory 110 at low temperatures without reaching low temperature timing closure limits. Other embodiments might also track current leakage of memory 110. Tracking of the current leakage might be internal or external to memory 110. Current leakage tracking combines both temperature and process corner effects. Current leakage tracking might be included with monitor 104, allowing TSB to be disabled when the tracked current drops below a predetermined threshold. This occurs because, in the silicon region, at low current and slow speed, TSB is disabled to make the speed requirement, but there is no concern with respect to the power budget. In contrast, at high current and high speed, TSB is on to make the power budget, without concern with respect to the high speed.
Returning to
While the present invention is described with respect to a single memory in a memory wrapper, the present invention is not so limited. For example, power-gating might be implemented internally to the memory, and therefore without a memory wrapper. Additionally, power-gating might be applied to a memory bank level, such as shown in exemplary multibank memory 504 of
The present invention might allow for the following advantages over previously known designs of memory power management systems. The present invention triggers TSB to reduce static memory power leakage. The present invention disables TSB based on monitored process, temperature, and/or current leakage metrics, resulting in high memory performance when the memory power budget is satisfied.
Reference herein to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments necessarily mutually exclusive of other embodiments. The same applies to the term “implementation.”
While the exemplary embodiments of the present invention have been described with respect to processing in hardware, including possible implementation as a single integrated circuit, a multi-chip module, a single card, or a multi-card circuit pack, the present invention is not so limited. As would be apparent to one skilled in the art, various functions of hardware may also be implemented in a software program. Such software may be implemented as steps performed by, for example, a digital signal processor, micro-controller, or general purpose computer.
The present invention can be embodied in the form of methods and apparatuses for practicing those methods. The present invention can also be embodied in the form of program code embodied in tangible media, such as magnetic recording media, optical recording media, solid state memory, floppy diskettes, CD-ROMs, hard drives, or any other non-transitory machine-readable storage medium, wherein, when the program code is loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing the invention. The present invention can also be embodied in the form of program code, for example, whether stored in a non-transitory machine-readable storage medium, loaded into and/or executed by a machine, or transmitted over some transmission medium or carrier, such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation, wherein, when the program code is loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing the invention. When implemented on a general-purpose processor, the program code segments combine with the processor to provide a unique device that operates analogously to specific logic circuits. The present invention can also be embodied in the form of a bitstream or other sequence of signal values electrically or optically transmitted through a medium, stored magnetic-field variations in a magnetic recording medium, etc., generated using a method and/or an apparatus of the present invention.
It should be understood that the steps of the exemplary methods set forth herein are not necessarily required to be performed in the order described, and the order of the steps of such methods should be understood to be merely exemplary. Likewise, additional steps may be included in such methods, and certain steps may be omitted or combined, in methods consistent with various embodiments of the present invention.
As used herein in reference to an element and a standard, the term “compatible” means that the element communicates with other elements in a manner wholly or partially specified by the standard, and would be recognized by other elements as sufficiently capable of communicating with the other elements in the manner specified by the standard. The compatible element does not need to operate internally in a manner specified by the standard.
Also for purposes of this description, the terms “couple,” “coupling,” “coupled,” “connect,” “connecting,” or “connected” refer to any manner known in the art or later developed in which energy is allowed to be transferred between two or more elements, and the interposition of one or more additional elements is contemplated, although not required. Conversely, the terms “directly coupled,” “directly connected,” etc., imply the absence of such additional elements. Signals and corresponding nodes or ports may be referred to by the same name and are interchangeable for purposes here. It will be further understood that various changes in the details, materials, and arrangements of the parts which have been described and illustrated in order to explain the nature of this invention may be made by those skilled in the art without departing from the scope of the invention as expressed in the following claims.
It will be further understood that various changes in the details, materials, and arrangements of the parts which have been described and illustrated in order to explain the nature of this invention may be made by those skilled in the art without departing from the scope of the invention as expressed in the following claims.
The subject matter of this application is related to U.S. patent application Ser. No. 13/______ filed Dec. __, 2011 as attorney docket no. L11-0020US1, and Ser. No. 13/______ filed Dec. __, 2011 as attorney docket no. L11-0023US1, the teachings of all of which are incorporated herein in their entireties by reference.