This application relates generally to wind turbines and more particularly to eliminating or reducing radar interference from wind turbines.
Wind turbines are an important and valuable source of alternative energy. Wind turbines convert kinetic energy from the wind into mechanical energy, which may then be converted into electrical energy. As crude oil prices continue to increase such alternative energy sources are growing in importance. Moreover, in addition to power generation, wind turbines are environmentally sound and produce very little, if any, environmental waste.
One downside of wind turbines is that they typically interfere with radar scanning (e.g. Doppler, etc.). This may be problematic for radar scanning for the purposes of defense monitoring as well as weather scanning and tracking. Therefore, there exists a significant need for reducing or eliminating radar interference from wind turbines.
In one embodiment, a wind turbine comprises a foundation; a tower extending from the foundation; a nacelle coupled to the tower, the nacelle encompassing a gearbox and a generator; and a rotor rotatably coupled to the nacelle, the rotor comprising a hub and a plurality of blades extending from the hub, wherein at least a portion of blades are formed from a radar absorbent material.
In an alternative embodiment, a wind turbine comprises a foundation; a tower extending from the foundation; a nacelle coupled to the tower, the nacelle encompassing a gearbox and a generator, wherein the generator is coated with a radar absorbent material; and a rotor rotatably coupled to the nacelle, the rotor comprising a hub and a plurality of blades extending from the hub.
In yet another alternative embodiment, method for reducing radar interference from wind turbines comprises providing a wind turbine having a foundation at a ground level, wherein the wind turbine extends less than 500 feet from the ground level; radar scanning an area including the wind turbine; and ignoring radar signals received from less than 500 feet so that any radar signaling from the turbine is ignored.
The drawings, when considered in connection with the following description, are presented for the purpose of facilitating an understanding of the subject matter sought to be protected.
Referring now to
In one embodiment, at least a portion of each blade 112 is formed from a radar absorbent material. The entire blade 112 may be formed from a radar absorbent material. Alternatively, the core of the blade 112 may be coated or otherwise covered with a radar absorbent material.
In one embodiment, the radar absorbent is a composite material. Any sufficiently radar absorbent composite material may be employed and is considered within the scope of the present disclosure. In one embodiment, the composite material includes a polymer matrix and a reinforcement material. The polymer matrix may take any suitable form. Illustrative and non-limiting polymer matrices include, but are not limited to, at least one of a polyester, vinyl ester, epoxy, phenolic, polyimide, polyamide, polypropylene, shape memory polymer, and PEEK. In yet another embodiment, a light application of ferrite may be employed. Other suitable polymers will be apparent to those skilled in the art and are considered within the scope of the present disclosure. Likewise, any suitable reinforcement material may be employed. Illustrative and non-limiting reinforcement materials include, without limitation, at least one of a plurality of fibers (carbon fiber, glass, etc.) and ground minerals. Other suitable reinforcement materials will be apparent to those skilled in the art and are considered within the scope of the present disclosure.
The radar absorbent blades 112 may be formed from any suitable process for forming turbine blades 112. In one embodiment, the blades 112 may be formed using a molding process. Suitable molding processes include, without limitation vacuum molding, pressure bag molding, autoclave molding, resin transfer molding, press molding, transfer molding, pultrusion molding, filament winding, casting, centrifugal casting and continuous casting. Other forming process may be employed as well, including but not limited to CNC filament winding, vacuum infusion, wet lay-up, compression molding, and thermoplastic molding. It will be appreciated that the blades 112 may be formed using any suitable process and remain within the scope of the present disclosure.
In an alternative embodiment, the generator within the nacelle 106 may be coated with a radar absorbent material. Additionally, the all or a portion of the exterior surface of the nacelle 106 may be coated with a radar absorbent material. In addition to the aforementioned composite material(s), the coating(s) may also be a ferrite material. For the purposes of this disclosure, ferrite material may include, but is not limited to, ferrite (iron), iron or iron alloys with a body centered cubic crystal structure; ferrite (magnet) (e.g. Fe3O4 or BaFe12O19), ferromagnetic ceramic materials; and calcium aluminoferrite. One or more radar absorbent materials may be used in the coatings. Moreover, the coating(s) may be applied with any suitable coating technique and remain within the scope of the present disclosure. For example, a ferrite coating can be applied by spraying or brushing. Further, ferrite composites such as an iron-ferrite composite, ferromagnetic ceramic, ferrite bead, ferrite core, and calcium aluminoferrite can be used for coating.
Referring now to
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiment, it is understood that this disclosure is not limited to the disclosed embodiments, but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.