This specification relates to nozzle formation in a microelectromechanical device, such as an inkjet print head.
Printing a high quality, high resolution image with an inkjet printer generally requires a printer that accurately ejects a desired quantity of ink at a specified location on a printing medium. Typically, a multitude of densely packed ink ejecting devices, each including a nozzle and an associated ink flow path are formed in a print head structure. The ink flow path connects an ink storage unit, such as an ink reservoir or cartridge, to the nozzle. The ink flow path includes a pumping chamber. In the pumping chamber, ink can be pressurized to flow toward a descender region that terminates in the nozzle. The ink is expelled out of an opening at the end of the nozzle and lands on a printing medium. The medium can be moved relative to the fluid ejection device. The ejection of a fluid droplet from a particular nozzle is timed with the movement of the medium to place a fluid droplet at a desired location on the medium.
Various processing techniques can be used to form the ink ejectors in the print head structure. These processing techniques can include layer formation, such as deposition and bonding, and layer modification, such as etching, laser ablation, punching and cutting. The techniques that are used can differ depending on desired nozzle shapes, flow path geometry, along with the materials used in the inkjet printer, for example.
A funnel-shaped nozzle having a straight-walled bottom portion and a curved top portion is disclosed. The curved top portion of the funnel-shaped nozzle gradually converges toward and is smoothly joined to the straight-walled bottom portion. The funnel-shaped nozzle can have one or more side surfaces around an axis of symmetry, and cross-sections of the curved top portion and the straight-walled bottom portion in planes perpendicular to the axis of symmetry are geometrically similar. In addition, the curved top portion of the funnel-shaped nozzle encloses a substantially greater volume than the straight-walled bottom portion does, while the straight-walled bottom portion has sufficient height to maintain jetting straightness of fluid droplets ejected through the funnel-shaped nozzle.
To fabricate a funnel-shaped nozzle described in this specification, first, a uniform layer of photoresist is deposited on the dielectric coated surface of a semiconductor substrate. The dielectric can be thermally grown silicon dioxide and the substrate can be a silicon-on-insulator wafer. The layer of photoresist is patterned using UV exposure followed by resist development. The cross sectional shape of the smallest dimension of the nozzle can be similar to the opening in the resist, permitting oval, round, and arbitrary nozzle shapes. The opening in the resist is transferred into the dielectric using dry etching and the resist is stripped.
A uniform layer of photoresist is similarly patterned with an opening that has one or more sidewalls that are substantially perpendicular to the planar top surface of the semiconductor substrate and the planar top surface of the layer of photoresist. The resist opening is designed to be slightly larger, have a similar shape, and be accurately aligned to the opening in the dielectric. Then, the patterned layer of photoresist is heated in vacuum such that the photoresist material in the layer softens and reflows under the influence of surface tension of the photoresist material. As a result of the reflow, the angled corners on or between the top edge(s) of the opening become rounded and the top edge(s) transform into a single rounded edge. The radius of curvature of the rounded edge can be controlled by the reflow bake conditions. For example, the radius of curvature of the rounded edge can be equal or greater than the initial thickness of the uniform layer of photoresist deposited on the semiconductor substrate. After the desired rounded shape of the top edges is obtained, the patterned layer of photoresist is allowed to cool and re-harden, while the rounded shape of the top edges remains. After reflow, the resist layer opening at the dielectric interface remains slightly larger than the opening in the dielectric.
After formation of the patterned layer of photoresist that has the opening with a curved side surface gradually expanding toward and smoothly joined to an exposed top surface of the patterned layer of photoresist, the forming of a funnel-shaped recess in the semiconductor substrate can begin.
A straight-walled recess is etched into the semiconductor substrate through an opening defined by the dielectric layer, not an opening formed by the reflowed layer of photoresist. The straight-walled recess can be formed, for example, using a Bosch process. The high-selectivity etching of the straight-walled recess leaves the layer of photoresist substantially un-etched. The depth of the recess can be a few microns less than the final designed length of the funnel-shaped nozzle. Once the straight-walled recess is formed into the semiconductor substrate, an isotropic dry etching process is used to transform the straight-walled recess into the funnel-shaped recess. Specifically, the etchant used in the dry etching should have comparable (e.g., substantially equal) etch rates for the photoresist, the dielectric, and the material of the semiconductor substrate (e.g., a Si<100>wafer). During dry etching, the etchant gradually deepens the straight-walled recess to form a straight-walled bottom portion of the funnel-shaped recess. At the same time, dry etching expands the sidewall of the part of the bore near the dielectric layer into a curved side surface that levels off into the horizontal surface of the semiconductor substrate. This funnel converges toward and smoothly transitions into the straight-walled bottom portion of the funnel-shaped recess. The funnel-shaped recess can be opened at the bottom by removing the un-etched substrate from below.
In one aspect, a process for making a nozzle, the process includes forming a first opening having a first width in a top layer of a substrate, forming a patterned layer of photoresist on the top surface of the substrate, the patterned layer of photoresist including a second opening, the second opening having a second width larger than the first width. The method includes reflowing the patterned layer of photoresist to form curved side surfaces terminating on the top layer of the substrate, etching a second layer of the substrate through the first opening in the top layer of the substrate to form a straight-walled recess, the straight-walled recess having the first width, a bottom surface, and a side surface substantially perpendicular to the top surface of the semiconductor substrate.
After the straight-walled recess is formed, the method involves dry etching the curved side surface of the patterned layer of photoresist, the top layer of the substrate, and the second layer of the substrate, where the dry etching i) transforms the straight-walled recess into a funnel-shaped recess, the funnel-shaped recess includes a curved sidewall gradually smoothly joining a straight-walled lower portion of the recess or terminating on the bottom surface, ii) enlarges a portion of the straight-walled recess to a third width greater than the first width, and iii) enlarges the first opening in the top layer to a fourth width greater than the third width.
Implementations can include one or more of the following features. The second opening can be larger than the first opening by about 1 μm. A stepper can be used to accurately align the patterned layer of photoresist on the top surface of the substrate having the first opening. The first opening can be formed by etching with a thin, non-reflowed resist. The substrate can be semiconductor substrate, the first layer can be an oxide layer having a high selectivity for a Bosch etching process. A portion of the fourth width can be 40 μm larger than the first width. Reflowing the patterned layer of photoresist can include softening the patterned layer of photoresist by heat until a top edge of the second opening becomes rounded under the influence of surface tension. After the softening by heat, the patterned layer of photoresist can be re-hardened while the top edge of the second opening remains rounded.
The patterned layer of photoresist deposited on the top surface of the substrate can be at least 10 microns in thickness. Softening the patterned layer of photoresist by heat further can include heating the patterned layer of photoresist having the second opening formed therein in a vacuum environment until photoresist material in the patterned layer of photoresist reflows under the influence of surface tension. Heating the patterned layer of photoresist can include heating the patterned layer of photoresist to a temperature of 160-250 degrees Celsius. Re-hardening the patterned layer of photoresist can include cooling the patterned layer of photoresist while the top edge of the second opening remains rounded. A top opening of the curved top portion can be is at least four times as wide as a bottom opening of the curved top portion. Etching the top surface of the substrate to form the straight-walled recess can include etching the top surface of the semiconductor substrate through the opening in the patterned layer of photoresist using a Bosch process.
The dry etching to form the funnel-shaped recess can have substantially the same etch rates for the patterned layer of photoresist and the semiconductor substrate. The dry etching to form the funnel-shaped recess can include dry etching using a CF4/CHF3 gas mixture. The first opening in the patterned layer of photoresist can have a circular cross-sectional shape in a plane parallel to the exposed top surface of the patterned layer of photoresist. The funnel-shaped recess can have a circular cross-sectional shape in a plane parallel to the top surface of the substrate. The plurality of nozzles can have a standard deviation in the nozzle width of less than 0.15 microns. The recess can extend all the way through the top layer.
Particular implementations can include none, one or more of the following advantages.
The funnel-shaped nozzle has a curved top portion whose volume is sufficiently large to hold several droplets (e.g., 3 or 4 droplets) of fluid. The side surface of the funnel-shaped nozzle is streamlined and free of discontinuities in the fluid ejection direction. Compared to a straight-walled nozzle (e.g., a cylindrical nozzle) of the same depth and drop size, the side surface of the funnel-shaped nozzle generates less friction on the fluid during fluid ejection, and prevents the nozzle from taking in air when the droplet breaks free from the nozzle. Reducing the fluid friction not only improves the stability and uniformity in droplet formation, but also allows higher jetting frequencies, lower driving voltages, and/or higher power efficiencies. Having a single narrow portion of the nozzle can cause the meniscus to pin in a stable location. Preventing air from entering the nozzle can help prevent trapped air bubbles from blocking the nozzle or other parts of the flow path.
Although a nozzle having tapered, flat sidewalls (e.g., a nozzle of an inverted pyramid shape) may also realize some advantages (e.g., reduced friction) over a cylindrical nozzle, the sharp angled edges at the bottom opening of tapered nozzle still pose more drag on the droplets than the funnel-shaped nozzle does. In addition, the angled edges and rectangular (or square) shape of the tapered nozzle opening also affect the straightness of the drop direction in an unpredictable way, leading to deterioration of printing quality. In the funnel-shaped nozzle described in this specification, the straight-walled bottom portion accounts for none or a small portion of the overall nozzle depth, thus, the straight-walled bottom portion ensures jetting straightness without causing too much friction on fluid being expelled. Thus, the funnel-shaped nozzle can help achieve better jetting straightness, higher firing frequencies, higher power efficiencies, lower driving voltages, and/or uniformity of drop shape and locations.
Although funnel-shaped nozzles having a curved side surface may be formed using electroforming or micro-molding techniques, such techniques are limited to metal or plastic materials and may not be workable in forming nozzles in semiconductor substrates. In addition, the electroforming or micro-molding techniques tend to have lower precision and cannot achieve the size, geometry, and pitch requirements needed for high-resolution printing. The semiconductor processing techniques can be used to produce large arrays of nozzles that are highly compact and uniform, and can meet the size, geometry, and pitch requirements needed for high-resolution printing. For example, nozzles can be as small as 5 microns, the nozzle-to-nozzle pitch accuracy can be about 0.5 microns or less (e.g. 0.25 microns), the first nozzle-to-last nozzle pitch accuracy can be about 1 micron, and the nozzle size accuracy can be at least 0.6 microns.
The methods and systems disclosed herein reduces variations in the diameter of the funnel bore. Reduced nozzle size variation can lessen (e.g., eliminate) print line width variation, and reduce the need to scrap nozzle plates that contain nozzles with too much variation. Since size variation is less significant in straight bore holes etched into silicon wafers using non-reflowed resist, the methods disclosed herein uses edges of an opening in an oxide layer, instead of an opening in the reflowed photoresist to define the dimensions of a Bosch-etched straight-wall recess that is a precursor of the funnel-shaped nozzle. By making the oxide opening slightly smaller than the photoresist opening, the oxide, and not the reflowed resist, allows the opening to be made with thin, non-reflowed resist, and the oxide opening is thus more precise than the reflowed resist opening. The oxide also has a high selectivity for the Bosch etch. The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Fluid drop ejection can be implemented with a substrate, for example, a microelectromechanical system (MEMS), including a fluid flow body, a membrane, and a nozzle layer. The flow path body has a fluid flow path formed therein, which can include a fluid filled passage, a fluid pumping chamber, a descender, and a nozzle having an outlet. An actuator can be located on a surface of the membrane opposite the flow path body and proximate to the fluid pumping chamber. When the actuator is actuated, the actuator imparts a pressure pulse to the fluid pumping chamber to cause ejection of a droplet of fluid through the outlet of the nozzle. Frequently, the flow path body includes multiple fluid flow paths and nozzles, such as a densely packed array of identical nozzles with their respective associated flow paths. A fluid droplet ejection system can include the substrate and a source of fluid for the substrate. A fluid reservoir can be fluidically connected to the substrate for supplying fluid for ejection. The fluid can be, for example, a chemical compound, a biological substance, or ink.
Referring to
A nozzle layer 104 is secured to a bottom surface of the fluid path body 102 and can have a thickness between about 15 and 100 microns. A nozzle 117 having an outlet 118 is formed in an outer surface 120 of the nozzle layer 104. The fluid pumping chamber 112 is fluidically connected to a descender 116, which is fluidically connected to the nozzle 117.
While
The design of the flow path, the nozzle dimensions and shape in particular, affect printing quality, printing resolution, as well, energy efficiencies of the printing device.
For example,
As shown in
A nozzle having straight sidewall(s) is relatively easy to fabricate. The straight sidewall(s) of the nozzle can help maintain jetting straightness and making the landing positions of ink droplets ejected from the nozzle more predictable. However, to ensure a sufficient drop size, the height of the straight-walled nozzle needs to be rather large (e.g., tens of microns or more). The large vertical dimension of the straight-walled nozzle creates a significant amount of friction on the fluid inside the nozzle, when the fluid is ejected from the nozzle as a droplet. The higher flow resistance created in the straight-walled nozzle results in a lower jetting frequency, and/or a higher driving voltage, which can further lead to lower printing speed, lower resolution, lower power efficiency, and/or lower device life.
Another drawback of the straight-walled nozzle is that, when a droplet breaks free from the outlet (e.g., outlet 212) of the nozzle, air can be sucked into the nozzle from the outlet opening of the nozzle and be trapped inside the nozzle or other parts of the flow path. The air trapped inside the nozzle can block ink flow or deflect fluid droplets that are being ejected from their desired trajectory.
The nozzle 216 is formed in a nozzle layer 224, and the cross-sectional shapes of the nozzle 216 in planes perpendicular to the central axis 220 are squares of continuously decreasing sizes. The nozzle 216 have four flat sidewalls each slanted from an edge of the top opening of the nozzle 216 to a corresponding edge of the bottom opening of the nozzle 216. The lower portion of
As shown in the lower portion of
The tapered nozzle 216 shown in
Although the tapered nozzle 216 shown in
The top portion of
In this example, the cross-sectional shapes of the tapered top portion 236 in planes perpendicular to the central axis of the nozzle 234 are square, while the cross-sectional shapes of the bottom portion 238 in planes perpendicular to the central axis of the nozzle 234 are circular. Therefore, the tapered top portion 236 has four flat side surfaces 244 each slanted from an edge of the top opening of the tapered top portion 236 to a corresponding edge of the intersection between the top portion 236 and the bottom portion 238. Although the straight bottom portion 238 shown in
The nozzle 234 is formed in the nozzle layer 242. The lower portion of
In this specification, a funnel-shaped nozzle having a curved top portion smoothly joined to a straight-walled bottom portion formed in a semiconductor nozzle layer (e.g. silicon nozzle layer) is disclosed. The curved top portion of the funnel-shaped nozzle differs from a tapered top portion shown in
In addition, in some implementations, the transition from the horizontal top surface of the nozzle layer to the curved side surface of the funnel-shaped nozzle is also smooth rather than abrupt. In addition, the horizontal cross-sectional shapes of the funnel-shaped nozzle in planes perpendicular to the central axis of the nozzle are geometrically similar and concentric for the entire depth of the nozzle. Therefore, there is no jagged intersection between the curved top portion and the straight-walled bottom portion of the funnel-shaped nozzle. The funnel-shaped nozzle described in this specification offer many advantages over the conventional nozzle shapes described with respect to
As shown in
The height of the straight-walled portion 306 is small enough so that it does not cause a significant amount of fluid friction, and does not cause substantial air uptake during break-off of the droplets. At the same time, the height of the straight-walled portion is large enough to maintain jetting straightness. In some implementations, the height of the straight-walled portion 306 is about 10-30% of the diameter of the nozzle outlet. For example, in
Both the curved top portion 304 and the straight-walled bottom portion 306 of the nozzle 302 serve important functions in droplet formation and ejection. The curved top portion 304 is designed to hold a sufficient volume of fluid so that when a droplet is ejected from the nozzle outlet, there is little or no void created in the nozzle to form air bubbles inside the nozzle. A bottom of the funnel can hold a smaller volume of fluid.
The funnel-shaped nozzle 302 further differs from the nozzles shown in
It can be difficult to form a funnel-shape nozzle in silicon using conventional etching processes. Conventional etching processes, such as the Bosch process, form straight vertical walls, whereas and KOH etching which forms tapered, straight walls. Although isotropic etching can form curved features, like bowl-shaped features, it is not able to make curved walls in the opposite formation to make funnel-shaped features.
In addition, given the processing techniques provided in this specification, the pitch by which the curved top portion of the funnel-shaped nozzle converges from its top opening towards the straight-walled bottom portion can be varied by design, rather than fixed by the orientation of certain crystal planes. Specifically, suppose that point A is the intersection between the edge of the top opening of the curved top portion 304 and a plane containing the central axis 310, and point B is the intersection between the edge of the bottom opening of the curved top portion 304 and the same plane containing the central axis 310. Unlike the nozzle 234 shown in
As is shown in
First, the amount of tapering exhibited by the curved top portion 304 of the funnel-shaped recess 302 is much larger than any tapering that might be inherently present due to manufacturing imprecisions (e.g., over etching of substrate through a straight-walled photoresist mask). For example, the angle of tapering for the sidewall of a funnel-shaped nozzle is about 30 to 40 degrees. The vertical extent of the curved top portion 304 can be tens of microns (e.g., 50-75 microns). The width of the top opening of the curved top portion 304 can be 100 microns or more, and can be 3 or 4 times the width of the bottom opening of the curved top portion 304. In contrast, the tapering or rounding present near the top opening of a cylindrical recess due to manufacturing imperfections and/or imprecisions is typically less than 1 degree. The natural tapering or rounding also has a much smaller height and width variation (e.g., in the range of nanometers or less than 1-2 microns) than those present in the funnel-shaped nozzle described in this specification.
Although
For example, in some implementations, the funnel-shaped nozzle having a curved top portion smoothly joined to a straight-walled bottom portion can have a square horizontal cross-sectional shape. In such implementations, the center side profile of the nozzle is the same as that shown in
A print head body can be manufactured by forming features in individual layers of semiconductor material and attaching the layers together to form the body. The flow path features that lead to the nozzles, such as the pumping chamber and ink inlet, can be etched into a substrate, as described in U.S. patent application Ser. No. 10/189,947, filed Jul. 3, 2002, using conventional semiconductor processing techniques. A nozzle layer and the flow path module together form the print head body through which ink flows and from which ink is ejected. The shape of the nozzle through which the ink flows can affect the resistance to ink flow. By creating a funnel-shaped nozzle described in this application, less flow resistance, higher jetting frequencies, lower driving voltages, and/or better jetting straightness can be achieved. The processing techniques described in this specification also allow arrays of nozzles having the desired dimensions and pitches to be made with good uniformity and efficiencies.
To form the funnel-shaped nozzle, first, a patterned layer of photoresist is formed on a top surface of a semiconductor substrate, where the patterned layer of photoresist includes an opening that has a curved side surface smoothly joined to an exposed top surface of the patterned layer of photoresist. For example, an opening around a z-axis will have a side surface that curves in both the z direction and the azimuthal direction. The shape of the opening will determine the cross-sectional shapes of the funnel-shaped nozzle in planes perpendicular to the central axis of the funnel-shaped nozzle. The size of the opening is roughly the same as the bottom opening of the funnel-shaped nozzle (e.g., 35 microns). In the example shown in
To form the patterned layer of photoresist, a resist-reflow process can be used. As shown in
In this example, the initial thickness of the uniform layer of photoresist 402 is about 10-11 microns (e.g., 11 microns). In some implementations, more than 11 microns of photoresist can be applied on the planar top surface 404 of the semiconductor substrate 406. Some thickness of photoresist can remain on the substrate after the processing steps to make the funnel-shaped recess of a desired depth. Examples of the photoresist that can be used include AZ 9260, AZ9245, AZ4620 made by MicroChemicals® GmbH, and other positive photoresists, for example. The thickness of the semiconductor substrate 406 is equal or greater than the desired depth for the funnel-shaped nozzle to be made. For example, the substrate 406 shown in
As shown in
After the initial opening 408 is formed in the uniform layer of photoresist 402, the photoresist layer 402 is heated to about 160 to 250 degrees Celsius and until the photoresist material in the layer 402 is softened. When the photoresist material in the patterned layer of photoresist 402 is softened under the heat treatment, the photoresist material will start to reflow and reshape itself under the influence of surface tension of the photoresist material, particularly in regions near the top edge 414 of the opening 408. The surface tension of the photoresist material causes the surface profile of the opening 408 to pull back and become rounded. As shown in
In some implementations, the layer of photoresist 402 is heated in a vacuum environment to achieve the reflow of the photoresist layer 402. By heating the photoresist layer 402 in a vacuum environment, the surface of the photoresist layer 402 is smoother and without tiny air bubbles trapped inside of the photoresist material. This will lead to better surface smoothness in the final nozzle produced.
After the desired shape of the opening 408 is obtained, the photoresist layer 402 is cooled. The cooling can be accomplished by removing the heat source or active cooling. The cooling can also be performed in a vacuum environment to ensure better surface properties of the funnel-shaped nozzle to be made. By cooling the photoresist layer 402, the photoresist layer 402 re-hardens, and the surface profile of the opening 408 maintains its shape during the hardening process, and the top edge 414 of the opening 408 remain rounded at the end of the re-hardening process.
Once the patterned layer of photoresist 402 is hardened, etching of the substrate 406 can begin. The funnel-shaped recess is created in a two-step etching process. First, a straight-walled recess is created in a first etching process. Then, the straight-walled recess is modified during a second etching process. In the second etching process, the initially formed straight-walled recess is deepened to form the straight-walled bottom portion of the funnel-shaped recess. At the same time, the second etching process expands the initially formed straight-walled recess gradually from the top to form the curved top portion of the funnel-shaped recess.
As shown in
In the first etching process, the straight-walled recess 416 has substantially the same cross-sectional shape and size in a plane parallel to the top surface 404 of the semiconductor substrate 406 as the area enclosed by the opening 409. As shown in
After the initial straight-walled recess 416 is formed in the semiconductor substrate 406 through the first etching process, the second etching process can be started to transform the initial straight-walled recess 416 shown in
As shown in
During the dry etching, as the etching process continues, the surface profile of the photoresist layer 402 recedes in the vertical direction under the bombardment of the etchant. Due to the curved profile 414 at the top edge of the opening 408 in the photoresist layer 402, the surface of the thin oxide layer 401 under the thinnest portion of the photoresist layer 402 gets exposed to the etchant first, as compared to other parts of the substrate surface underneath of the photoresist layer 402. In other words, the thin oxide layer 401 is etched. The portions of the semiconductor surface exposed to the etchant also are gradually etched away. As shown in
As shown in
As dry etching continues to expand the side surface 418 of the recess 416 in the lateral direction, the dry etching also deepens the recess 416 in the vertical direction. The deepening of the recess 416 creates the straight-walled bottom portion of the funnel-shaped recess 420. The additional amount of deepening creates a straight-walled portion that is a few microns deep. The side surface 426 of the straight-walled bottom portion is perpendicular to the planar top surface 404 of the semiconductor substrate 406. Since the amount of lateral expansion of the side surface 424 of the recess 420 gradually decreases from top to bottom, the curved side surface 424 of the curved top portion transitions smoothly into the vertical side surface 426 of the straight-walled bottom portion. The boundary of the top opening of the funnel-shaped recess 420 is defined by the edge starting from which the photoresist meets the surface of the thin oxide layer 401.
The dry etching can be timed and stopped as soon as the desired depth of the funnel-shaped recess 420 is reached. Alternatively, the dry etching is timed and stopped as soon as the desired surface profile for the curved portion of the funnel-shaped recess 420 is obtained.
In some implementations, if the semiconductor substrate is of the desired thickness of the nozzle layer, the dry etching can be continued until the etching goes through the entire thickness of the semiconductor substrate, and the funnel-shaped nozzle is formed completely. In some implementations, the semiconductor substrate can be etched, ground and/or polished from the backside until the funnel-shaped recess is opened from the backside to form the funnel-shaped nozzle.
The photoresist 402 is removed, and
The dimensions of the funnel-shaped recess may be different in different implementations. As shown in
The portion of the funnel-shaped recess 502 within the dotted rectangular box region is shown in
Based on empirical data, such as those shown in
A number of implementations of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Exemplary methods of forming the aforementioned structures have been described. However, other processes can be substituted for those that are described to achieve the same or similar results. Accordingly, other embodiments are within the scope of the following claims.
Number | Date | Country | |
---|---|---|---|
Parent | 17075840 | Oct 2020 | US |
Child | 18092954 | US | |
Parent | 16677818 | Nov 2019 | US |
Child | 17075840 | US | |
Parent | 16026962 | Jul 2018 | US |
Child | 16677818 | US | |
Parent | 15440435 | Feb 2017 | US |
Child | 16026962 | US |