Reducing the bias on silicon light modulators

Information

  • Patent Grant
  • 6999106
  • Patent Number
    6,999,106
  • Date Filed
    Monday, April 30, 2001
    24 years ago
  • Date Issued
    Tuesday, February 14, 2006
    19 years ago
Abstract
A negative bias voltage may be utilized to bias a spatial light modulator and to enable the spatial light modulator to be modulated using relatively low supply voltages. During the negative frame, a positive bias voltage may be utilized and during the positive frame, a negative bias voltage may be utilized. This avoids damage to the liquid crystal material. The necessary modulating voltages may be within the range available from leading edge silicon technologies.
Description
BACKGROUND

This invention relates generally to silicon light modulators.


A silicon light modulator or SLM uses an electric field to modulate the orientation of a liquid crystal (LC) material. By the selective modulation of the liquid crystal material, an electronic display may be produced.


The orientation of the LC material affects the intensity of light going through the LC material. Therefore, by sandwiching the LC material between a reflective electrode and a transparent top plate, the optical properties of the LC material may be modulated.


In particular, by changing the voltage applied across the electrodes, the intensity of the light being reflected by the reflective electrode may be modulated, thereby changing its gray level value. When light is shined on the cell, the reflected light can produce an image on a screen. By changing the voltage level on the electrodes, the image can be altered.


Generally, a silicon light modulator includes a transparent conducting layer that acts as the top plate and a pixel electrode that acts as the reflective electrode. As the voltage on the pixel electrode changes, the reflected light intensity from the pixel area changes accordingly.


A transfer function, shown in FIG. 5, describes the relationship between the voltage applied and the resulting light brightness. As the voltage increases, the pixel brightness or gray scale generally increases too. A number of gray scale levels may be represented, such as 256 levels, by dividing the available voltage up accordingly.


However, typical liquid crystal material needs a relatively high voltage for modulation. Generally the upper level of top plate voltage, Vb, is between 3.3 and 10 volts.


The supply voltage of modern silicon chips is moving downwardly from 2.5 volts towards 1.3 volts and potentially lower thereafter. Therefore, leading edge integrated circuit chips may not have the sufficient voltage levels to modulate typical liquid crystal materials. This may adversely affect the ability to integrate displays into silicon chips.


Thus there is a need for better ways to use available voltage levels, such as voltage levels associated with leading edge integrated circuit chips, for modulating liquid crystal displays.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic depiction of one embodiment of the present invention;



FIG. 2 is a hypothetical graph of applied voltage versus time for a spatial light modulator;



FIG. 3 is a graph of brightness versus bias voltage during a positive frame in accordance with one embodiment of the present invention;



FIG. 4 is a graph of brightness versus bias voltage during a negative frame in accordance with one embodiment to the present invention; and



FIG. 5 is a graph of brightness versus bias voltage in accordance with a prior art embodiment.





DETAILED DESCRIPTION

Referring to FIG. 1, a spatial light modulator 10 includes a liquid crystal layer 18. The liquid crystal layer 18 is sandwiched between a pixel electrode 20 and a transparent top plate 16. For example, the top plate 16 may be made of a transparent conducting layer such as indium tin oxide (ITO). Applying voltages across the liquid crystal layer 18 through the top plate 16 and pixel electrode 20 allows the reflectivity of the spatial light modulator 10 to be altered. A glass layer 14 may be applied over the top plate 16. In one embodiment, the top plate 16 may be fabricated directly onto the glass layer 14.


A drive circuit 23 applies bias potentials 12 and 22 to the top plate 16 and pixel electrode 20 respectively. In one embodiment, a liquid crystal over silicon (LCOS) technology may be used.


Referring to FIG. 2, the drive signal 12 is applied to the top plate 16 and the drive signal 22 is applied to the pixel electrode 20. During a positive frame, a signal 12 of −Va is applied to the top plate 16. During the negative frame, a voltage of Vb is applied to the top plate 16. At the same time, the pixel electrode voltage 22 is applied. The voltage 22 reaches a peak equal to the voltage level b during the negative frame. The difference between the voltage level b and the voltage Vb is indicated as the voltage a.


Thus, to provide a hypothetical example, if a liquid crystal material 18 has a 3.3 volt modulation voltage. The level b is equal to 1.8 volts. In the positive frame, the top plate 16 is biased to −1.5 volts (i.e., Va=1.5 volts). In the negative frame, the top plate 16 may be biased to 3.3 volts (i.e., Vb=3.3 volts).


Referring to FIG. 3, which shows the positive frame, the dynamic range is equal to b volts. If the spatial light modulator's supply voltage is a voltage equal to or higher than b volts, full modulation may be achieved by biasing the top plate to −Va volts in the positive frame. By using a negative voltage to bias the top plate 16, the entire dynamic voltage range (b volts) may be utilized while enabling lower overall supply voltages to be utilized for modulation. Conventional designs may have negative frame voltage as high as the voltage a plus the voltage b.


Because the liquid crystal material 18 should not generally be biased only in the positive direction to avoid damage, the liquid crystal bias direction is altered on alternating frames. In the negative frame, the top plate 16 voltage may be Vb as shown in FIG. 4. The spatial light modulator voltage still swings between zero and b volts. The corresponding gray scale is also reversed. As a result, zero volts produces the highest brightness and b volts produces the lowest brightness, as shown in FIG. 4.


Thus, leading edge semiconductor supply voltages may be utilized to bias liquid crystal materials that would otherwise require supply voltages beyond those available with ever decreasing leading edge semiconductor supply voltages. As a result, an effective liquid crystal device may be achieved using existing and future silicon technologies. This may facilitate the integration of silicon and display technologies.


While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.

Claims
  • 1. A spatial light modulator comprising: a top plate;a liquid crystal layer;a pixel electrode, said top plate and said pixel electrode sandwiching said liquid crystal layer; anda drive circuit to apply positive and negative bias potentials in alternating frames, said circuit to apply positive potential during a negative cycle of liquid crystal modulation and apply negative potential during a positive cycle of liquid crystal modulation to said top plate and to bias the pixel electrode with only a positive potential during both the positive and negative cycles of liquid crystal modulation.
  • 2. The spatial light modulator of claim 1 including a drive circuit to apply a negative bias potential to said top plate.
  • 3. The spatial modulator of claim 1 wherein said spatial light modulator is a liquid crystal over silicon spatial light modulator.
  • 4. The spatial light modulator of claim 2 wherein said top plate is formed of indium tin oxide.
  • 5. A method comprising: biasing a first plate of a spatial light modulator with positive and negative bias potentials in alternating frames by using signals of a first polarity during a positive cycle of liquid crystal modulation and a second polarity during a negative cycle of liquid crystal modulation; andbiasing a second plate of said spatial light modulator with only the second polarity during both the positive and negative cycles of liquid crystal modulation.
  • 6. The method of claim 5 including biasing a top plate and a pixel electrode.
  • 7. The method of claim 6 including biasing said top plate to a negative voltage.
  • 8. The method of claim 7 including maintaining said pixel electrode at a positive voltage.
  • 9. The method of claim 8 including biasing said pixel electrode across its full dynamic range.
  • 10. The method of claim 5 including alternately biasing the top plate negatively and positively.
US Referenced Citations (32)
Number Name Date Kind
4763996 Hara et al. Aug 1988 A
4828368 Efron et al. May 1989 A
4859911 Kinnard et al. Aug 1989 A
4978951 Knapp Dec 1990 A
5073010 Johnson et al. Dec 1991 A
5177475 Stephany et al. Jan 1993 A
5500538 Yamazaki et al. Mar 1996 A
5510824 Nelson Apr 1996 A
5552912 Sharp et al. Sep 1996 A
5940055 Lee Aug 1999 A
5999234 Budd et al. Dec 1999 A
6226058 Ohi May 2001 B1
6329971 McKnight Dec 2001 B1
6346778 Mason et al. Feb 2002 B1
6356327 Moore Mar 2002 B1
6369832 McKnight Apr 2002 B1
6373543 Cacharelis Apr 2002 B1
6388649 Tanaka et al. May 2002 B1
6388661 Richards May 2002 B1
6388697 Sonehara et al. May 2002 B1
6392734 Gregory May 2002 B1
6501454 Ozawa et al. Dec 2002 B1
6657609 Starr Dec 2003 B1
6731272 Huang May 2004 B1
20020079849 Mason et al. Jun 2002 A1
20020097215 Huang Jul 2002 A1
20020175887 Yamazaki Nov 2002 A1
20030063047 Starr Apr 2003 A1
20030112383 Kim Jun 2003 A1
20030122768 Oton et al. Jul 2003 A1
20030206263 Hinata Nov 2003 A1
20040046727 Fujioka et al. Mar 2004 A1
Foreign Referenced Citations (2)
Number Date Country
0 475 612 Mar 1992 EP
0 789 346 Aug 1997 EP
Related Publications (1)
Number Date Country
20020158891 A1 Oct 2002 US