This disclosure relates to managing annular pressure in downhole regions of a wellbore during wellbore operations in an oil and gas well.
Wellbores in an oil and gas well are filled with both liquid and gaseous phases of various fluids and chemicals including water, oils, and hydrocarbon gases. Some wellbores or portions of wellbores are open to the Earth. The Earth consists of multiple geological formations physically separated into layers. The geological formations can contain the water, oils, and hydrocarbon gases at different pressures. Wellbores can contain casings with an inner annular region. The casing in the wellbore creates an outer annular region with the wall of the wellbore. The wall of the wellbore can be another casing. Pressure differences between the inner annular region and the outer annular region fluctuate based on many factors such as unexpected fluid flows, casing failures, cement failures, or equipment damage. In some cases, a pressure difference between the inner annular region and outer annular region can cause casing failure.
This disclosure describes technologies related to reducing wellbore annular pressure with a release system.
Implementations of the present disclosure include a casing annulus pressure release system. The casing annulus pressure release system includes a controller, multiple sensors, and a pressure release sub-system. The controller is configured to be disposed in an annular space. The annular space is defined by positioning an inner hollow member of a wellbore within an outer hollow member of the wellbore. The sensors are configured to be disposed in the annular space. The sensors are operatively coupled to the controller. The sensors are configured to sense wellbore conditions in the annular space and transmit signals representing the sensed wellbore conditions to the controller. The pressure release sub-system is configured to be disposed in the annular space. The pressure release sub-system is operatively coupled to the controller. The pressure release subsystem is configured to release pressure in the annular space into the inner hollow member of the wellbore through a circumferential wall of the inner hollow member responsive to a signal from the controller.
In some implementations, the inner hollow member is a casing and the outer hollow member is the wellbore.
In some implementations, the inner hollow member is an inner casing and the outer hollow member is an outer casing.
In some implementations, the casing annulus pressure release system includes a casing joint coupling the inner hollow member and the outer hollow member. The controller, the sensors, and the pressure release subsystem are positioned within the casing joint.
In some implementations, the casing joint controller, sensors, and the pressure release subsystem are positioned between an outer surface of the inner hollow member and an inner surface of the casing joint.
In some implementations, the sensors include a first pressure sensor configured to measure a pressure inside the outer hollow member.
In some implementations, the first pressure sensor is positioned within the casing joint and directly contacts an outer surface of the inner hollow member.
In some implementations, the sensors include a second sensor configured to measure an annular pressure in the annular space.
In some implementations, the second pressure sensor is positioned within the casing joint and directly contacts an inner surface of the casing joint.
In some implementations, the casing annulus pressure release system includes a power source configured to power the controller.
In some implementations, the pressure release subsystem includes a first conduit, a second conduit, and a dual seal. The first conduit fluidically connects the annular space to an internal volume defined by the casing joint. The second conduit fluidically connects the annular space to the internal volume defined by the casing joint to an internal volume defined by the inner hollow member. At least a portion of the second conduit is formed in the circumferential wall of the inner hollow member. The dual seal is positioned between the first conduit and the second conduit. The dual seal is configured to open or close fluid flow between the first conduit and the second conduit.
In some implementations, the pressure release subsystem includes a hydraulic fluid chamber to close or open the dual seal. Hydraulic fluid from the hydraulic fluid reservoir flows into or out of, respectively, the hydraulic fluid chamber.
In some implementations, the pressure release subsystem includes a hydraulic fluid reservoir and a hydraulic pump. The hydraulic fluid reservoir fluidically couples to the hydraulic fluid chamber carrying hydraulic fluid by a third conduit. The hydraulic fluid reservoir is configured to flow the hydraulic fluid to the hydraulic fluid chamber through the third conduit. The third conduit has a check valve configured to prevent back flow. Flowing hydraulic fluid from the hydraulic fluid reservoir to hydraulic fluid chamber causes the dual seal to close. The hydraulic pump fluidically couples the hydraulic fluid reservoir to the hydraulic fluid chamber. The hydraulic pump is configured to move hydraulic fluid from the hydraulic fluid chamber to the hydraulic fluid reservoir, opening the dual seal.
In some implementations, the hydraulic fluid chamber is configured to be flexible to set a threshold annular pressure. The hydraulic pump is configured to flow hydraulic fluid from the hydraulic fluid chamber to the hydraulic fluid reservoir at or above the threshold annular pressure. Flowing hydraulic fluid opens the dual seal to open fluid flow between the first conduit and the second conduit. Below the threshold annular pressure the hydraulic pump and the check valve are configured to prevent fluid exiting the hydraulic fluid chamber, stopping fluid flow between the first conduit and the second conduit.
In some implementations, the dual seal includes a metal-to-metal seal and an elastomeric seal. The metal-to-metal seal is configured to seal flow through the second conduit and the elastomeric seal is configured to seal flow through the first conduit independently from each other.
Implementations of the present disclosure include a method for reducing wellbore annular pressure with a release system. A first pressure is sensed in a first annular space defined by an inner hollow member of a wellbore within an outer hollow member of the wellbore. A first pressure signal is generated from the first pressure. A second pressure is sensed in a second annular space defined by the inner hollow member of the wellbore. A second pressure signal is generated from the second pressure. The first pressure signal and the second pressure signal are transmitted to a controller within the wellbore. The controller compares the first pressure signal to the second pressure signal. The controller generates a control signal when the first pressure signal exceeds the second pressure signal by a threshold value. The controller transmits the control signal to a pressure release sub-system configured to release pressure in the first annular space into the second annular space through a circumferential wall of the inner casing.
In some implementations, reducing wellbore annular pressure with a release system includes the pressure release sub-system receiving the control signal from the controller. The control signal opens a dual seal positioned between a first conduit fluidically coupled to the first annular space and the second conduit fluidically coupled to the second annular space. The dual seal is configured to open or close fluid flow between the first conduit and the second conduit. The dual seal includes a metal-to-metal seal and an elastomeric seal. The metal-to-metal seal is configured to seal flow through the second conduit and the elastomeric seal is configured to seal flow through the first conduit independently from each other. The pressure is released between the first annular space and the second annular space.
Implementations of the present disclosure include a pressure release system. The pressure release system includes a first conduit, a second conduit, a dual seal, a hydraulic fluid chamber, and a hydraulic fluid reservoir. The first conduit fluidically connects a first annular space defined by an outer casing of a wellbore to an internal volume defined by a casing joint. The second conduit fluidically connects a second annular space defined by an inner casing. The internal volume is defined by the casing joint to an internal volume defined by the inner casing. At least a portion of the second conduit is formed in the circumferential wall of the inner casing. The dual seal is positioned between the first conduit and the second conduit. The dual seal is configured to open or close fluid flow between the first conduit and the second conduit. The dual seal includes a metal-to-metal seal and an elastomeric seal. The metal-to-metal seal is configured to seal flow through the second conduit and the elastomeric seal is configured to seal flow through the first conduit independently from each other. The hydraulic fluid flows into or out of the hydraulic fluid chamber to close or open the dual seal, respectively. The hydraulic fluid reservoir is coupled to the hydraulic fluid chamber by a third conduit. The third conduit has a check valve. The check valve is configured to maintain closed or to close fluid flow between the first conduit and the second conduit responsive to the signal from the controller. The third conduit carries hydraulic fluid. The hydraulic fluid reservoir is configured to flow the hydraulic fluid to the check valve responsive to a signal to cause the check valve to close the fluid flow between the first conduit and the second conduit.
In some implementations, the pressure release system further includes a hydraulic pump fluidically coupled to the hydraulic fluid reservoir and the hydraulic fluid chamber. The hydraulic pump is configured to move hydraulic fluid from the hydraulic fluid reservoir and the hydraulic fluid chamber, opening the dual seal.
In some implementations, the hydraulic fluid chamber is flexible to set a threshold annular pressure at or above which the hydraulic pump is configured to open fluid flow between the first conduit and the second conduit and below which the check valve is configured to close fluid flow between the first conduit and the second conduit.
The details of one or more implementations of the subject matter described in this disclosure are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
The present disclosure describes a system and a method for reducing annular pressure with a casing annulus pressure release system. The casing annulus pressure release system includes a casing joint interposed between two casings in a wellbore. The casing defines an inner void. The casing and the wellbore or another casing define an outer void. A first casing disposed within a second casing or wellbore defines an annulus between the first casing and the second casing or wellbore. An annulus is a ring-like hollow void between two bodies which can contain a fluid or gas. The fluid or gas may flow within the annulus from one location to another location. Differing casing sections are exposed to different geological formations within the Earth. Fluid pressures differ between formations. Drilling a wellbore connects the different geological formations. Placing the casing in the wellbore and cementing the casing in the wellbore provide a pressure boundary. In some cases, pressure can build up in a formation, resulting in an overpressure condition exceeding casing capacity. In other cases, a casing and cement can fail, resulting in an overpressure condition exceeding a subsequent casing capacity. The casing annulus pressure release system alleviates these detrimental effects.
The casing annulus pressure release system measures pressure in the annulus and compares the measured pressure with a threshold pressure. Based on a result of the comparison, the system bleeds some or all of the annular pressure into an inner casing. At other times, the system seals the annular space to maintain the pressure.
Implementations of the present disclosure realize one or more of the following advantages. For example, casing integrity is improved. In the event of an overpressure condition, the pressure is released through a designed flow path, protecting casing structural integrity. Otherwise, if the overpressure condition was not able to be released through the designed flow path, the casing or cement could rupture causing a catastrophic failure. For example, communication of downhole conditions to the surface is improved. Casing, pipe, or cement leaking is more closely monitored due to the proximity of additional sensors to downhole conditions. Some downhole conditions or regions which could not be monitored at the surface due to the particular well construction design, can now be monitored in real time. For example, well construction operations like cementing are monitored in real time. The casing annulus pressure release system confirms the setting of the cement by monitoring pressure parametric changes between the inner annular region and the outer annular region. Proper setting forces are monitored to ensure a good cement set. For example, in an overpressure condition, confirmation of full pressure release is available when pressure parameters return to normal a normal pressure range. For example, monitoring of gas migration between casing joints is available due to additional downhole sensors to monitor pressures in the wellbore.
The wellbore casing system 200 includes a wellbore where the casing annulus pressure release system 100 is positioned. The wellbore casing system 200 has an outer hollow member 202 and an inner hollow member 204. In some implementations, the outer hollow member 202 is a casing. A casing can be steel or cement. A steel or cement casing can be a casing, a casing joint, or an elongated tubular member through which wellbore fluid flows. A steel or cement casing is capable of withstanding well conditions and well fluid pressures. In other implementations, the outer hollow member 202 is a production tubing or a drill pipe. The outer hollow member 202 has an inner surface 206. The inner surface 206 defines an inner void 208. In some implementations, the inner hollow member 204 is a casing. In other implementations, the inner hollow member 204 is a production tubing or a drill pipe. The inner hollow member 204 has an outer surface 210 and an inner surface 212. The inner surface 212 defines an inner void 214. The inner hollow member 204 has an upper section 216 and a lower section 218. The upper section 216 is a top portion of the casing. The lower section 218 is a bottom portion of the casing. The casing annulus pressure release system 100 is mechanically coupled between the upper section 216 and the lower section 218 within the outer hollow member 202 described later.
The casing annulus pressure release system 100 includes a controller 102, multiple sensors 104, and a pressure release sub-system 106. The controller 102 is configured to be disposed in the wellbore. The controller 102 is configured to receive signals from multiple sensors 104 and transmit control signals to the pressure release sub-system 106. The controller 102 can be a computer processor with a non-transitory computer-readable storage medium storing instructions executable by the computer processor to receive signals from multiple sensors 104 and transmit control signals to the pressure release sub-system 106. The computer processor is capable of performing operations to manage the annular pressure. The computer processor and each of its components are capable of operating within the wellbore under wellbore conditions and in the presence of well fluid. In some implementations, the controller 102 receives electrical power from a power source 108. For example, the power source 108 can be a battery. A battery can be lead acid or lithium ion. For example, electrical power can be conducted from the surface to the controller 102 by an electrical wire. An electrical cable 110 can connect the controller 102 to the power source 108. In some implementations, the electrical cable 110 provides power and signal communication between the controller 102 and the power source 108.
Multiple sensors 104 are configured to be disposed in the annular space defined by the outer hollow member inner surface 206 and the inner hollow member outer surface 210. Multiple sensors include a first sensor 104a and a second sensor 104b. Two sensors (first sensor 104a and second sensor 104b) are shown as examples, but additional sensors disposed at other locations are also possible. Multiple sensors 104 are operatively coupled to the controller 102. Multiple sensors 104 are configured to sense wellbore conditions in the annular space and transmit signals representing the sensed wellbore conditions to the controller 102. Wellbore conditions sensed by multiple sensors 104 can include pressure, temperature, and flow rate. Multiple sensors 104 can transmit signals to the controller 102 by multiple paths including Wi-Fi, radio, hydraulic, or electrical cables 110. In some implementations, multiple sensors 104 receive electrical power from the power source 108.
The pressure release sub-system 106 is configured to be disposed in the annular space defined by the outer hollow member inner surface 206 and the inner hollow member outer surface 210. The pressure release sub-system 106 is operatively coupled to the controller 102. The pressure release sub-system 106 is configured to receive signals from and transmit signals to the controller 102. The pressure release sub-system 106 can transmit signals to the controller 102 by multiple paths including Wi-Fi, radio, hydraulic, mechanical, or electrical cables 110. In some implementations, the pressure release sub-system 106 receives electrical power from the power source 108. The pressure release subsystem 106 is configured to release pressure in the annular space defined by the outer hollow member inner surface 206 and the inner hollow member outer surface 210 into the inner hollow member inner void 214 of the wellbore through a circumferential wall 220 of the inner hollow member 204 in response to a signal from the controller 102. The components and operational details of the pressure release sub-system 106 are shown in
In some implementations, the casing annulus pressure release system 100 is integrated into a casing joint. The casing annulus pressure release system 100 casing joint is mechanically coupled in between an upper section 216 casing and a lower section 218 casing by a mechanical connector 112. In some implementations, the mechanical connector 112 is a standard API (American Petroleum Institute) rotary shoulder pin connector. The standard API rotary shouldered connector is a regular connection, a numeric connection, an internal flush connection, or a full hole connection. In some implementations, the pin connection is manufacturer proprietary design. In some implementations, the mechanical connector 112 is a box connection, where the threads are internal to the box. The mechanical connector 112 can have an outer diameter corresponding to a standard American Petroleum Institute connection size. For example, the mechanical connector 112 can have an outer diameter of 4½ inches, 5½ inches, 6⅝ inches, 7 inches, 7⅝ inches, 8⅝ inches, 9⅝ inches, 10¾ inches, 11¾ inches, or 13⅜ inches.
Referring to
An outer hollow member 310 is disposed in the wellbore. In some implementations, the outer hollow member 310 is a casing or the Earth. For example, the outer hollow member 310 casing can be a surface casing, an intermediate casing, or a production casing. An inner hollow member 314 is disposed within the outer hollow member 310 creating an annular space 308. The inner hollow member 314 has an inner void 316. In some implementations, the inner hollow member 314 is a casing or a tubing. For example, the inner hollow member 314 can be an intermediate casing, a production casing or a production tubing.
The first conduit 302 is fluidically connected to the second conduit 304 on a first end and fluidically connect the annular space 308 on a second end. At least a portion of the first conduit 302 is formed in the circumferential wall of the outer enclosure 338 to fluidically connect the first conduit 304 to the annular space 308. The second conduit 304 is fluidically connected to the first conduit 302 on a first end and fluidically connected the inner void 316 on a second end. At least a portion of the second conduit 304 is formed in the circumferential wall of the inner hollow member 314 to fluidically connect the second conduit 304 to the inner void 316.
The dual seal 306 is positioned between the first conduit 302 and the second conduit 304. The dual seal 306 is configured to open or close fluid flow between the first conduit 302 and the second conduit 304. The dual seal 306 includes a metal-to-metal seal 334 and an elastomeric seal 336. The metal-to-metal seal 334 is configured to seal flow through the second conduit 304 and the elastomeric seal 336 is configured to seal flow through the first conduit 302 independently from each other. The elastomeric seal 336 seals the first conduit 302 while the metal-to-metal seal 334 seals the second conduit 304 such that even if one fails, the other maintains the seal, separating the first conduit 302 from the second conduit 304. The metal-to-metal seal 334 can be aluminum, nickel, steel, or an alloy. The elastomeric seal 336 can be constructed of rubber, nitrile rubber, or polyurethane.
A hydraulic fluid chamber 320 is fluidically coupled to the dual seal 306. The hydraulic fluid chamber 320 is configured to hold hydraulic fluid. The hydraulic fluid chamber 320 is also configured be flowed into or out of by hydraulic fluid. In some implementations, the hydraulic fluid chamber volume is expandable. Hydraulic fluid flows into the hydraulic fluid chamber 320 from a hydraulic fluid reservoir 322 described later. Hydraulic fluid flows out of the hydraulic fluid chamber 320 through the hydraulic pump 328 to the hydraulic fluid reservoir 322 described later. Hydraulic fluid flowing into the hydraulic fluid chamber 320 causes the dual seal to close, preventing flow from the first conduit 302 to the second conduit 304. Hydraulic fluid flowing out of the hydraulic fluid chamber 320 causes the dual seal to open, allowing from the first conduit to the second conduit. A hydraulic fluid reservoir 322 is fluidically coupled to the hydraulic fluid chamber 320 carrying hydraulic fluid by a third conduit 324. A check valve 326 is interposed between the hydraulic fluid chamber 320 and the hydraulic fluid reservoir 324 in the third conduit 324. The check valve 326 prevents flow from the hydraulic fluid chamber 320 to the hydraulic fluid reservoir 322, maintaining the dual seal 306 in the closed position, preventing flow from the first conduit 302 to the second conduit 304 (
A hydraulic pump 328 is fluidically connected to the hydraulic fluid chamber 320 and the hydraulic fluid reservoir 322 and operatively controlled by the controller 102. The hydraulic pump 328 pumps hydraulic fluid when directed to by the controller 102. The hydraulic pump 328 stops pumping hydraulic fluid when directed to by the controller 102. The hydraulic pump 328 has a suction port 330 and a discharge port 332. The hydraulic pump 328 suction port 330 is fluidically connected to the hydraulic fluid chamber. The hydraulic pump 328 discharge port 332 is fluidically coupled to the hydraulic fluid reservoir 322. The hydraulic pump 328 is configured to move hydraulic fluid from the hydraulic fluid chamber 320 to the hydraulic fluid reservoir 322, opening the dual seal 306. The hydraulic fluid chamber 320 is configured to be flexible to set a threshold annular pressure at or above which the hydraulic pump 328 flows hydraulic fluid from the hydraulic fluid chamber 320 to the hydraulic fluid reservoir 322, opening the dual seal 306 to open fluid flow between the first conduit 302 and the second conduit 304 and below which the hydraulic pump 328 and the check valve 326 are configured to prevent fluid exiting the hydraulic fluid chamber 320, moving the dual seal 306 to the closed position, stopping fluid flow between the first conduit 302 and the second conduit 304.
The pressure release sub-system 300 is surrounded by the outer enclosure 338. The outer enclosure 338 can be unitarily formed by the casing or a separate body mechanically attached to the casing.
Referring to
Although the following detailed description contains many specific details for purposes of illustration, it is understood that one of ordinary skill in the art will appreciate that many examples, variations, and alterations to the following details are within the scope and spirit of the disclosure. Accordingly, the example implementations described herein and provided in the appended figures are set forth without any loss of generality, and without imposing limitations on the claimed implementations. For example, the implementations are described with reference to a tee pipe fitting. However, the disclosure can be implemented with any appropriate pipe fitting that connects two or more pipes flowing fluids of different pressures.
Although the present implementations have been described in detail, it should be understood that various changes, substitutions, and alterations can be made hereupon without departing from the principle and scope of the disclosure. Accordingly, the scope of the present disclosure should be determined by the following claims and their appropriate legal equivalents.
The singular forms “a”, “an” and “the” include plural referents, unless the context clearly dictates otherwise.
Optional or optionally means that the subsequently described event or circumstances may or may not occur. The description includes instances where the event or circumstance occurs and instances where it does not occur.
Ranges may be expressed herein as from about one particular value, or to about another particular value or a combination of them. When such a range is expressed, it is to be understood that another implementation is from the one particular value or to the other particular value, along with all combinations within said range or a combination of them.
Throughout this application, where patents or publications are referenced, the disclosures of these references in their entireties are intended to be incorporated by reference into this application, in order to more fully describe the state of the art to which the disclosure pertains, except when these references contradict the statements made herein.
As used herein and in the appended claims, the words “comprise,” “has,” and “include” and all grammatical variations thereof are each intended to have an open, non-limiting meaning that does not exclude additional elements or steps.
As used herein, terms such as “first” and “second” are arbitrarily assigned and are merely intended to differentiate between two or more components of an apparatus. It is to be understood that the words “first” and “second” serve no other purpose and are not part of the name or description of the component, nor do they necessarily define a relative location or position of the component. Furthermore, it is to be understood that that the mere use of the term “first” and “second” does not require that there be any “third” component, although that possibility is contemplated under the scope of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
1812044 | Grant | Jun 1931 | A |
2169502 | Santiago | Aug 1939 | A |
2499916 | Harris | Mar 1950 | A |
2743083 | Zublin | Apr 1956 | A |
2967048 | Alphones | Jan 1961 | A |
3335801 | Wilsey | Aug 1967 | A |
3425500 | Fuchs | Feb 1969 | A |
3483934 | Fuchs | Dec 1969 | A |
3557875 | Solum et al. | Jan 1971 | A |
4058163 | Yandell | Nov 1977 | A |
4252195 | Fredd | Feb 1981 | A |
4384625 | Roper et al. | May 1983 | A |
4399873 | Lindsey, Jr. | Aug 1983 | A |
4458761 | Van Vreeswyk | Jul 1984 | A |
4482014 | Allwin et al. | Nov 1984 | A |
4646842 | Arnold et al. | Mar 1987 | A |
4667742 | Bodine | May 1987 | A |
4674569 | Revils et al. | Jun 1987 | A |
4681159 | Allwin et al. | Jul 1987 | A |
4693328 | Furse et al. | Sep 1987 | A |
4846290 | Jones | Jul 1989 | A |
4852654 | Buckner | Aug 1989 | A |
4855820 | Barbour | Aug 1989 | A |
4890682 | Worall et al. | Jan 1990 | A |
4944348 | Whiteley et al. | Jul 1990 | A |
4993493 | Arnold | Feb 1991 | A |
5152342 | Rankin et al. | Oct 1992 | A |
5390742 | Dines et al. | Feb 1995 | A |
5515922 | Ruttley | May 1996 | A |
5582247 | Brett et al. | Dec 1996 | A |
5715891 | Graham | Feb 1998 | A |
5771985 | Jaworski | Jun 1998 | A |
5831156 | Mullins | Nov 1998 | A |
5875852 | Floyd et al. | Mar 1999 | A |
5947213 | Angle | Sep 1999 | A |
6009948 | Flanders et al. | Jan 2000 | A |
RE36556 | Smith | Feb 2000 | E |
6105669 | Davis | Aug 2000 | A |
6142244 | Hesse | Nov 2000 | A |
6152221 | Carmicheal et al. | Nov 2000 | A |
6163257 | Tracy | Dec 2000 | A |
6234250 | Green et al. | May 2001 | B1 |
6378628 | McGuire et al. | Apr 2002 | B1 |
6527066 | Rives | Mar 2003 | B1 |
6550534 | Brett | Apr 2003 | B2 |
6577244 | Clark et al. | Jun 2003 | B1 |
6588505 | Beck et al. | Jul 2003 | B2 |
6629564 | Ramakrishnan | Oct 2003 | B1 |
6662110 | Bargach et al. | Dec 2003 | B1 |
6684953 | Sonnier | Feb 2004 | B2 |
6691779 | Sezginer et al. | Feb 2004 | B1 |
6739398 | Yokley et al. | May 2004 | B1 |
6752216 | Coon | Jun 2004 | B2 |
6873267 | Tubel et al. | Mar 2005 | B1 |
6899178 | Tubel | May 2005 | B2 |
6938698 | Coronado | Sep 2005 | B2 |
6978840 | Henderson | Dec 2005 | B2 |
7219730 | Tilton et al. | May 2007 | B2 |
7228902 | Oppelt | Jun 2007 | B2 |
7243735 | Koederitz et al. | Jul 2007 | B2 |
7252152 | LoGiudice et al. | Aug 2007 | B2 |
7278492 | Braddick | Oct 2007 | B2 |
7419001 | Broussard | Sep 2008 | B2 |
7581440 | Meek | Sep 2009 | B2 |
7654334 | Manson | Feb 2010 | B2 |
7665537 | Patel et al. | Feb 2010 | B2 |
7677303 | Coronado | Mar 2010 | B2 |
7690432 | Noske et al. | Apr 2010 | B2 |
7938192 | Rytlewski | May 2011 | B2 |
7940302 | Mehrotra et al. | May 2011 | B2 |
8028767 | Radford et al. | Oct 2011 | B2 |
8102238 | Golander et al. | Jan 2012 | B2 |
8191635 | Buske et al. | Jun 2012 | B2 |
8237585 | Zimmerman | Aug 2012 | B2 |
8334775 | Tapp et al. | Dec 2012 | B2 |
8424605 | Schultz et al. | Apr 2013 | B1 |
8448724 | Buske et al. | May 2013 | B2 |
8469084 | Clark et al. | Jun 2013 | B2 |
8528668 | Rasheed | Sep 2013 | B2 |
8540035 | Xu et al. | Sep 2013 | B2 |
8607818 | Monroe et al. | Dec 2013 | B2 |
8733469 | Konschuh | May 2014 | B2 |
8750513 | Renkis | Jun 2014 | B2 |
8789585 | Leising et al. | Jul 2014 | B2 |
8800655 | Bailey | Aug 2014 | B1 |
8833472 | Hay | Sep 2014 | B2 |
8919431 | Lott | Dec 2014 | B2 |
8925213 | Sallwasser | Jan 2015 | B2 |
8967272 | Mock et al. | Mar 2015 | B2 |
8991489 | Redlinger et al. | Mar 2015 | B2 |
9038718 | Karimi | May 2015 | B1 |
9051792 | Herberg et al. | Jun 2015 | B2 |
9091148 | Moffitt et al. | Jul 2015 | B2 |
9121255 | Themig et al. | Sep 2015 | B2 |
9133666 | Lee | Sep 2015 | B2 |
9140100 | Daccord et al. | Sep 2015 | B2 |
9157294 | Kleppa et al. | Oct 2015 | B2 |
9187959 | Treviranus et al. | Nov 2015 | B2 |
9208676 | Fadell et al. | Dec 2015 | B2 |
9222312 | Anderson | Dec 2015 | B2 |
9341027 | Radford et al. | May 2016 | B2 |
9494003 | Carr | Nov 2016 | B1 |
9506318 | Brunet | Nov 2016 | B1 |
9546536 | Schultz et al. | Jan 2017 | B2 |
9598923 | Gilleylen | Mar 2017 | B2 |
9963960 | Tolman et al. | May 2018 | B2 |
20020053434 | Chen et al. | May 2002 | A1 |
20020070018 | Buyaert | Jun 2002 | A1 |
20020148607 | Pabst | Oct 2002 | A1 |
20030001753 | Cernocky et al. | Jan 2003 | A1 |
20040060741 | Shipalesky et al. | Apr 2004 | A1 |
20040069496 | Hosie et al. | Apr 2004 | A1 |
20040134687 | Radford et al. | Jul 2004 | A1 |
20040156264 | Gardner et al. | Aug 2004 | A1 |
20040168800 | Sask | Sep 2004 | A1 |
20050092488 | Rodet et al. | May 2005 | A1 |
20050273302 | Huang et al. | Dec 2005 | A1 |
20060081375 | Ruttley | Apr 2006 | A1 |
20060086497 | Ohmer et al. | Apr 2006 | A1 |
20060107061 | Holovacs | May 2006 | A1 |
20060260799 | Broussard | Nov 2006 | A1 |
20060290528 | MacPherson et al. | Dec 2006 | A1 |
20070057811 | Mehta | Mar 2007 | A1 |
20070107911 | Miller et al. | May 2007 | A1 |
20070187112 | Eddison et al. | Aug 2007 | A1 |
20070261855 | Brunet | Nov 2007 | A1 |
20080041631 | Vail, III | Feb 2008 | A1 |
20080115574 | Meek | May 2008 | A1 |
20090045974 | Patel | Feb 2009 | A1 |
20090050333 | Smith | Feb 2009 | A1 |
20090114448 | Laird et al. | May 2009 | A1 |
20090145666 | Radford et al. | Jun 2009 | A1 |
20090188718 | Kaageson-Loe et al. | Jul 2009 | A1 |
20090223670 | Snider | Sep 2009 | A1 |
20090289808 | Prammer | Nov 2009 | A1 |
20090301723 | Gray | Dec 2009 | A1 |
20100051287 | Moraes | Mar 2010 | A1 |
20100097205 | Script | Apr 2010 | A1 |
20100101786 | Lovell et al. | Apr 2010 | A1 |
20100122811 | Maskos et al. | May 2010 | A1 |
20100139981 | Meister et al. | Jun 2010 | A1 |
20100212891 | Stewart et al. | Aug 2010 | A1 |
20100212900 | Eddison et al. | Aug 2010 | A1 |
20100212901 | Buytaert | Aug 2010 | A1 |
20100258297 | Lyndre | Oct 2010 | A1 |
20100258298 | Lynde et al. | Oct 2010 | A1 |
20100282511 | Maranuk et al. | Nov 2010 | A1 |
20110031023 | Menezes et al. | Feb 2011 | A1 |
20110067884 | Burleson et al. | Mar 2011 | A1 |
20110073329 | Clemens et al. | Mar 2011 | A1 |
20110100645 | Yapici | May 2011 | A1 |
20110114333 | Fenton | May 2011 | A1 |
20110127044 | Radford et al. | Jun 2011 | A1 |
20110147014 | Chen et al. | Jun 2011 | A1 |
20110240302 | Coludrovich, III | Oct 2011 | A1 |
20110266004 | Hallundbaek et al. | Nov 2011 | A1 |
20120048571 | Radford et al. | Mar 2012 | A1 |
20120048619 | Seutter | Mar 2012 | A1 |
20120085540 | Heijnen | Apr 2012 | A1 |
20120175135 | Dyer et al. | Jul 2012 | A1 |
20120211229 | Fielder | Aug 2012 | A1 |
20120211280 | Dewey et al. | Aug 2012 | A1 |
20120241154 | Zhou | Sep 2012 | A1 |
20120247767 | Themig et al. | Oct 2012 | A1 |
20120307051 | Welter | Dec 2012 | A1 |
20120312560 | Bahr et al. | Dec 2012 | A1 |
20130128697 | Contant | May 2013 | A1 |
20130153245 | Knobloch et al. | Jun 2013 | A1 |
20130186645 | Hall | Jul 2013 | A1 |
20130292175 | Radford et al. | Nov 2013 | A1 |
20130299160 | Lott | Nov 2013 | A1 |
20140060844 | Barbour et al. | Mar 2014 | A1 |
20140083769 | Moriarty et al. | Mar 2014 | A1 |
20140090898 | Moriarty et al. | Apr 2014 | A1 |
20140126330 | Shampine et al. | May 2014 | A1 |
20140131036 | Huval et al. | May 2014 | A1 |
20140139681 | Jones, Jr. et al. | May 2014 | A1 |
20140166367 | Campbell et al. | Jun 2014 | A1 |
20140172306 | Brannigan | Jun 2014 | A1 |
20140208847 | Baranov | Jul 2014 | A1 |
20140308203 | Sheinberg et al. | Oct 2014 | A1 |
20150027706 | Symms | Jan 2015 | A1 |
20150090459 | Cain et al. | Apr 2015 | A1 |
20150101863 | Jeffryes | Apr 2015 | A1 |
20150101864 | May | Apr 2015 | A1 |
20150152713 | Garcia et al. | Jun 2015 | A1 |
20150152715 | Cunningham | Jun 2015 | A1 |
20150176362 | Prieto et al. | Jun 2015 | A1 |
20150226009 | Claudey et al. | Aug 2015 | A1 |
20150267500 | Van Dongen et al. | Sep 2015 | A1 |
20150308203 | Lewis | Oct 2015 | A1 |
20160160578 | Lee | Jun 2016 | A1 |
20160215612 | Morrow | Jul 2016 | A1 |
20160230508 | Jensen | Aug 2016 | A1 |
20160237764 | Jellison et al. | Aug 2016 | A1 |
20160237768 | Jamison et al. | Aug 2016 | A1 |
20160245039 | Goodman et al. | Aug 2016 | A1 |
20160356133 | Hamid et al. | Dec 2016 | A1 |
20160356152 | Croux | Dec 2016 | A1 |
20170044834 | Peters | Feb 2017 | A1 |
20170067318 | Haugland | Mar 2017 | A1 |
20170074071 | Tzallas et al. | Mar 2017 | A1 |
20170159365 | Solem | Jun 2017 | A1 |
20170191919 | Kulkarni | Jul 2017 | A1 |
20170292328 | Swinford | Oct 2017 | A1 |
20180030810 | Saldanha | Feb 2018 | A1 |
20190020702 | Selekman et al. | Jan 2019 | A1 |
20190040703 | Costa De Oliveira et al. | Feb 2019 | A1 |
20190226291 | Lewis et al. | Jul 2019 | A1 |
20190292896 | Costa De Oliveira et al. | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
204177988 | Feb 2015 | CN |
0377234 | Oct 1989 | EP |
0618345 | Oct 1994 | EP |
1241321 | Sep 2002 | EP |
2157278 | Feb 2010 | EP |
2692982 | May 2014 | EP |
2835493 | Feb 2015 | EP |
2157743 | Oct 1985 | GB |
2194571 | Mar 1988 | GB |
2261238 | Dec 1993 | GB |
2414257 | Nov 2005 | GB |
2460096 | Nov 2009 | GB |
2470762 | Dec 2010 | GB |
WO 2003058545 | Jul 2003 | WO |
WO 2011038170 | Mar 2011 | WO |
WO 2011095600 | Aug 2011 | WO |
WO 2011159890 | Dec 2011 | WO |
WO 2014100266 | Jun 2014 | WO |
WO 2015169959 | Nov 2015 | WO |
WO 2016007139 | Jan 2016 | WO |
WO 2016060658 | Apr 2016 | WO |
Entry |
---|
“TIW Xpak Liner Hanger System,” Engineering Innovation Worldwide, TIW: A Pearce Industries Company, retrieved from URL <http://www.tiwoiltools.com/Images/Interior/downloads/tiw_xpak_brochure.pdf>, 2015, 4 pages. |
Engineersedge.com [online], “American National Standard Stub Acme Single-Start Screw Threads Table Chart, ASME/ANSI B1.8-1988 (R2001),” Machinery's Handbook, 29th Edition, retrieved on Feb. 27, 2017, retrieved from URL: <http://www.engineersedge.com/hardware/acme-stub-thread.htm>, 2001-2017, 2 pages. |
Offshore-mag.com [online], “Completions Technology: Large monobore completions prevent high-volume gas well flow restrictions,” retrieved on Feb. 27, 2017, retrieved from URL: <http://www.offshore-mag.com/articles/print/volume-61/issue-12/news/completions-technology-large-monobore-completions-prevent-high-volume-gas-well-flow-restrictions.html>, Dec. 1, 2001, 9 pages. |
slb.com [online], “Intelligent Fluids Monitoring System: Automated analysis of critical parameters in challenging and remote applications,” retrieved on May 1, 2018, retrieved from URL: <https://www.slb.com/resources/other_resources/brochures/miswaco/intelligent_fluids_monitoring_brochure.aspx>, available on or before Mar. 11, 2015, 8 pages. |
PCT Invitation to Pay Additional Fees and, Where Applicable, Protest Fee in International Appln. No. PCT/US2021/025978, dated Jul. 20, 2021. |
PCT International Search Report and Written Opinion in International Appln. No. PCT/US2021/025978, dated Sep. 10, 2021. |
Number | Date | Country | |
---|---|---|---|
20210310319 A1 | Oct 2021 | US |