Reduction casting method, reduction casting apparatus and molding die using same

Information

  • Patent Grant
  • 6805191
  • Patent Number
    6,805,191
  • Date Filed
    Thursday, July 31, 2003
    21 years ago
  • Date Issued
    Tuesday, October 19, 2004
    20 years ago
Abstract
A reduction casting method, in which a molten metal is poured into a cavity of a molding die and casting is performed while the oxide film formed on the surface of the molten metal is reduced by allowing the molten metal and the reducing compound to be contacted with each other in the cavity of the molding die, is characterized in that, at the time the molten metal is poured into the cavity, it is done while it is allowed to be in a turbulent flow.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a reduction casting method and reduction casting apparatus in which casting is performed while an oxide film formed on a surface of molten metal is reduced and, further, a molding die for use in an aluminum reduction casting method.




2. Description of the Related Art




There are various types of casting methods, but a gravity casting method has many advantages such as a favorable quality of a cast product, a simplicity of a molding die and the like.

FIG. 5

shows an example of a molding die for use in casting aluminum by the gravity casting method. The molding die


100


is made of metal and has a split-type constitution including a lower mold


102




a


and an upper mold


102




b


. These two molds


102




a


and


102




b


form a cavity


104


in which a cast product having a desired shape is cast.




In the upper mold


102




b


, a feeder head portion


108


is formed between a sprue


106


from which a molten metal of aluminum, an alloy thereof or the like is poured and the cavity


104


, and also an air-vent hole


110


is formed for discharging an air present in the cavity


104


at the time the molten metal is poured into the cavity


104


.




When the molten metal is solidified, shrinkage of about 3% is generated. For this feature, the shrinkage generated by solidifying the molten metal poured in the cavity


104


appears as a defect such as a shrinkage hole or the like in an obtained cast product. When the molten metal filled in the cavity


104


is shrunk as being solidified, the feeder head portion


108


arranged in the molding die


100


shown in

FIG. 5

replenishes the molten metal into the cavity


104


by a force of gravity to prevent the defect such as the shrinkage hole or the like from being generated. Since such a replenishing action of the molten metal from the feeder head portion


108


to the cavity


104


is performed by a force of gravity of the molten metal filled in the feeder head portion


108


, a conventional casting apparatus secures a large capacity as the feeder head portion


108


.




This is because, since a flowing property of the molten metal in the molding die in the casting apparatus is low, it is necessary to allow a weight of the feeder head portion


108


to be large thereby forcibly replenishing the molten metal into the cavity


104


. For example, in a case that aluminum is cast, since aluminum is extremely easily oxidized, there is a problem that an aluminum oxide film is formed on a surface of the molten metal to decrease the flowing property of the molten metal. For this reason, a coating agent which aims for enhancing the flowing property of the molten metal is sometimes applied on a surface of an inner wall of the cavity


104


.




With reference to such a method of casting aluminum as described above, the present applicant has proposed (in Japanese Patent Laid-Open No. 280063/2000) an aluminum casting method which can enhance the flowing property of aluminum without using the coating agent to obtain an aluminum cast product having a favorable outward appearance. This aluminum casting method, as shown in

FIG. 6

, is characterized in that, after magnesium-nitrogen compound (Mg


3


N


2


) being a reducing compound, is introduced into the cavity


104


of the molding die


100


, molten metal of aluminum or an alloy thereof is poured into the cavity


104


to be cast. The magnesium-nitrogen compound has an action to reduce an oxide film formed on a surface of the molten metal of aluminum or the alloy thereof and, by this action, a surface tension of the molten metal is decreased to enhance the flowing property and a running property of the molten metal and to eliminate a surface fold and the like whereupon high-quality casting can be performed.




In the gravity casting method, in order to prevent air or an oxide from being entrained at the time of filling the molten metal in the cavity, the molten metal is filled in the cavity by allowing it to be in a state of a laminar flow. In order to fill the molten metal in the cavity in a state of the laminar flow, in a conventional molding die, a gate which connects the sprue and the cavity is allowed to be large whereupon the molten metal is poured into the cavity from a lower surface thereof such that a surface of the molten metal is gradually raised to prevent a turbulent flow from being generated as much as possible. The reason for allowing a diameter of the feeder head portion


108


to be large in the molding die


100


according to

FIG. 5

is that an action of the feeder head by the molten metal in the feeder head portion


108


is secured and entrainment of the air or an oxide is prevented as much as possible at the time the molten metal is poured into the cavity


104


. Further, in order to pour the molten metal in a state of the laminar flow, a method of pouring the molten metal while the molding die is tilted has widely been used.




As described above, in the gravity casting method, there is a problem that, since the gate is allowed to be large to prevent the turbulent flow from being generated at the time of pouring the molten metal and there is a restriction that the gate is arranged in a position where pouring the molten metal is easily performed by the laminar flow, a degree of freedom of the molding die or the apparatus is regulated. Further, there is a problem that the apparatus becomes large and complicated in a case in which a tilting-type molten metal pouring operation is performed. Furthermore, the yield by the conventional gravity casting method is ordinarily from 50% to 60%, which is hardly favorable in comparison with other casting methods.




SUMMARY OF THE INVENTION




The present invention is attained in order to solve such problems of the conventional gravity casting method as described above and has an object to provide a high-quality and efficient casting method by utilizing a reduction casting method which performs casting while an oxide film formed on a surface of the molten metal is reduced by making use of the above-described reducing compound. In a case of the reduction casting method, since the oxide film formed on the surface of the molten metal is reduced, a flowing property of the molten metal is enhanced and a running property thereof is improved whereby the filling property of the molten metal in the cavity becomes favorable. The present invention is to provide a reduction casting method which enables an action of such a reduction method as described above to be more effectively exerted, a reduction casting apparatus and a molding die advantageous to an aluminum reduction casting method.




In order to achieve the above-described object of the present invention, constitutions described below are provided.




Namely, according to the present invention, there is provided a reduction casting method, in which molten metal is poured into a cavity of a molding die and casting is performed while an oxide film formed on a surface of the molten metal is reduced by allowing the molten metal and a reducing compound to be contacted with each other in the cavity of the molding die, comprising the step of:




pouring the molten metal into the cavity while it is allowed to be in a turbulent flow in the cavity at the time the molten metal is poured into the cavity.




Further, according to the present invention, there is provided a reduction casting method, in which molten metal is poured into a cavity of a molding die and casting is performed while an oxide film formed on a surface of the molten metal is reduced by allowing the molten metal and a reducing compound to be contacted with each other in the cavity of the molding die, comprising the steps of:




arranging a runner having a smaller flow passage diameter than that of a feeder head portion in an upstream side of the cavity; and




adjusting a flow rate of the molten metal to be poured into the cavity by adjusting the flow passage diameter of the runner.




Further, according to the prevent invention, casting is performed while molten aluminum or a molten alloy thereof is used as the molten metal and a magnesium-nitrogen compound, which is obtained by introducing a magnesium gas and a nitrogen gas into the cavity and, then, allowing the magnesium gas and the nitrogen gas to be reacted with each other therein, is used as the reducing compound.




Further, according to the present invention, there is provided a reduction casting apparatus, in which molten metal is poured into a cavity of a molding die and casting is performed while an oxide film formed on a surface of the molten metal is reduced by allowing the molten metal and a reducing compound to be contacted with each other in the cavity of the molding die, comprising a runner having a smaller flow passage diameter than that of a feeder head portion arranged in an upstream side of the cavity.




Further, according to the present invention, the feeder head portion is arranged just upstream of the cavity, and the runner is connected with the feeder head portion.




Further, according to the present invention, a molten metal reservoir for storing the molten metal is arranged at a sprue which is arranged in an upstream side of the runner, and an opening/closing member for opening/closing a communication between the molten metal reservoir and the runner is arranged. By these arrangements, the molten metal stored in the molten metal reservoir can be poured into the cavity at a time; on this occasion, the molten metal can be poured into the cavity with an increased flow rate.




Further, according to the present invention, a surface of an inner wall of the runner is subjected to a heat insulating treatment or formed by a heat insulating material selected from the group consisting of: ceramic, an alumina board and other heat insulating materials. By this arrangement, a flowing property of the molten metal in the runner becomes favorable whereby the flow rate of the molten metal at the time of being poured into the cavity can be increased.




Further, according to the present invention, there is provided a molding die for use in an aluminum reduction casting method, in which molten metal of aluminum or an alloy thereof is poured into a cavity and casting is performed while an oxide film formed on a surface of the molten metal is reduced by allowing a magnesium-nitrogen compound which is prepared by allowing a magnesium gas and a nitrogen gas to be reacted with each other and the molten metal to be contacted with each other in the cavity, wherein a runner having a smaller flow passage diameter than that of a feeder head portion is arranged in an upstream side of the cavity.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an explanatory diagram showing an entire constitution of a casting apparatus according to the present invention;





FIG. 2

is a cross-sectional view of a constitution of a molding die to be used in a casting apparatus;





FIG. 3

is an explanatory diagram showing a state in which molten metal is poured into a molding die;





FIG. 4

is a cross-sectional view of another example of a constitution of a molding die to be used in a casting apparatus;





FIG. 5

is a cross-sectional view of an example of a constitution of a molding die to be used in a conventional casting apparatus; and





FIG. 6

is an explanatory diagram showing a method of casting by a reduction casting method of aluminum.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Hereinafter, preferred embodiments of the present invention will be described in detail with reference to accompanying drawings.





FIG. 1

is an explanatory diagram, showing an entire constitution of a casting apparatus


10


according to the present invention, which illustrates an application thereof for aluminum casting. A reference number


12


represents a molding die in which molten metal of aluminum or an alloy thereof is filled to produce a cast product. The molding die


12


includes a sprue


12




a


, a cavity


12




b


and a runner


16


which communicates the sprue


12




a


and the cavity


12




b


via a feeder head portion


15


.




The molding die


12


is connected with a steel cylinder


20


containing a nitrogen gas by a piping


22


and, by opening a valve


24


of the piping


22


, the nitrogen gas is poured from a nitrogen gas-introducing port


12




d


of the molding die


12


into the cavity


12




b


to allow an inside of the cavity


12




b


to be in a nitrogen-gas atmosphere, that is, in a substantially non-oxygen atmosphere.




Further, a steel cylinder


19


containing an argon gas is connected with a furnace


28


as a generator which generates a metallic gas by a piping


26


and, by opening a valve


30


of the piping


26


, the argon gas is poured into the furnace


28


which is heated by a heater


32


; on this occasion, in order to generate a magnesium gas as a metallic gas, a temperature inside the furnace


28


is set to be 800° C. or more at which magnesium powders are sublimed. A quantity of the argon gas to be poured into the furnace


28


can be adjusted by the valve


30


.




The steel cylinder


19


containing the argon gas is connected with a tank


36


containing magnesium powders by a piping


34


in which a valve


33


is interposed. The tank


36


is connected with the piping


26


positioned in a downstream side of the valve


30


by a piping


38


. A valve


40


which controls a quantity of the magnesium powders to be supplied to the furnace


28


is interposed in the piping


38


. The furnace


28


is connected with a metallic gas-introducing port


12




c


of the molding die


12


via a piping


42


; on this occasion, the metallic gas which has been gasified in the furnace


28


is introduced into the cavity


12




b


from the metallic gas-introducing port


12




c


via a metallic gas-introducing passage


12




e


. A valve


45


which is interposed in the piping


42


aims for adjusting a quantity of the metallic gas to be supplied into the cavity


12




b


of the molding die


12


.





FIG. 2

shows a constitution of the molding die


12


in an enlarged manner. The molding die


12


is structured by a combination of a mold portion


13


made of metal and an adaptor


14


made of ceramic such as calcium sulfate; on this occasion, the mold portion


13


and the adaptor


14


are arranged such that they can be divided at an interface therebetween. Further, the mold portion


13


is formed in a split type such that a cast product can be removed from the mold by opening the mold after the molten metal is solidified in the cavity


12




b.






A feeder head portion


15


is arranged in a head part of the cavity


12




b


of the mold portion


13


. The feeder head portion


15


and the cavity


12




b


are connected with each other via a gate


15




a


having a smaller diameter than that of the feeder head portion


15


.




In the molding die


12


according to the present embodiment, a capacity of the feeder head portion


15


arranged in the molding portion


13


is by far smaller than that of the feeder head portion arranged in the molding die used in the conventional gravity casting apparatus. In the present embodiment, the reason why the feeder head portion


15


can be formed to be of such a small capacity is that, since a running property of the molten metal is extremely favorable at the time of pouring the molten metal in a case in which casting is performed by using the reduction casting method, the molten metal can easily be filled in the cavity without making use of the feeder head action. Therefore, in the present embodiment, the capacity of the feeder head portion


15


to be formed in the molding portion


13


may be set in a size enough to replenish the molten metal into the shrinkage hole which is possibly formed at the time the molten metal is solidified in the cavity


12




b.






The runner


16


is arranged in the adaptor


14


for allowing the cavity


12


and the sprue


12




a


to communicate with each other via the feeder head portion


15


and also for adjusting a flow rate and a flow quantity of the molten metal to be poured from the sprue


12




a


into the cavity


12




b


. In the present embodiment, the runner


16


is arranged such that it extends vertically downward to the feeder head portion


15


and the molten metal is perpendicularly dropped from the sprue


12




a


to the cavity


12




b


. The reason why a flow passage diameter of the runner


16


is set to be smaller than that of the feeder head portion


15


is that the flow rate of the molten metal to be poured into the cavity


12




b


is brought to be faster than that in a case in which the molten metal is poured from the sprue


12




a


to the cavity


12




b


simply via the feeder head portion


15


. The flow rate and the flow quantity of the molten metal at the time of pouring it from the runner


16


to the cavity


12




b


can be controlled by adjusting the flow passage diameter, length of the runner


16


and the like.




Further, in order to make it possible that the molten metal can be poured at a predetermined flow rate when it is poured from the sprue


12




a


to the cavity


12




b


, in the present embodiment, a molten metal reservoir which can store a predetermined quantity of the molten metal is arranged in the sprue


12




a


, an opening/closing stopper


18


as an opening/closing member which opens or closes a communication between the molten metal reservoir and the runner


16


is arranged in an opening portion of the runner


16


, pouring the molten metal into the cavity


12




b


is started by opening the opening/closing stopper


18


when a predetermined quantity of the molten metal is filled in the sprue


12




a


, and such pouring of the molten metal into the cavity


12




b


is executed while the molten metal is being replenished such that a surface of the molten metal in the molten metal reservoir is maintained at a predetermined height.




Further, in order to improve the flowing property of the molten metal when it passes through the runner


16


, effective is a method in which an inner surface of the runner


16


is subjected to a heat insulating treatment by using the coating agent having a heat insulating property, or the adaptor


14


is formed by using a heat insulating material such as ceramics, an alumina board or the like thereby increasing the heat insulating property of the runner


16


higher than that of the mold portion


13


in which the cavity


12




b


is formed.




As the molding die


12


shown in the present embodiment, when the sprue


12




a


and the cavity


12




b


are communicated with each other by the runner


16


and, then, the molten metal is poured into the cavity


12




b


via the runner


16


, the flow rate of the molten metal at the time of pouring it, as described above, becomes fast whereupon the molten metal is poured in a state of a turbulent flow. In the present embodiment, the reason why a constitution in which the molten metal is poured into the cavity


12




b


while the runner


16


is set to have a small diameter and the flow rate of the molten metal is increased is arranged is that the molten metal is poured while the turbulent flow is actively generated in the molten metal in the cavity


12




b


. As described above, a method of pouring the molten metal while generating the turbulent flow at the time of pouring the molten metal into the cavity


12




b


can extremely favorably be applied to a casting method using the reduction casting method.




A reduction casting of aluminum by using the casting apparatus


10


as shown in

FIG. 1

is performed as described below.




Firstly, the valve


24


is opened and a nitrogen gas is introduced from the steel cylinder


20


containing the nitrogen gas into the cavity


12




b


of the molding die


12


via the piping


22


to purge an air present in the cavity


12




b


by the nitrogen gas. The air present in the cavity


12




b


is discharged through an exhaust hole (not shown) whereupon an inside of the cavity


12




b


becomes in a nitrogen gas atmosphere, that is, a substantially non-oxygen atmosphere. Thereafter, the valve


24


is closed once.




While the air present in the cavity


12




b


of the molding die


12


is being purged, the valve


30


is opened and the argon gas is poured from the steel cylinder


19


containing the argon gas to into the furnace


28


to allow an inside of the furnace


28


to be in a non-oxygen condition.




Next, the valve


30


is closed and, then, the valve


40


is opened to send magnesium powders contained in the tank


30


into the furnace


28


by an argon gas pressure. The furnace


28


is beforehand heated by a heater


32


to a temperature of 800° C. or more at which the magnesium powders are sublimed. With this arrangement, the magnesium powders sent into the furnace


28


are sublimed to be a magnesium gas.




Next, the valve


40


is closed and, then, the valve


30


and the valve


45


are opened to pour the magnesium gas from the metallic gas introducing port


12




c


of the molding die


12


into the cavity


12




b


via the metallic gas introducing passage


12




e


while adjusting a pressure and a flow rate of the argon gas.




After the magnesium gas is poured into the cavity


12




b


, the valve


45


is closed and the valve


24


is opened to pour the nitrogen gas from the nitrogen gas introducing port


12




d


into the cavity


12




b


. By pouring the nitrogen gas into the molding die


12


, the magnesium gas and the nitrogen gas are allowed to be reacted with each other in the cavity


12




b


to generate the magnesium-nitrogen compound (Mg


3


N


2


). The thus-generated magnesium-nitrogen compound is deposited on the surface of the inner wall of the cavity


12




b


as a powder.




The nitrogen gas is poured into the cavity


12




b


while the pressure and the flow rate thereof are appropriately adjusted. The nitrogen gas may be preheated before being poured into the cavity


12


so as to allow the nitrogen gas and the magnesium gas to be easily reacted with each other, whereby a temperature of the molding die


12


is prevented from being decreased.




In a state in which the magnesium-nitrogen compound is deposited on the surface of the inner wall of the cavity


12




b


, the molten metal


50


of aluminum is poured into the sprue


12




a


. At the time of such pouring of the molten metal


50


, the runner


16


is closed by the opening/closing stopper


18


and, after a predetermined quantity of the molten metal


50


is stored in the molten metal reservoir arranged in the sprue


12




a


, the opening/closing stopper


18


is opened to allow the molten metal


50


to be flown down from the sprue


12




a


whereby the molten metal


50


can be poured into the cavity


12




b


with a heightened flow rate thereof.





FIG. 3

shows a state in which the molten metal


50


is poured from the sprue


12




a


to the cavity


12




b


. The molten metal


50


is poured into the cavity


12




b


in a state in which the flow thereof is narrowed by allowing the molten metal


50


to pass through the runner


16


so as to increase the flow rate thereof.




The molten metal of aluminum which has been poured into the cavity


12




b


is contacted with the magnesium-nitrogen compound in the cavity


12




b


, an oxide film on the surface of the molten metal is deprived of oxygen by an action of the magnesium-nitrogen compound whereupon the surface of the molten metal is reduced to pure aluminum.




The molten metal of aluminum has a property that it is easily combined with oxygen to form an oxide film thereof and, by forming the oxide film, a running property thereof in the cavity


12




b


is hindered to cause a blow hole or a surface fold. To contrast, a method (reduction casting method) in which casting is performed while the molten metal of aluminum is allowed to contact the magnesium-nitrogen compound to reduce the oxide film formed on the surface of aluminum, is characterized in that the oxide film formed on the surface of the molten metal is reduced to be a surface of pure aluminum whereby it is prevented that the oxide film is formed to increase the surface tension of the molten metal, a running property thereof becomes favorable, the molten metal can be filled in the cavity


12




b


in a short period of time to eliminate a portion unfilled with the molten metal and, as a result, a favorable cast product without having a surface fold and the like can be obtained.




In the present embodiment, by pouring the molten metal into the cavity


12




b


via the runner


16


, the molten metal of aluminum is poured into the cavity


12




b


in a state of the turbulent flow. When the molten metal


50


is poured in the cavity


12




b


in such a turbulent flow as described above, a reduction reaction between the magnesium-nitrogen compound and the molten metal


50


of aluminum is accelerated, the flowing property of the molten metal of aluminum is heightened and, as a result, it becomes possible that the molten metal


50


is filled in the cavity


12




b


in a shorter period of time than before. As described above, when the molten metal


50


is poured in the cavity


12




b


in a state of the turbulent flow, the reduction reaction of the magnesium-nitrogen compound even to the molten metal


50


which is successively poured into the cavity


12




b


is maintained and acted thereon to enable a favorable casting to be executed.

FIG. 3

shows a state in which the molten metal


50


is poured in a state of the turbulent flow.




When the casting is executed by the reduction casting method, the flowing property of aluminium becomes extremely favorable whereupon filling of the molten metal in the cavity


12




b


is completed in a few seconds. Therefore, at the time the molten metal is poured in the cavity


12




b


via the runner


16


and the molten metal


50


is filled in the feeder head portion


15


, the runner


16


is closed by the opening/closing stopper


18


and, then, the molten metal in the cavity


12




b


is allowed to be solidified.




In a case in which the reduction casting method is used, since filling of the molten metal in the cavity


12




b


is completed in a few seconds, it is not necessary to maintain the temperature of the mold high in order to prevent the molten metal in the cavity


12




b


from being solidified as in a case of a conventional casting method. Therefore, solidification of the molten metal filled in the cavity


12




b


is completed in a short period of time. In fact, in a case in which the reduction casting method according to the present embodiment is used, casting can be executed while the molding die


12


is maintained in room temperature whereby a favorable cast product without having a surface fold, a blow hole and the like can be obtained.




In the casting apparatus according to the above-described embodiment, by using the molding die


12


in which the runner


16


is connected with the feeder head portion


15


arranged just upstream of the cavity


12




b


, the molten metal to be poured from the runner


16


is finally filled in the feeder head portion


15


and the casting can be performed while the shrinkage hole to be possibly generated when the molten metal is solidified is replenished with the molten metal from the feeder head portion


15


. Further, after the casting is performed, the cast product can be obtained by separating the feeder head portion


15


. In a case of the reduction casting method, since the capacity of the feeder head portion


15


can be set to be small, it is an easy work to separate a metal solidified in the feeder head portion


15


after the molten metal is solidified.




Further, a position of the runner


16


arranged in the molding die


12


can be appropriately selected in accordance with products so long as it is positioned such as to be communicated with the cavity


12




b


.

FIG. 4

shows another embodiment of the molding die


12


to be used in the casting apparatus


10


. This molding die


12


is characterized in that, aside from a molten metal passage (a first runner) which communicates with the cavity


12




b


via the feeder head portion


15


, another molten metal passage which connects the runner


16


(a second runner) directly with the cavity


12




b


is arranged. As described above, the molding die


12


according to the present embodiment is characterized in that the molten metal


50


is poured such that it becomes in a turbulent flow in the cavity


12




b


. Therefore, in the molding die


12


as shown in

FIG. 4

, the runner


16


is directly connected with the cavity


12




b


in an upstream side of a position from which the molten metal


50


is poured into the cavity


12




b


and, on this occasion, a diameter of the runner


16


is allowed to be smaller than that of the feeder head portion


15


to enable a flow rate of the molten metal at the time of being poured to be increased whereupon the molten metal


50


can be poured while it is allowed to be in a turbulent flow in the cavity


12




b.






When the molding die


12


according to the present embodiment is used, in a same manner as described above, after the magnesium-nitrogen compound is deposited on the surface of the inner wall of the cavity


12




b


, firstly, the molten metal


50


of aluminum is poured into a sprue


12




f


and, then, poured into the cavity


12




b


therefrom through the runner


16


. When the molten metal is poured into the cavity


12




b


through the runner


16


, it is done in a state of the turbulent flow, the reduction reaction between the magnesium-nitrogen compound and the oxide film on the surface of the molten metal in the cavity


12




b


is promoted and the cavity is filled with the molten metal in a state of an enhanced flowing property thereof.




On the other hand, the molten metal


50


of aluminum is poured also into the sprue


12




a


at the same time or a little later than it is poured into the sprue


12




f


and, then, the molten metal


50


of aluminum thus-poured into the sprue


12




a


is poured into the cavity


12




b


via the feeder head portion


15


. Finally, the molten metal is solidified while preventing the shrinkage hole to be generated at the time the molten metal is solidified by using the molten metal


50


filled in the feeder head portion


15


. In a case in which the reduction casting method is used, since the running property of the molten metal is extremely favorable, it is possible to perform casting almost without arranging the feeder head portion


15


.




As described above, it becomes possible to perform the favorable reduction casting by arranging the runner


16


in accordance with products or optionally arranging the feeder head portion


15


.




In the reduction casting method, it is an important factor that the oxide film formed on the surface of the molten metal is reduced to be pure metal and, then, the resultant pure metal is allowed to fill the cavity. In each of the above-described embodiments, the reason why the molten metal


50


of aluminum is poured into the cavity


12


via the runner


16


and, at this time, this pouring is performed while the molten metal


50


is allowed to be in the turbulent flow is that the reduction reaction is allowed to be promoted and, by this promotion of the reduction reaction, the flowing property of the molten metal is enhanced and a wetting property and a running property of the molten metal are allowed to be favorable to enable an advantageous cast product excellent in a transferring property (flatness) relative to the surface of the inner wall of the cavity


12




b


and having no surface fold and the like.




In a case of the molding die in which the runner is arranged in an upstream side of the cavity and, then, the molten metal is poured into the cavity via the runner, it is possible to adjust the flow rate and flow quantity of the molten metal into the cavity by means of adjusting the diameter and/or length of the flow passage of the runner. Therefore, by appropriately setting the diameter and/or length of the flow passage of the runner when the molding die is designed, it becomes possible to perform casting by pouring the molten metal into the cavity at an optimum flow rate and flow quantity thereof in accordance with each product.




Further, as described above, in a case of the reduction casting method, since the running property of the molten metal is favorable thereby easily filling the cavity of the molding die with the molten metal, it is not necessary to keep the molding die to be warmed as in the molding die used in the conventional casting apparatus and, since the heating device is not necessary in an apparatus constitution, the constitution of the casting apparatus can be simplified; further, there is an advantage that, since it is not necessary to apply the coating agent on the molding die, the constitution of the molding die itself can also be simplified.




Heretofore, the casting method which uses the molten metal of aluminum or an alloy thereof as the molten metal has been described, but the present invention is not limited thereto and can be applied to a molding method which uses the molten metal of any other metal such as magnesium, iron or the like or an alloy thereof.




In the reduction casting method, the reduction casting apparatus and the molding die to be used therein according to the present invention, as described above, by performing a completely different method of pouring the molten metal from that of the conventional gravity casting method in the point that the molten metal is poured while the molten metal is allowed to be in a turbulent flow at the time of pouring the molten metal into the cavity, the reduction reaction between the reducing compound to be generated in the cavity and the oxide film on the surface of the molten metal is promoted and the flowing property and running property of the molten metal in the cavity become favorable to obtain a favorable product without having a portion unfilled with the molten metal, the surface fold and the like. Further, since the flowing property and the running property of the molten metal become favorable, it is possible to enhance the yield of the product. Furthermore, with reference to the molding die, by arranging the runner in the upstream side of the cavity, a remarkable effect can be obtained such that favorable reduction casting can be performed by pouring the molten metal into the cavity while it is allowed to be in a turbulent flow and the like.



Claims
  • 1. A reduction casting apparatus, comprising:a sprue; a runner positioned adjacent the sprue; a removeable stopper positionable between the runner and the sprue to adjust a flow rate of molten metal; a feeder head portion having a diameter larger than a flow passage diameter of the runner; a gate in fluid communication with the feeder head portion and having a diameter smaller than the diameter of the feeder head portion; and a molding die adjacent to the gate and having a cavity for receiving the molten metal, wherein the gate, the feeder head portion and the runner are arranged so that the molten metal flows in a vertical straight line from the runner to the cavity.
  • 2. The reduction casting apparatus of claim 1, wherein the runner has a higher heat insulating property than the feeder head portion.
  • 3. The reduction casting apparatus of claim 1, wherein the runner is arranged such that it extends vertically downward to the feeder head portion and the molten metal is perpendicularly dropped from the sprue to the cavity.
  • 4. The reduction casting apparatus of claim 1, wherein the flow passage diameter is set smaller than the feeder head portion so that the flow rate of the molten metal to be poured into the cavity is brought faster than when the molten metal is poured from the sprue to the cavity directly via the feeder head portion.
  • 5. The reduction casting apparatus of claim 1, wherein a flow passage of the feeder head portion is provided in axial alignment with the gate.
  • 6. A reduction casting apparatus, comprising:a sprue; a runner positioned adjacent the sprue; a removeable stopper positionable between the runner and the sprue; a feeder head portion; a gate in fluid communication with the feeder head portion; and a molding die adjacent to the gate and having a cavity for receiving the molten metal, wherein at least the runner, the gate and the feeder head portion are in vertical alignment so that the molten metal flows from the runner to the cavity.
  • 7. The reduction casting apparatus of claim 6, wherein:the gate is in fluid communication with the feeder head portion and has a diameter smaller than the diameter of the feeder head portion; and the feeder head portion has a diameter larger than a flow passage diameter of the runner.
Priority Claims (1)
Number Date Country Kind
P.2001-101011 Mar 2001 JP
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 10/105,377, now U.S. Pat. No. 6,752,199, filed Mar. 26, 2002 which is now incorporated herein by reference.

US Referenced Citations (10)
Number Name Date Kind
1410775 Thomes Mar 1922 A
2770860 Webbere Nov 1956 A
2830894 Spedding et al. Apr 1958 A
3680628 McLean Aug 1972 A
3815665 Baur Jun 1974 A
4072180 Hoult Feb 1978 A
5275263 Mezger Jan 1994 A
6171363 Shekhter et al. Jan 2001 B1
6199619 Andersen Mar 2001 B1
6244328 Grolla Jun 2001 B1
Foreign Referenced Citations (3)
Number Date Country
197 20 183 Nov 1998 DE
03-230843 Oct 1991 JP
2000-280063 Oct 2000 JP
Continuations (1)
Number Date Country
Parent 10/105377 Mar 2002 US
Child 10/630873 US