Reduction instruments and methods

Information

  • Patent Grant
  • 10123829
  • Patent Number
    10,123,829
  • Date Filed
    Wednesday, June 15, 2016
    8 years ago
  • Date Issued
    Tuesday, November 13, 2018
    6 years ago
Abstract
The present subject disclosure provides a novel design for devices and methods for straightening a curved spine by using a reduction tool to move the spine with respect to an attached bone plate.
Description
TECHNICAL FIELD

The subject disclosure relates generally to spinal devices and methods of surgery. Specifically, the subject disclosure relates to reduction instruments and methods for use.


BACKGROUND OF THE SUBJECT DISCLOSURE

Back problems are one of the most common and debilitating occurrences in people of all ethnicities. In the United States alone, over 500,000 spine lumbar and cervical fusion procedures are performed each year. One of the causes of back pain and disability results from the rupture or degeneration of one or more intervertebral discs in the spine. Surgical procedures are commonly performed to correct problems with displaced, damaged, or degenerated intervertebral discs due to trauma, disease, or aging. Generally, spinal fusion procedures involve removing some or the all of the diseased or damaged disc, and inserting one or more intervertebral implants into the resulting disc space. Anterior lumbar interbody fusion (ALIF) and lateral lumbar interbody fusion (XLIF) procedures are two of the techniques that spine surgeons use to access the portions of the spine to be repaired or replaced. Replacement of injured or deteriorated spinal bone with artificial implants requires a balance of knowledge of the mechanisms of the stresses inherent in the spine, as well as the biological properties of the body in response to the devices. Spinal deformities typically need some sort of alignment device or technique to correct the deformity. Further, the size, configuration, and placement of a correction device require precision positioning and handling by a skilled surgeon.


SUMMARY OF THE SUBJECT DISCLOSURE

The present subject disclosure provides a description of novel reduction devices and methods which work with spinal plates to provide correction of a particular segment of the spine, depending on the needs or the functionality of the particular placement of the device.


In one exemplary embodiment, the subject matter is a spinal reduction device. The device includes a base having a longitudinal axis; a vertical post positioned substantially centrally on the longitudinal axis of the base, wherein the vertical post has a longitudinal axis which is substantially perpendicular to the longitudinal axis of the base; a translating nut adapted to translate along the longitudinal axis of the vertical post; and at least one guide, said at least one guide positioned on one end of the base, wherein the guide has a longitudinal axis which is generally perpendicular to the longitudinal axis of the base. According to one aspect, the guide is positioned relative to the base such that it angled medially from 0 to 10 degrees. According to another aspect, the guide is positioned relative to the base at a 6° angle.


In another exemplary embodiment, the subject matter is a spinal reduction device. The device includes a base having a longitudinal axis; a vertical post positioned substantially centrally on the longitudinal axis of the base; a translating nut adapted to translate along a longitudinal axis of the vertical post; and at least one guide, said guide positioned on one end of the base, each guide having a distal end that engages with the base; and a proximal end that has teeth which are adapted to engage with a head of a tap and prevent it from further rotation when the tap shaft is inserted a certain distance into an interior of the guide.


In yet another exemplary embodiment, the subject matter is a method of reducing a spine. The method includes positioning a bone plate adjacent to an anterior spinal column; attaching a reduction instrument to the bone plate; driving temporary taps through the guides and into the spine until the taps bottom out on teeth on proximal ends of the guides; using a driver to spin a translation nut and translate the reduction instrument away from the bone plate; and replacing the taps one at a time with bone screws.





BRIEF DESCRIPTION OF THE DRAWINGS

Many advantages of the present subject disclosure will be apparent to those skilled in the art with a reading of this specification in conjunction with the attached drawings, which include:



FIG. 1 shows a perspective view of a reduction device in connection with a spinal bone plate, according to an exemplary embodiment of the subject disclosure.



FIG. 2 shows a front view of a reduction device, according to an exemplary embodiment of the subject disclosure.



FIG. 3 shows a mid-planar cut of the front view of a reduction device, according to an exemplary embodiment of the subject disclosure.



FIG. 4 shows a side view of the pusher assembly portion of the reduction device, according to an exemplary embodiment of the subject disclosure.



FIG. 5 shows an exploded view of a reduction device, according to an exemplary embodiment of the subject disclosure.



FIG. 6 shows a front view of a reduction device, according to another exemplary embodiment of the subject disclosure.



FIG. 7 shows a front view of the pusher assembly portion of the reduction device, according to another exemplary embodiment of the subject disclosure.



FIG. 8 shows a perspective view of a reduction device in connection with a spinal bone plate, according to an exemplary embodiment of the subject disclosure.



FIG. 9 shows a front view of a reduction device with reduction taps in place, according to an exemplary embodiment of the subject disclosure.



FIG. 10A shows a front view of a reduction device with reduction taps in place and reduction driver engaged in an initial step, according to an exemplary embodiment of the subject disclosure.



FIG. 10B shows a front view of a reduction device with reduction taps in place and reduction driver engaged to place plate in a desired position, according to an exemplary embodiment of the subject disclosure.



FIG. 11A shows a side planar cut view of a reduction device with bone screws in place in an initial step, according to an exemplary embodiment of the subject disclosure.



FIG. 11B shows a side planar cut view of a bone plate in a desired position, according to an exemplary embodiment of the subject disclosure.





DETAILED DESCRIPTION OF THE SUBJECT DISCLOSURE

The following detailed description references specific embodiments of the subject disclosure and accompanying figures, including the respective best modes for carrying out each embodiment. It shall be understood that these illustrations are by way of example and not by way of limitation.


Illustrative embodiments of the subject disclosure are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. The versatile reduction device and related methods disclosed herein boast a variety of novel features and components that warrant patent protection, both individually and in combination.


While the subject matter is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the subject matter to the particular forms disclosed, but on the contrary, the subject matter is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the subject matter as defined herein. For example, any of the features of a particular example described herein may be used with any other example described herein without departing from the scope of the present subject matter.


The reduction instrument described herein has many uses, and in the embodiment presented, is configured for use in spine surgery to aid a surgeon in mechanically correcting the sagittal alignment of a spine during application of a bone plate to the anterior column of the spine. However, the instrument may be used in other geometries and positions as well to correct the alignment of the spine. In general, a combination of elements defines the reduction instrument, including (1) a reducer, (2) a reduction driver, and (3) reduction taps.


According to an exemplary embodiment shown in FIG. 2, a reducer device 100 includes first and second guides 105 and a pusher element 110 coupled to a base 120. The reducer 100 further includes a plate attachment element 114 to fix the reducer instrument to the bone plate 101, such as an anterior spinal plate, as shown in FIG. 1. In the embodiments shown in FIGS. 1-5, the plate attachment element 114 has two prongs which mate with corresponding apertures 104 in the bone plate 101 body. However, more than two prongs may also be used to provide for stable attachment of the reduction instrument 100 to the bone plate 101. Once the prongs of the plate attachment element 114 are mated with the corresponding apertures 104 of the plate 101, the guides 105 allow for symmetric reduction of a given vertebral level by using both lateral bone screw holes 109 on the bone plate, thereby distributing the load between two screw holes 109, as shown in FIG. 1. As shown in FIG. 1, the screw holes 109 are arranged as a linear array on the outer edges of the plate 101 such that the reduction instrument 100 is mated onto the plate 101 surface from one side to another side. The reduction instrument 100 is essentially positioned perpendicular to the longitudinal axis of the plate 101 shown in FIG. 1. Although illustrated with a pair of guides 105 throughout the disclosure, it is contemplated that the reducer could have a single guide, a pair of guides as shown, or three or more guides to accommodate the number of holes on an anterior plate at the vertebral level being treated.


As shown best in FIG. 1, the guides 105 are hollow, having a distal end 107 where the guides 105 engage the base 120 and an opposite proximal end 106. The proximal end 106 includes teeth 108 that are configured to engage with a corresponding structure in the head of a reduction tap 151 to inhibit further rotation of the tap 151 and thereby prevent stripping, or to prevent the distal end 152 of the tap to penetrate too far into the bony material 155. The pusher 112 includes a threaded shaft 115 configured to guide a translation nut 111 during use. The reduction taps 151 are dimensioned to have a smaller diameter at their distal ends 152 and throughout than the bone screws 156 that will ultimately be used to fix the plate 101 to the spine 155. According to an exemplary embodiment, the reduction taps 151 have a smaller diameter than the bone screws 156 but have the same thread form in their distal regions 152. This assists in setting a guide hole into the bony material 155 by the tap 151 without over-boring the bony material 155.


The reduction driver 153 is configured to be inserted over the threaded shaft 115 of the pusher 112 to engage the translation nut 111. The translation nut 111 may be a hexagonal nut, which translates vertically with respect to the longitudinal axis of the pusher 112, mates with a female hexagonal internal configuration within the distal end of the reduction driver 153 to allow for rotation of the translation nut, resulting in up/down motion of the nut 11 over the threaded portion 115 of the pusher 112. In use, the driver 153 will hold the plate 101 in place while pulling the taps 151 in a proximal direction away from the plate 101.



FIGS. 6 and 7 illustrate an alternative embodiment of the reducer instrument 100. The reducer 100 according to this embodiment has all the same features as the exemplary embodiment shown in FIG. 1, but has an alternative plate attachment feature 117. According to the embodiment of FIGS. 6 & 7, the plate attachment member 117 is a threaded post that is configured to engage a complementary threaded hole in a central longitudinal position of the anterior bone plate 101. Once the reducer instrument 100 is anchored to the plate 101, the reducer of this embodiment is used in the same way as described with respect to the embodiment of FIGS. 1-5.


In use, and as shown in FIGS. 8-11B, an anterior bone plate 101 is positioned adjacent to the anterior column of a spine 155 aligning bone screw holes with vertebral bodies. According to one exemplary embodiment, bone screws are placed at the cranial and caudal ends of the plate before reduction occurs. In this exemplary embodiment, one set of bone screws 154 engages the superior-most set of screw holes at the superior (cranial end) end of the plate 101 and another set of bone screws 154 engages the inferior-most (caudal end) set of screw holes at the inferior end of the plate 101. Other embodiments are contemplated that do not require the bone plate to be fixed to the spine at the cranial and/or caudal ends prior to the reduction step.


The reducer 100 is then attached to an anterior bone plate 101 adjacent a pair of screw holes 109 located on a central portion of the plate 101, i.e., in between the superior and inferior sets of screw holes. Proper attachment of the reducer 100 to the plate 101 is achieved by coupling the plate attachment member 114 of the reducer 100 to the bone plate 101 such that the central longitudinal apertures of the guides 105 are aligned with the screw holes 109 on the plate 100, as shown in FIG. 1.


Once the reduction instrument 100 is docked to the plate 101, reduction taps 151 are inserted through the guides 105 then through the holes 109 of the bone plate 101, until the head of the reduction tap 151 bottoms out on and engages the teeth 108 on the proximal end 106 of the guide 105.


After the taps 151 are in place, a driver 153 is attached to the reducer 100 over the threaded shaft 115 of the pusher 112 and engaging the translation nut 111. The translation nut 111 is rotated, causing the nut 111 to translate along the threaded shaft 115 of the pusher 112. This causes the distal end 113 of the pusher 112 to push against the plate 101 in a first direction while pulling the heads of the reduction tap 151 in a second, opposite direction. In other words, rotation of the driver 153 terns to pull the reduction instrument 100 upwards, which then in turn pulls up on the reduction taps 151 because the guides 105 push the heads of the taps 151 upwards during the movement. This action causes the vertebral body 155 coupled to the reduction taps 151 to be drawn closer to the plate 101 while the plate 101 remains stationary, thereby changing the alignment of the spinal segment being treated as the vertebral body 155 is brought in closer to the plate 101.


When the desired alignment of the vertebral body 155 is achieved, one reduction tap 151 is replaced by a first bone screw 156 by inserting the screw 156 through the central longitudinal aperture of the guide 105 and through the bone plate 100. After the first bone screw 156 is place, the other reduction tap is replaced by a second bone screw. This method is repeated for additional levels that require reduction.


The reduction instrument 100 is configured such that a plurality of reduction instruments can be employed simultaneously at a plurality of screw hole 109 locations on the plate 101. When a plurality of reduction instruments 100 is employed simultaneously, adjustments can be made in increments sequentially at each level being reduced until the desired alignment is achieved. For example, if two reduction instruments 100 are used simultaneously, a user could adjust the alignment of the first vertebral body, then adjust the alignment of the second vertebral body, then go back and adjust the alignment of the first vertebral body further, and so on. In an alternative embodiment, each vertebral body being realigned could be lagged to the plate to the desired level before adjacent levels are treated.


The foregoing disclosure of the exemplary embodiments of the present subject disclosure has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the subject disclosure to the precise forms disclosed. Many variations and modifications of the embodiments described herein will be apparent to one of ordinary skill in the art in light of the above disclosure. The scope of the subject disclosure is to be defined only by the claims appended hereto, and by their equivalents.


Further, in describing representative embodiments of the present subject disclosure, the specification may have presented the method and/or process of the present subject disclosure as a particular sequence of steps. However, to the extent that the method or process does not rely on the particular order of steps set forth herein, the method or process should not be limited to the particular sequence of steps described. As one of ordinary skill in the art would appreciate, other sequences of steps may be possible. Therefore, the particular order of the steps set forth in the specification should not be construed as limitations on the claims. In addition, the claims directed to the method and/or process of the present subject disclosure should not be limited to the performance of their steps in the order written, and one skilled in the art can readily appreciate that the sequences may be varied and still remain within the spirit and scope of the present subject disclosure.

Claims
  • 1. A spinal reduction device, comprising: a base having a plate facing surface, and an upper surface facing opposite the plate facing surface and at least one aperture extending through the plate facing surface and the upper surface;a reduction post extending through the base and including a plate attachment feature situated below the plate facing surface and an externally threaded shaft extending vertically above the upper surface;a translating translation nut threadedly engaged around the externally threaded shaft and translationally fixed to the base; andat least one guide extending upwards from the base and having a guide passage aligned with the at least one aperture, the guide engaged with the base such that the guide translates upwards with the base relative to the reduction post when the translation nut is rotated in a first direction about the externally threaded shaft.
  • 2. The spinal reduction device of claim 1, wherein the translation nut has a hexagonal outer geometry which matingly engages with a driver having a hexagonal female geometry, thereby allowing the driver to rotate the translation nut about the externally threaded shaft.
  • 3. The spinal reduction device of claim 1, wherein the plate attachment feature includes a pair of prongs adapted to engage with a corresponding pair of attachment apertures situated on a aperture on a central portion of a longitudinal axis of a bone plate configured for use with the spinal reduction device.
  • 4. The spinal reduction device of claim 1, wherein the plate attachment feature includes a threaded shaft which engages with a threaded aperture in a bone plate configured for use with the spinal reduction device.
  • 5. The spinal reduction device of claim 1, wherein the guide passage has a diameter dimensioned to receive a tap shaft and a length dimensioned to permit the tap shaft to extend a distance below the plate facing surface before a tap head engages a proximal end of the guide to prevent further extension of the tap shaft below the plate facing surface.
  • 6. The spinal reduction device of claim 5, wherein the proximal end of the guide has teeth which are adapted to engage with a tap head to prevent additional rotation of the tap.
  • 7. A spinal reduction device, comprising: a base extending from a first end to a second end and having a plate facing surface, and an upper surface facing opposite the plate facing surface, a first aperture situated in the first end and extending through the plate facing surface and the upper surface, and a second aperture situated in the second end and extending through the plate facing surface and the upper surface;a reduction post extending through the base between the first aperture and second aperture, the reduction post including a plate attachment feature situated below the plate facing surface and an externally threaded shaft extending vertically above the upper surface;a translation nut threadedly engaged around the externally threaded shaft and translationally fixed to the base; anda first guide extending upwards from the base first end and having a first guide passage aligned with the first aperture and a second guide extending upwards from the base second end and having a second guide passage aligned with the second aperture, the first guide and second guide being engaged with the base such that the first guide and second guide translate upwards with the base relative to the reduction post when the translation nut is rotated in a first direction about the externally threaded shaft.
  • 8. The spinal reduction device of claim 7, wherein the translation nut has a hexagonal outer geometry which matingly engages with a driver having a hexagonal female geometry, thereby allowing the driver to rotate the translation nut about the externally threaded shaft.
  • 9. The spinal reduction device of claim 7, wherein the plate attachment feature includes a pair of prongs adapted to engage with a corresponding pair of attachment apertures situated on a bone plate configured for use with the spinal reduction device.
  • 10. The spinal reduction device of claim 9, wherein the plate attachment feature includes a threaded shaft which engages with a threaded aperture in a bone plate configured for use with the spinal reduction device.
  • 11. The spinal reduction device of claim 9, wherein wherein the each of the first guide passage and the second guide passage have a diameter dimensioned to receive a tap shaft and a length dimensioned to permit the tap shaft to extend a distance below the plate facing surface before a tap head engages a proximal end of the respective first guide and second guide to prevent further extension of the tap shaft below the plate facing surface.
  • 12. A method of reducing a spine, comprising: positioning a bone plate along an anterior aspect of a spinal column such that it extends over a plurality of vertebrae, the bone plate including at least one fixation aperture aligned over one of the plurality of vertebra for receiving a bone screw therethrough to fix the bone plate to the spinal column;attaching a reduction instrument to the bone plate, the reduction instrument comprising: a base having a plate facing surface, and an upper surface facing opposite the plate facing surface and at least one aperture extending through the plate facing surface and the upper surface and aligned with the at least one fixation aperture;a reduction post extending through the base and including a plate attachment feature situated below the plate facing surface and an externally threaded shaft extending vertically above the upper surface;a translation nut threadedly engaged around the externally threaded shaft and translationally fixed to the base;at least one guide extending upwards from the base and having a guide passage aligned with the at least one aperture, the guide engaged with the base such that the guide translates upwards with the base relative to the reduction post when the translation nut is rotated in a first direction about the externally threaded shaft;driving a tap through the guide and into one of the plurality of vertebrae;rotating the translation nut in the first direction to translate base and at least one guide upwards along the reduction post and away from the bone plate such that the tap is translated upwards with the base and at least one guide and the vertebra attached to the tap is drawn towards the bone plate; andreplacing the tap with a bone screw.
  • 13. The method of claim 12, including the additional steps of repeating one or more of the steps as needed to drive a plurality of taps at various positions along the bone plate.
  • 14. The method of claim 12, wherein the bone plate extends over at least three vertebrae and includes a superior end, and inferior end, a central portion between the superior end and inferior end, and a central longitudinal axis extending from the superior end to the inferior end, the superior end including a first fixation aperture, the inferior end including a second fixation, and the central portion including a third fixation aperture and a fourth fixation aperture opposite one another across the central longitudinal axis.
  • 15. The method of claim 14, including the additional step of fixing the superior end of the bone plate to a superior-most vertebra of the at least three vertebrae with a bone screw advanced through the first fixation aperture and fixing the inferior end of the of the bone plate to an inferior-most vertebra of the at least three vertebrae with a second bone screw advanced through the second fixation aperture before attaching the reduction instrument to the bone plate, wherein the third fixation aperture and the fourth fixation aperture are both positioned over an intermediate vertebra of the at least three vertebrae.
  • 16. The method of claim 15, wherein the base extends from a first end to a second end along a second longitudinal axis, and includes a first aperture situated in the first end and extending through the plate facing surface and the upper surface, a second aperture situated in the second end and extending through the plate facing surface and the upper surface, a first guide extending upwards from the base first end and having a first guide passage aligned with the first aperture and a second guide extending upwards from the base second end and having a second guide passage aligned with the second aperture, the first guide and second guide being engaged with the base such that the first guide and second guide both translate upwards with the base relative to the reduction post when the translation nut is rotated in a first direction about the externally threaded shaft.
  • 17. The method of claim 16, wherein the reduction instrument is attached to the bone plate with the second longitudinal axis perpendicular to the central longitudinal axis.
  • 18. The method of claim 16, wherein the reduction instrument is attached to the bone plate with the first aperture aligned with the third fixation aperture and the second aperture aligned with the fourth fixation aperture.
  • 19. The method of claim 18, wherein driving a tap through the guide and into one of the plurality of vertebrae includes driving a first tap into the intermediate vertebra through the first guide and driving a second tap is into the intermediate vertebra through the second guide.
  • 20. The method of claim 19, wherein rotating the translation nut in the first direction translates the base, first guide, first tap, second guide, and second tap upwards along the reduction post and away from the bone plate, drawing the intermediate vertebra to the bone plate.
  • 21. The method of claim 20, wherein the first tap is removed and replaced with a bone screw while the second tap remains anchored in the intermediate vertebra.
  • 22. The method of claim 21, wherein the second tap is removed and replaced with a bone screw after the first tap is removed and replaced with a bone screw.
Parent Case Info

This application claims priority to U.S. Provisional Patent Application Ser. No. 62/175,624, filed on Jun. 15, 2015; the content of which is hereby incorporated by reference herein in its entirety into this disclosure.

US Referenced Citations (140)
Number Name Date Kind
4611581 Steffee Sep 1986 A
4696290 Steffee Sep 1987 A
5423826 Coates Jun 1995 A
5601556 Pisharodi Feb 1997 A
5653761 Pisharodi Aug 1997 A
5658336 Pisharodi Aug 1997 A
5697977 Pisharodi Dec 1997 A
5782831 Sherman Jul 1998 A
5893890 Pisharodi Apr 1999 A
6093207 Pisharodi Jul 2000 A
6309421 Pisharodi Oct 2001 B1
6440133 Beale Aug 2002 B1
6533791 Betz Mar 2003 B1
6790209 Beale Sep 2004 B2
6896676 Zubok May 2005 B2
6908484 Zubok Jun 2005 B2
6972037 Zubok Dec 2005 B2
6972038 Zubok Dec 2005 B2
6994728 Zubok Feb 2006 B2
6994729 Zubok Feb 2006 B2
6997954 Zubok Feb 2006 B2
6997955 Zubok Feb 2006 B2
7160300 Jackson Jan 2007 B2
7198643 Zubok Apr 2007 B2
7621918 Jackson Nov 2009 B2
7662182 Zubok Feb 2010 B2
7744649 Moore Jun 2010 B2
7811312 Stevens Oct 2010 B2
7879095 Pisharodi Feb 2011 B2
7914562 Zielinski Mar 2011 B2
7931654 Jones Apr 2011 B2
7959677 Landry Jun 2011 B2
8043338 Dant Oct 2011 B2
8100915 Jackson Jan 2012 B2
8133230 Stevens Mar 2012 B2
8162948 Jackson Apr 2012 B2
8172854 Blain May 2012 B2
8216313 Moore Jul 2012 B2
8231628 Zubok Jul 2012 B2
8283753 Okamura Oct 2012 B2
8287546 King Oct 2012 B2
8377067 Jackson Feb 2013 B2
8377098 Landry Feb 2013 B2
8377104 Jones Feb 2013 B2
8377130 Moore Feb 2013 B2
8388688 Moore Mar 2013 B2
8394109 Hutton Mar 2013 B2
8414626 Zielinski Apr 2013 B2
8435297 Zubok May 2013 B2
RE44296 Beale Jun 2013 E
8469960 Hutton Jun 2013 B2
8480740 Pisharodi Jul 2013 B2
8556975 Ciupik Oct 2013 B2
8575721 Okamura Nov 2013 B2
8591515 Jackson Nov 2013 B2
8597358 Landry Dec 2013 B2
8641742 Stevens Feb 2014 B2
RE44813 Beale Mar 2014 E
8679128 Seelig Mar 2014 B2
8795283 Petit Aug 2014 B2
8814914 Miller Aug 2014 B2
8821502 Gleeson Sep 2014 B2
8845733 O'Neil Sep 2014 B2
8876835 Petit Nov 2014 B2
8900238 Iott Dec 2014 B2
8936599 Glazer Jan 2015 B2
8936640 Zubok Jan 2015 B2
8940022 Landry Jan 2015 B2
8961608 Zubok Feb 2015 B2
9028552 Zubok May 2015 B2
9055978 Jackson Jun 2015 B2
9060825 Hutton Jun 2015 B2
9066763 Khoo Jun 2015 B2
9066811 Landry Jun 2015 B2
9084648 Seelig Jul 2015 B2
9101414 King Aug 2015 B2
9101415 Jackson Aug 2015 B2
9125703 McClintock Sep 2015 B2
9161788 Daubs Oct 2015 B2
9173682 Jackson Nov 2015 B2
9198771 Ciupik Dec 2015 B2
9204906 Cannestra Dec 2015 B2
9204909 Rezach Dec 2015 B2
9265534 Jackson Feb 2016 B2
9265535 Jackson Feb 2016 B2
9265536 Jackson Feb 2016 B2
9265537 Jackson Feb 2016 B2
9271767 Jackson Mar 2016 B2
9282979 O'Neil Mar 2016 B2
9289251 Leroux Mar 2016 B2
9295494 Strauss Mar 2016 B2
9320550 Hutton Apr 2016 B2
9445849 King Sep 2016 B2
20040073214 Mehdizadeh Apr 2004 A1
20050240270 Zubok Oct 2005 A1
20060184178 Jackson Aug 2006 A1
20060293680 Jackson Dec 2006 A1
20070093834 Stevens Apr 2007 A1
20070123989 Gfeller May 2007 A1
20080015601 Castro Jan 2008 A1
20090088803 Justis Apr 2009 A1
20100130981 Richards May 2010 A1
20110319899 O'Neil Dec 2011 A1
20110319998 O'Neil Dec 2011 A1
20110320000 O'Neil Dec 2011 A1
20120271358 Stevens Oct 2012 A1
20130012999 Petit Jan 2013 A1
20130018418 Petit Jan 2013 A1
20130066385 Benoist Mar 2013 A1
20130123865 Moore May 2013 A1
20130245691 Hutton Sep 2013 A1
20130274804 Hutton Oct 2013 A1
20130325071 Niemiec Dec 2013 A1
20140012321 Hutton Jan 2014 A1
20140018810 Knape Jan 2014 A1
20140031872 Jackson Jan 2014 A1
20140031873 Jackson Jan 2014 A1
20140074106 Shin Mar 2014 A1
20140074171 Hutton Mar 2014 A1
20140222090 Jackson Aug 2014 A1
20140277167 Hutton Sep 2014 A1
20140277168 Hutton Sep 2014 A1
20150032212 O'Neil Jan 2015 A1
20150051653 Cryder Feb 2015 A1
20150057713 Iott Feb 2015 A1
20150066042 Cummins Mar 2015 A1
20150081021 Ciupik Mar 2015 A1
20150164494 Glazer Jun 2015 A1
20150164651 Zubok Jun 2015 A1
20150216568 Sanpera Aug 2015 A1
20150230834 Cannestra Aug 2015 A1
20150272631 Jackson Oct 2015 A1
20150272632 Seelig Oct 2015 A1
20150351814 McClintock Dec 2015 A1
20160000479 Daubs Jan 2016 A1
20160015433 Jackson Jan 2016 A1
20160022328 Rezach Jan 2016 A1
20160038306 O'Neil Feb 2016 A1
20160120658 Zubok May 2016 A1
20160256195 Boachie-Adjei Sep 2016 A1
Foreign Referenced Citations (2)
Number Date Country
201760455 Mar 2011 CN
1998CA01282 Mar 2005 IN
Provisional Applications (1)
Number Date Country
62175624 Jun 2015 US