REDUCTION OF GASTROINTESTINAL TRACT COLONISATION BY CAMPYLOBACTER

Abstract
Campylobacter are the commonest reported bacterial causes of gastroenteritis in the UK and industrialized worlds. This invention relates to a method of preventing or reducing the colonisation of the gastrointestinal tract of an animal with. Accordingly, the present invention provides a method for disinfection of an animal comprising administering to said animal at least one compound that binds to MOMP or FlaA of in an effective amount to reduce the number of Campylobacter present in the gastrointestinal tract of said animal. The present invention also provides a method of preventing or reducing transmission of from one animal to another.
Description

This invention relates to a method of preventing or reducing the colonisation of the gastrointestinal tract of an animal with Campylobacter. In particular, it relates to reduction or prevention of colonisation of the gastrointestinal tract of poultry with Campylobacter. It also relates to uses of compounds that bind to adhesins on the surface of Campylobacter to prevent the bacteria from adhering to the wall of the gastrointestinal tract of animals and to treat Campylobacter infection in humans and animals.



Campylobacter are the commonest reported bacterial causes of gastroenteritis in the UK and industrialized world. Campylobacter jejuni (C. jejuni) is responsible for about 90% of Campylobacter infections, the majority of the remainder being caused by C. coli. Campylobacter form part of the natural gastrointestinal flora of many birds and domestic animals, but chickens are thought to constitute the largest source of human infection. Infected chickens are asymptomatic despite harbouring up to 108 colony forming units (cfu) per gram of intestinal content. Meat, in particular chicken meat, is often contaminated with intestinal contents including Campylobacter during slaughter. In humans, Campylobacter species cause diseases that vary in severity from mild watery diarrhoea to bloody dysentery. In a small subgroup of patients, the acute phase disease is followed by serious sequelae, including Guillain-Barré syndrome and reactive arthritis.


It is therefore of great interest to provide methods for reducing and preventing the risk of contamination of meat with Campylobacter and therefore the risk of human infection with Campylobacter. It is also of interest to provide new treatments for human infection with Campylobacter (campylobacteriosis).


Accordingly, the present invention provides a method for disinfection of an animal comprising administering to said animal at least one compound that binds to MOMP or FlaA of Campylobacter in an effective amount to reduce the number of Campylobacter present in the gastrointestinal tract of said animal.


The present invention also provides a method for disinfection of an animal comprising administering to said animal at least one compound that binds to MOMP or FlaA of Campylobacter in an effective amount to prevent said Campylobacter from forming a biofilm in the gastrointestinal tract of said animal or to reduce the amount of biofilm formed by Campylobacter in the intestinal tract of said animal.


The present invention also provides a method for preventing or reducing transmission of Campylobacter infection from one animal to another, for example preventing or reducing spread of Campylobacter infection within a flock or herd of animals, for example preventing spread of Campylobacter infection within a flock of chickens; said method comprising administering to said animals, for example said herd or flock of animals, for example said flock of chickens, at least one compound that binds to MOMP or FlaA of Campylobacter in an effective amount to prevent said Campylobacter from forming a biofilm in the gastrointestinal tract of said animal or to reduce the amount of biofilm formed by Campylobacter in the intestinal tract of said animal.


The methods of the present invention may allow disinfection, prevention of biofilm formation and reduction of transmission of Campylobacter between animals by preventing or reducing adherence of Campylobacter of the gastrointestinal tract of said animals. This is advantageous because the fewer Campylobacter that are in the gastrointestinal tract of an animal at the time of slaughter, the lower the risk of contamination of meat from the animal with Campylobacter. The fewer Campylobacter that are in the gastrointestinal tract of an animal the lower the chance of the Campylobacter forming a biofilm in the gastrointestinal tract of the animal. The fewer Campylobacter that are in the gastrointestinal tract of an animal, the lower the chance that the Campylobacter will spread from one animal to another, for example within a herd or flock of animals.


Method of the present invention may be used to reduce the amount of colonisation of the gastrointestinal tract of any animal with Campylobacter. It is particularly advantageous to provide the compounds to animals that will be slaughtered for human consumption, such as, for example, cattle, sheep, pigs, goats, deer, fish, shellfish and poultry. Poultry includes birds that are used for human consumption such as chickens, geese, turkeys and ducks. It is particularly advantageous to use the compounds of the present invention to reduce or prevent colonisation of the gastrointestinal tract of poultry, in particular chickens, with Campylobacter because chickens are a leading source of human infection with Campylobacter.



Campylobacter are gram negative, spiral rod shaped bacteria with a single flagellum at one or both poles. They belong to the epsilon proteobacteria class and are closely related to Helicobacter and Wolinella. Although these species are related they have very different culture requirements and different hosts. Campylobacter species usually live in the gut of animals, in particular chickens while Helicobacter lives in the stomach of humans. Although fastidious in their culture requirements, Campylobacter species, particularly C. jejuni and C. coli, are important human pathogens, causing gastroenteritis of varying severity. Under normal circumstances gastroenteritis is self-limiting, but sequelae associated with campylobacteriosis such as Guillain-Barre syndrome are potentially life threatening. There are many different reservoirs for Campylobacter but the most significant is contaminated meat, particularly poultry.


The number of Campylobacter in the gastrointestinal tracts of animals may be reduced by the methods of the present invention. In one embodiment the number of colony forming units (cfu) of Campylobacter in the gastrointestinal tract of an animal treated with the compounds of the present invention may be reduced by 50%, by 60%, by 70%, by 80%, by 90% or by 100%. In one embodiment Campylobacter may be substantially eradicated from the gastrointestinal tract of animals treated by the method of the present invention.


10000 cfu of Campylobacter are enough for successful chicken colonization. 1000 cfu of Campylobacter are enough to infect a human and cause disease in a human. Therefore, an effective amount of a compound of the present invention is enough of the compound to reduce the number of Campylobacter in the gastrointestinal tract of an animal to a number that is unlikely to cause infection in humans. The number of cfu of Campylobacter that would be ingested by a human if they ate meat from an infected animal may be related to the number of Campylobacter in the gastrointestinal tract of the animal at the time of slaughter but also depends on other factors such as the amount of contamination of the meat with the contents of the gastrointestinal tract of the animal at the time of slaughter.


An effective amount of the compound of the present invention is enough of the compound to prevent colonisation of the gastrointestinal tract of the animal with Campylobacter.


In one embodiment the compounds of the present invention may make Campylobacter less virulent and less capable of infecting humans even if the total number of Campylobacter in the gastrointestinal tract does not decrease. In this embodiment administering a compound of the present invention to an animal may affect the metabolism of Campylobacter and make them less adaptive to environment so that they can not colonize the gastrointestinal tract and are less likely to be transmitted the other animals or to humans.


An effective amount of a compound provided to an animal should be enough to provide the required degree of reduction of Campylobacter colonisation. This may depend on the type of compound and/or the size of the animal. In one embodiment an effective amount of the compound may be 0.3 to 32 mg/day/kg bodyweight of the animal.


The method of the present invention preferably reduces colonisation of the gastrointestinal tract with Campylobacter species, for example Campylobacter jejuni or Campylobacter Coli.


This is advantageous because Campylobacter jejuni is the commonest reported bacterial cause of gastroenteritis in the UK and industrialized world. Campylobacter jejuni (C. jejuni) is responsible for about 90% of Campylobacter infections, the majority of the remainder being caused by C. coli. Campylobacter form part of the natural gastrointestinal flora of many birds and domestic animals and there is therefore a high risk of contamination of the carcasses of these animals when they are slaughtered.


The compound used in the method of the present invention is preferably a compound that blocks the interaction of MOMP or FlaA on the surface of Campylobacter with the cells of gastrointestinal tract. Preferably the compound binds to MOMP or FlaA and competitively or non-competitively inhibits the binding of MOMP or FlaA on the Campylobacter with the cells of the gastrointestinal tract. Preferably the compound used in the present invention may bind to MOMP on the surface of Campylobacter jejuni. Preferably the compound used in the method of the present invention specifically binds to at least one of amino acid residues Arg352, Lys278, Lys385, Asn258, Leu290, Tyr294, Phe395 Ile337, Arg381, Asp261 and Ser397 of MOMP. In another embodiment the compound of the present invention reduces the interaction between at least one of amino acid residues Arg352, Lys278, Lys385, Asn258, Leu290, Tyr294, Phe395 Ile337, Arg381, Asp261 and Ser397 of MOMP and the gastrointestinal tract of an animal.


In one embodiment the compound used in the method of the present invention may be natural human histo-blood group antigen or a synthetic human-histo blood group antigen.


Natural human histo blood group antigens are sugars that occur naturally on red blood cells of humans. They are also expressed on the surface of epithelial cells, such as the cells lining the gastrointestinal tract and can be secreted in body fluids such as saliva and breast milk.


The common human histo blood group antigens (BgAgs) consist of a complex and polymorphic group of carbohydrates expressed on the surface layer of erythrocytes, as well as endothelial and many epithelial cells and secretions. Subtle differences in their structures cause major differences in antigenicity. Their common denominators are the types I and II core glycoconjugates, which are fucosylated in the bone marrow by H-(fucosyl) transferases into H-I and H-II respectively, before being added to the surface of erythrocytes. (11). The fucosylated glycans are the direct substrates for further glycosylation reactions that give rise to the epitopes for the A, B and Lewis blood group antigens. The ABO (or ABH) and Lewis BgAgs have been epidermiologically associated with susceptibility to several infectious agents.


Human blood group antigens (BgAgs) include H-I antigen, H-II antigen Lewis antigen Leb and Lex and Ley.


Human histo-blood group antigens, binding to the adherins, for example MOMP or FlaA, on Campylobacter prevent or reduce the ability of the Campylobacter to adhere to the epithelial cells of the gastrointestinal tract.


A synthetic human histo blood group antigen may be a molecule with the same chemical structure as a natural human histo blood group antigen but it is made outside of the human body, for example it may be made synthetically from suitable reagents or may be made in other organisms, such as bacteria, fungi or eukaryotes and expressed transgenically. In another embodiment a synthetic human histo blood group antigen may be a molecule that binds to the same part of MOMP or FlaA as a natural human histo blood group antigen. A synthetic human histo blood group antigen may be a sugar or a glycoprotein or a glycolypid. The synthetic human histo blood group antigen may be purified using one or more purification steps, for example chromatography steps, before being used in the method of the present invention.


A synthetic human histo-blood group antigen may be used to inhibit the binding or adhesion between MOMP and/or flaA and epithelial cells. It may bind to MOMP and/or FlaA and prevent or reduces MOMP or FlaA adhesion to epithelial cells and reduce or prevent colonisation of the gastrointestinal tract of an animal with Campylobacter.


A synthetic human histo-blood group antigen may be a sugar, for example a saccharide having the same structure as a natural human histo-blood group antigen such as for example H-I antigen, H-II antigen, Lewis antigen, Leb Lex or Ley.


The compound used in the method of the present invention may be a compound that has a structure that is different from a natural human histo-blood group antigen but that adheres to MOMP and/or FlaA and prevents or reduces MOMP or FlaA adhesion to epithelial cells and reduces or prevents colonisation of the gastrointestinal tract with Campylobacter. The compound may be a sugar or an oligosaccharide.


Preferably the compound is a molecule that adheres to MOMP. Suitably the compound is a molecule that can interact with loop 7 of MOMP in the glycosylated or unglycosylated form.


The compound used in the method of the present invention may be ferric quinate. The compound used in the method of the present invention may have one of the following structures:




embedded image


embedded image


The compound used in the method of the present invention may have a structure similar to that of Ferric Quinnate. The compound used in the present invention may be a compound with a structure similar to the structure of a human histo blood group antigen.


The compound used in the method of the present invention may be administered orally. This is advantageous because it is easy to administer compounds orally to animals. Oral administration is also a preferred method of administering a compound to ensure that it reaches the gastrointestinal tract.


Preferably the compound may be administered in an animal's feed or drinking water.


In the method of the present invention the compound may be administered to the animal at any time during its lifetime. In one embodiment the compound is administered to the animal at least once a day for a period of time before slaughter of the animal. For example the compound may be administered to the animal for between 1 and 10 days, preferably for between 1 and 8 days, between 1 and 6 days, between 1 and 4 days, before slaughter or for 2 or 1 days. In one embodiment a single dose of the compound may be administered to the animal between 1 and 4 days before slaughter. In one embodiment the compound may be administered to the animal every day for 3 days, 4 days or 5 days before slaughter. Chickens are often colonized by Campylobacter between 7 and 10 days before slaughter. Therefore in one embodiment the compound may be administered to a chicken less than 10 days before slaughter to disinfect the chicken and reduce colonisation of the gastrointestinal tract of the chicken before slaughter. In another embodiment the compound of the present invention may be administered to an animal before colonisation of the gastrointestinal tract of the animal with Campylobacter in order to prevent colonisation of the gastrointestinal tract of the animal with Campylobacter. In one embodiment the compound of the present invention is administered to a chicken more than 10 days before slaughter to prevent transmission of Campylobacter within a flock of chickens.


It is advantageous to administer the compound to the animal a short time before slaughter because the animal the amount of Campylobacter in the gastrointestinal tract of the animal is reduced at the time of slaughter so that there is a lower risk of contamination of the carcass with Campylobacter.


In one embodiment of the present invention the compound may be administered to an animal at a dosage of 0.3-32 mg/day/kilo as a solution having a range of concentration from 34-340 μM (0.02-0.2 g/L). A concentration of 0.2 g/L has an effect on colonization during the first three days post-infection and also on the binding of Campylobacter to blood group antigens may be reduced by 60%. In another embodiment the compound may be administered at a concentration of 2 g/L, which may prevent Campylobacter colonisation of the gastrointestinal tract of the animal and/or reduce the number of Campylobacter in the gastrointestinal tract of the animal to substantially zero.


In another embodiment the present invention provides a method for reducing the amount of Campylobacter in meat comprising the steps of:


Providing an animal with a compound as defined in any one of the preceding claims; and preparing a meat product from the animal. The animal may be any type of animal, preferably a poultry bird, preferably a chicken.


In another embodiment the present invention provides a method for identifying a compound for use in disinfection of animals, preventing or reducing adhesion of Campylobacter to the gastrointestinal tract or treatment of Campylobacter infection in humans or animals, said method comprising the steps of:

    • a) providing a simulation of MOMP or glycosylated MOMP;
    • b) selecting a candidate molecule that fits within the cavity between loops 4 and 7 of MOMP or selecting a candidate molecule which interacts with at least one of amino acid residues Arg352, Lys278, Lys385, Asn258, Leu290, Tyr294, Phe395 Ile337, Arg381, Asp261 and Ser397 of MOMP.


Compounds may be selected by docking them into an in silico model of MOMP to find a molecule that fits into the binding site of MOMP where the human histo blood group antigen binds with MOMP.


Preferably the compound is a molecule that can interact with at least one of amino acid residues Arg352, Lys278, Lys385, Asn258, Leu290, Tyr294, Phe395 Ile337, Arg381, Asp261 and Ser397 of MOMP.


Preferably the compound is a molecule that can interact with at least one or more of amino acid residues Arg352, Lys278 and Lys385 of MOMP or at least one or more of residues Asn258 and Lys278 or at least the residues 352 and 385 of MOMP. The compound may interact with at least residues Leu290, Tyr294, Phe395 and/or Ile337 of MOMP or at least one or more of residues Lys278, Arg352 and Arg381 of MOMP or at least one of Asp261 and Ser397 of MOMP.


The major contributors in the interaction of glycosylated MOMP with Leb are residues Arg352,381 and Lys278, whereas only residues 352 and 278 are involved in the interaction of non-glycosylated MOMP with Leb. Residues Arg352,381 are conserved in all sequences examined whilst residue Lys278 is semi-conserved and is replaced by Arg in some strains. The molecular properties of this amino acid suggests it would be able to mediate BgAg binding through hydrogen bond formation in a similar fashion to residues Arg352,381.


The present inventors have constructed an in silico model of glycosylated MOMP. The in silico model of MOMP may be used to identify amino acid residues that are in contact with various human histo-blood group antigens when they bind to MOMP. This in silico model allows the conformational changes that take place in MOMP when it is glycosylated to be studied. This can be advantageous because it allows selection of further compounds that could interact with MOMP, in particular compounds that can bind to the amino acids that have been identified. These compounds can then be tested in vivo or in vitro to check whether they bind to MOMP protein.


The adhesion of Campylobacter, in particular Campylobacter jejuni (C. jejuni) to human histo-blood group antigens is via the major subunit protein of the flagella (flaA) and the major outer membrane protein (MOMP). MOMP was shown to be glycosylated at Threonine268. This glycosylation was shown by in silico modelling techniques to have a notable effect on the conformation of MOMP and to increase adhesion of MOMP to human histo-blood group antigens.


Residues of MOMP that have been identified as binding to various natural human histo-blood group antigens include Arg352, Lys278, Lys385, Asn258, Leu290, Tyr294, Phe395 Ile337, Arg381, Asp261 and Ser397 of MOMP. It is advantageous to select candidate molecules that may be used in the present invention because they bind to MOMP by interacting with one or more of these residues in the structure of MOMP.


Once compounds have been selected in silico, they may made and tested to measure the binding to MOMP protein in vitro or in vivo. A quantity of the selected compound can be prepared for use in the methods of the present invention.


Compounds that are useful in the method of the present invention may be included in animal feed, as a feed ingredient or as a feed supplement. The animal feed, feed ingredient or feed supplement may be suitable for any animal, in particular animals that are to be slaughtered for human consumption, preferably poultry, more preferably chickens.


Compounds that are useful in the methods of the present invention may be provided to an animal in liquid or solid form or as a powder. They may be included as an ingredient in feed or animal food or as an ingredient in a feed or food supplement. In one embodiment the compounds are provided to chickens in chicken feed or as a feed ingredient mixed with chicken feed.


A feed may be a food intended for or suitable for consumption by animals. A food or a foodstuff may be a food that is intended or suitable for consumption by humans.


The present invention provides a method of disinfecting a foodstuff or a food comprising administering a compound as defined in any one of the preceding claims in an effective amount to the foodstuff to reduce the amount of Camylobacter in the foodstuff.


This is advantageous because it reduces the risk of infection with Campylobacter of humans who consume the foodstuff.


A foodstuff or a food may be for human consumption, in particular the food may be a meat product, for example a fresh meat product, a processed meat product, a chilled meat product, a frozen meat product or a cooked meat product. The meat product may be, for example a beef, lamb, pork, duck, chicken, goose, turkey, rabbit, fish or shellfish meat product. Preferably the meat product may be a poultry meat product, more preferably a chicken meat product.


The present invention also provides a compound as defined in the present invention for use in the prophylaxis or treatment of Campylobacter infection in humans. A compound as defined in the present invention may be used in the manufacture of a medicament for the prophylaxis or treatment of Campylobacter infection in humans.


The compound may be provided to humans to prevent or treat infection of humans with Campylobacter (campylobacteriosos). This is advantageous because the compounds prevent or reduce adhesion of Campylobacter to the epithelial cells in the gastrointestinal tract. This may prevent or reduce infection with Campylobacter because Campylobacter adheres to cells in the human gastrointestinal tract by docking onto human histo-blood group antigens that are expressed on the cells of the gastrointestinal tract. The compounds may compete with natural human histo-blood group antigens that are on the epithelial cells for binding of MOMP and FlaA and therefore reduce the amount of binding of Campylobacter to the cells.


The in silico model of MOMP may be used to develop or refine a vaccine against Campylobacter for use in humans.


The in silico model of MOMP may be used to develop or refine a vaccine against Campylobacter for use in birds, preferably poultry, more preferably chickens.


Subunit (or killed) vaccines have a number of advantages over live vaccines, including safety and ease of production, storage and distribution. To date only limited success has been achieved with subunit vaccines administered orally. The reason for this is assumed to be the lack of oral delivery to the appropriate site for development of immune-mediated protection. The assumption is that the most appropriate site would be the intestinal mucosa. Such delivery requires the presentation of antigen with a mucosal adjuvant. Currently there are no known mucosal adjuvants for birds.


Recently a number of delivery systems have been developed for mammalian mucosal vaccination regimes. One such system utilises a non-ionic, hydrophilic immunomodulator, Pluronic block copolymer F127, and the polysaccharide chitosan formulated into microspheres (Lee, Da Silva et al. 2008). Chitosan is used in a number of biomedical applications because of its bioavailability, biocompatibility, biodegradability, high charge density and non-toxicity. In addition this material has been shown to weaken the tight junctions of epithelial cell layers allowing the uptake of antigen and to reduce the rate of mucociliary clearance reducing antigen removal. Although this material appeared to be valuable in the development of mammalian vaccines and drug delivery systems it had not been tested in birds.


The microspheres were made using an ionic gelation process with tripolyphosphate (TPP). Briefly, 0.25% chitosan in 2% acetic acid was added drop-wise to 15 w/v % TPP under magnetic stirring. The mixture was sonicated and the MS beads removed from the TPP solution by centrifugation, washed with distilled water and resuspended in PBS. The antigens were then loaded onto the beads by co-incubating overnight at 37° C. After incubation, the suspension was centrifuged to separate the beads from unloaded antigens (MOMP/FlaA). The levels of antigen uptake were determined by protein concentration assays of protein solutions pre- and post-loading.


The present invention provides a method of treating or preventing Campylobacter infection in humans comprising administering to the human an effective amount of a compound as defined in any one of the preceding claims.


The present invention provides a kit comprising:

    • a) at least one compound as described in the present invention and optionally instructions for using the kit.





There now follows by way of example only a detailed description of the present invention with reference to the accompanying drawings, in which;



FIG. 1 shows the competitive effect of the soluble glycoconjugates, i.e. H-II, Leb or Ley on attachment of strain NCTC11168 to a series of BgAs.


A) An ELISA plate was coated with a selection of BgAgs. Specific binding was calculated by subtracting the BSA (negative control) values from the BgAg absorbance. Binding of strain NCTC11168 to BgAgs was inhibited significantly (p<0.05) by pre-incubation of cells with soluble glycoconjugates prior to adding them to the ELISA plate. Error bars; mean of triplicate values±SEM, number of repeating experiments was 3. Each group of bars, from left to right, NCTC11168, NCTC11168-H-II, NCTC11168-Leb, NCTC11168-Ley.


B) Identification of BgAg-binding proteins from strain NCTC11168 by using Re-Tagging method. Two proteins were identified at sizes of 45 and 59 kDa, corresponding to MOMP and FlaA, respectively.



FIG. 2 shows A) Inhibition of binding of strain NCTC11168 to H-II glycoconjugate in the absence of an inhibitor (non-treated, NT) and in the presence of purified MOMP of Cj-281 (MOMP(−)), low binder strain, S3—Table 1). Purified MOMP from NCTC11168 (MOMP(+)), and pre-incubation of NCTC11168 bacterial cells with H-II glycoconjugate (H-II). Pre-treatment of all examined MOMP and H-II had significantly reduced (p<0.001, ***) the bacterial binding to H-II antigen. In contrast, MOMP(−) had a lower effect compared with H-II or MOMP(+) due to the lower affinity for the H-II antigen. B) ELISA plate was coated with a selection of BgAgs. Specific binding was calculated by subtracting the BSA (negative control) values from the BgAg absorbance at 405 nm. Strain NCTC11168 and Cj-266 (high binder strain, S3—Table 1), and corresponding ΔflaA mutants, have been examined for binding to Leb, H-II, H-I, Lex and Lea. t-test confirmed the reduction in binding seen with mutants are significant (Leb; p=2.5E-05, H-II; p=0.012, H-I; p=0.001, Lex; p=0.029 and Lea; p=0.000) in strain NCTC11168. However, Cj-266ΔflaA mutation had no effect on binding, which indicates the binding capacity was compensated by MOMP protein. Each group of bars from left to right: NCTC11168, 11168-ΔflaA, Cj-266, Cj-266ΔflaA. C) A double mutant (DM) of ΔflaA and single substitution of glycosylation site in MOMP protein (Thr268 was substituted with Gly) was constructed in both strain NCTC11168 and Cj-266, and the binding to Leb H-I and H-II was examined. The binding was significantly reduced in NCTC11168-MOMPT/G but the reduced binding was not significant in Cj-266-MOMPT/G. Although, t-test confirmed the reduction in binding seen with NCTC11168-DM and Cj-266-DM the mutants are significant (p<0.05). Each group of bars from left to right: Leb, H-II, H-1.



FIG. 3 shows an overview of the mass spectrometry analysis by LC-MS/MS for both protein identification and glycosylated peptide characterization. A) Base peak chromatogram: Tryptic peptides are loaded on an on-line coupled C18 column and eluted into the mass spectrometer for analysis. B and C) MS precursor scan of the doubly charged glycosylated peptide at m/z 978.91 C) CID-MS/MS spectrum of the selected ion. D) Detection of glycan constituent of purified MOMP from different strains using biotinylated labeled lectins. GSL II: Griffonia (Bandeiraea) simplicifolia lectin II, DSL: Datura Stramonium lectin, ECL: Erythrina cristagalli lectin, LEL: Lycopersicon esculentum (tomato) lectin, STL: Solanum tuberosum (potato) lectin, VVA: Vicia villosa agglutinin and Jacalin: Artocarpus integrifolia lectin.


Jacalin lectin showed significant binding to NCTC11168 purified MOMP than the other used lectins. Jacalin lectin specifically recognizes Galβ1-3GalNAcα1-Ser/Thr (T-antigen) and/or GalNAc. E) Further analysis was revealed by using an antibody against the T-antigen to confirm Jacalin specificity. MOMP(s) purified form strains 255, 281 (low binder clinical isolates) and MOMPT/G didn't reveal significant binding to either Jacalin lectin or anti-T antigen compared with MOMP purified from strain NCTC11168 wild type. Error bars=mean of triplicate values±SED, No 2. Two independent experiments (P value). For each pair of bars: left hand bar—Jacalin lectin, right hand bar—Anti-Tantigen.



FIG. 4 shows a representation of MOMP (A, right) and glycosylated MOMP (A, left) in the approximate boundaries of the hydrophobic part of the outer membrane (OM). B), the superimposed lowest energy structure of MOMP (green) on the lowest energy structure of glycosylated MOMP (magenta) with RMSD of 1.291. Loops are shown in colours; β strands are green, L1 (residues 41-60, red), L2 (residues 87-109, magenta), L3 (residues 128-147, orange), L4 (residues 169-200 yellow) L5 (residues 227-233, black), L6 (residues 256-274, blue), L7 (residues 296-333, gray), L8 (residues 360-379, cyan) and L9 (residues 399-414, purple).



FIG. 5 shows a stereo cartoon of the MOMP backbone viewed from the extracellular side: β strands are green, L1 (red), L2 (magenta), L3 (orange), L4 (yellow) L5 (black) (L5), L6 (blue), L7 (gray), L8 (cyan) and L9 (purple) and its side view. The conformational changes in the glycosylate group induced by introduction of the ligands into the cavity of glycosylated MOMP. The complexes with Leb (A) and H-II (D). In addition, hydrogen bonds shown in light blue involved in the interactions of MOMP (B and E) and its glycolysated form (C and F) with Leb and H-II respectively in their active sites.



FIG. 6 shows examples of compounds that can be used in the present invention.



FIG. 7 shows the effect of a series of histo blood group antigens on biofilm formation. Comparison of biofilm formation between NCTC11168-WT, and corresponding mutants, ΔflaA and MOMP-T/G in presence and absence of free sugars. A) The most significant decrease in biofilm formation is seen in wild type strain compared to the mutants. However, the biofilm formation of MOMP268T/G strain is comparable to ΔflaA, which indicate that O-glycosylation of MOMP also play important role for this formation. For each group of bars from left to right: NCTC11168, NCTC11168 (sugar), MOMP-T/G, MOMP-T/G(sugar). B) Similar re-sults were observed except for core-II, other examined sugars significantly reduced the biofilm formation. For each group of bars from left to right: NCTC11168, NCTC11168(sugar), ΔflaA, ΔflaA (sugar).



FIG. 8 shows the lowest energy structure of MOMP from MD simulation with stereo cartoon of the MOMP backbone viewed from the extracellular side. MOMP forms hydrophilic channels through the outer membrane. The folding of β-barrel OMPs promotes trimer assembly and integration of the channel into the outer membrane. Moreover, two-dimensional crystallographic analysis showed that MOMP is structurally related to the family of trimeric bacterial porins.


CD spectroscopy analysis also demonstrated that the folded monomer mainly com-prised β-sheet secondary structure, in agreement with the so called β-barrel structure of porins. MOMP folded monomers are able to form channels in artificial lipid bilayers with the same conductance properties as monomers embedded into trimers, which suggests that the folded monomer is the functional unit of the MOMP porin.



FIG. 9 shows molecules used in the modelling of molecules that bind to MOMP.



FIG. 10 shows colonisation levels of chicks challenged with wild-type campylobacter strain NCT11168-0 or mutant campylobacter strain MOMP268T/G.



FIG. 11 shows Ferric-Quinate 1, 3, 4, 5-Tetrahydroxy Cyclohexan carboxylic acid



FIG. 12 shows the inhibitory potential of Ferric Quinate Fe(QA)3 on adherence of C. jejuni was analyzed by ELISA using BgAgs (Core-I, Core-II, H-I, H-II, Leb, Ley and Lex).



FIG. 13 shows the inhibitory potential of Ferric Quinate Fe(QA)3 on adherence of C. jejuni was analyzed by ELISA using BgAgs (Core-I, Core-II, H-I, H-II, Leb, Ley and Lex).



FIG. 14 shows colonisatin of chicks by C. jejuni 11168-O following FeQ (0.034 mM) treatment.



FIG. 15 shows colonisatin of chicks by C. jejuni 11168-O following FeQ (0.34 mM) treatment.



FIG. 16 shows metagenomic analysis of population treated with FeQ Genus/species level.



FIG. 17 shows metagenomic analysis of population treated with FeQ Phylum level.

  • 1—Ley R, Bäckhed F, Turnbaugh P, Lozupone C, Knight R, Gordon J (2005). “Obesity alters gut microbial ecology”. Proc Natl Acad Sci USA 102 (31): 11070-5. doi:10.1073/pnas.0504978102. PMC 1176910. PMID 16033867
  • 2—Ley R, Turnbaugh P, Klein S, Gordon J (2006). “Microbial ecology: human gut microbes associated with obesity”. Nature 444 (7122): 1022-3. doi:10.1038/4441022a. PMID 17183309.
  • 3—Turnbaugh P, Ley R, Mahowald M, Magrini V, Mardis E, Gordon J (2006). “An obesity-associated gut microbiome with increased capacity for energy harvest”. Nature 444 (7122): 1027-31. doi:10.1038/nature05414. PMID 17183312.






Campylobacter jejuni is an important cause of human food-borne gastroenteritis. Despite the high prevalence and medical importance of C. jejuni infection, fundamental aspects of pathogenesis remain poorly understood, in particular the detailed molecular interactions between host and pathogen. Human histo-blood group antigens (BgAgs) are often targeted by mucosal organisms as levers for adherence prior to invasion. Using a retagging approach, the corresponding surface-exposed BgAgs-binding adhesins of C. jejuni were identified as the major subunit protein of the flagella (FlaA) and the major outer membrane protein (MOMP). O-glycosylation of FlaA has previously been reported, and is required for filament assembly and for modulating flagella functionality. Purified MOMP like FlaA was O-glycosylated. The O-glycosylation was localised to Thr268 and suggested as Galβ1-3-(GalNAc)3-α1-Thr268. Site-directed substitution of MOMP Thr268/Gly led to a significant reduction in binding to BgAgs. Furthermore, molecular dynamics (MD) simulation modelling techniques suggested that O-glycosylation of MOMP has a notable effect on the conformation of the protein. Thus, C. jejuni uses O-glycosylation of surface-exposed proteins to modulate the conformation and binding capability.


Prevention and treatment of human infection with Campylobacter and its consequences are hampered by a poor understanding of the detailed molecular interaction between the host and the pathogen.


Studies by the present inventors have shown that C. jejuni specifically bind all human BgAgs, and identified the bacterial ligands responsible for binding. These are the flagellin protein FlaA and the major outer membrane protein MOMP.


The present studies have also found that MOMP is O-glycosylated, and shares a common BgAg binding site with FlaA, which has already been shown to be 0-glycosylated. Glycosylation of MOMP causes it to undergo conformational changes which alters its affinity for binding of, and hence recognition of, BgAgs compared with unglycosylated MOMP protein. Conformational MOMP epitopes are important in host immunity, and variation in surface-exposed regions probably occurs as a result of positive immune selection during infection. Identification of the protein glycosylation profile of C. jejuni, in the outer membrane is helpful in understanding the diverse pathogenicity of C. jejuni strains among different hosts.


The present studies have created an in silico model of glycosylated MOMP, which have been used to identify the amino acids which mediate the bacterial binding to BgAgs. The model and the amino acids that are essential for binding to BgAgs may be used to identify candidate drug targets. The model may also be used to predict which molecules will bind to MOMP and can reduce the adhesion of the Campylobacter carrying MOMP to cell walls.


The present studies have found that BgAgs can inhibit bacterial adhesion and biofilm formation and have identified molecules that can be used (a) for treatment of humans suffering from Campylobacteriosis; (b) to prevent colonisation of chickens with Campylobacter ssp; and (c) to eliminate chicken colonisation in infected flocks.


Previous attempts to reduce the risk of human infection with Campylobacter ssp involved the use of vaccines employing nucleic acids encoding Campylobacter proteins, in particular flagellin (US2007/2049553).


This is completely different from the approach of the present invention which uses specific compounds to block the ligand binding site of the Campylobacter and hence inhibit Campylobacter adherence and colonisation in the chicken gastrointestinal tract. Compounds that are mimetics or synthetic human histo-blood group antigens and synthetic sugars such as Ferric Quinate (Fe-Q) may be used in the present invention.


EXAMPLES


C. jejuni Binds a Wide Range of Human BgAgs.


To determine the range and specificity of BgAgs that bind C. jejuni, Core-I, Core-II, H-I, H-II, Leb, Lex, and Ley were immobilised in specialised 96-well ELISA plates and incubated with log-phase digoxigenin (Dig)-labelled C. jejuni strain NCTC11168. The strain bound to all the examined BgAgs, the degree varying only marginally between BgAgs (S1—Fig.).


Blood group antigens were obtained from IsoSep (Sweden). The lab strain (ATCC11168) was obtained from ATCC bank and the clinical strains from a collection belong to Prof. Julian M. Ketley (Department of Genetics, University of Leicester, Leicester LE1 7RH, UK).


Pre-incubation of bacteria or coated plates with soluble BgAgs inhibited the binding, confirming specificity (FIG. 1A). In addition, adhesion assays by co-culturing C. jejuni strain NCTC11168 and Caco-II cells was carried out. Soluble H-II caused significant reduction in bacterial binding to the host cells (S2—Fig.). In addition, the same range of immobilized BgAgs was used to test the ability of 39 clinical isolates of C. jejuni. All C. jejuni isolates bound to all examined BgAgs, albeit to a variable degree (S3—Table). Correlation analysis between each sugar and principal component analysis was performed. It enables a visualization of the correlations—the structurally closer (S4—Table) the sugars are to each other, the more similar they are in terms of binding capacity (S4—Fig.).


The high degree of specificity by H. pylori BgAg-binding adhesions is in contrast to our findings with C. jejuni, which appears to bind to a wide range of related antigens. This may reflect the fact that H. pylori has a very restricted host range (infecting only humans), whereas C. jejuni is able to establish infection in a wide range of birds and mammals and may have gained an evolutionary advantage by broadening its specificity and maximising its survival in different hosts.



C. jejuni FlaA and MOMP Mediate the Binding to a Wide Range of Human BgAgs.


For identification and purification of BgAgs-binding bacterial adhesins, a retagging technique was used. Two generated protein bands in FIG. 1B identified by mass spectrometry as the major outer-membrane protein (MOMP, 45 kDa) and FlaA (the major flagella component, 59 kDa), respectively. The C. jejuni MOMP is a multi-functional porin and is essential for bacterial survival; it is predicted to comprise outer membrane-spanning beta stands separating periplasmic and surface-exposed loops. That it is encoded by the porA gene which is extremely genetically diverse and the variability of the porA surface loops provides evidence that immune selection strongly influences the diversity of this protein. Interestingly, the greatest variation in both putative amino acid sequence and length was formed in loop 4.


MOMP was purified under native conditions from strain NCTC11168 and inhibition ELISA and confocal experiments showed that both purified MOMP and H-II significantly inhibited binding of NCTC11168 to H-II antigen (FIG. 2A). Deletion mutant of ΔflaA in strains NCTC11168 and Cj-266 (a clinical isolate, S3—Table) were constructed. This had significantly reduced the binding capacity to all examined BgAgs except for Lex in strain NCTC11168 (FIG. 2B). By contrast, ΔflaA deletion in strain Cj-266 didn't exhibit reduced binding to BgAgs (FIG. 2B), which indicated that MOMP per se is sufficient for adherence to BgAgs.


Invasive properties could be partially restored by centrifugation of the mutants onto the tissue culture cells, indicating that motility is a major, but not the only, factor involved. Here, we identified the corresponding C. jejuni adhesins, which mediate the bacterial binding to BgAgs.


Ability of MOMP268T/G to Colonise Chicks

The ability of MOMP268T/G to colonise chicks was determined. 6-weeks old birds (n=10 per group) were challenged with 3×103 cfu wild-type strain NCTC11168-0 or its isogenic mutant MOMP268T/G by oral gavage. Caecal colonisation levels were determined in birds from each group at 7 days post-challenge. The results show a significant reduction in the geometric mean colonisation levels in the caeca in the MOMP268T/G group compared to the wild-type (See FIG. 10). In addition, the ability of the mutant strain to invade the chicken's liver was examined. The results showed that MOMP268T/G was completely unable to invade compared to the wild-type strain, These results confirm the importance and biological relevance of MOMP glycosylation in the establishment of colonisation in vivo. Values less than 100 in FIG. 10 are arbitrary figures, and no campylobacter was recovered.


Ferric Quinate; an Inhibitor for C. jejuni Adherence


A number of phenolic compounds, including caffeic and quinic acids (Baqar et al.), have been shown to have high levels of antioxidant activity and other potentially health-promoting effects in vitro. Also, quinic acid occurs in tea, coffee, fruits and vegetables. In particular, plants use the low molecular mass D-(−)-quinic acid (Baqar et al.) for mobilization of Iron and further use of this metal by cellular structures in metabolic pathways (Menelaou et al., 2009).


Ferric quinate Fe(QA)3 was identified as having promising inhibitory effects in vitro and in vivo on C. jejuni adhesion to BgAgs.


The inhibitory potential of Ferric Quinate Fe(QA)3 on adherence of C. jejuni was analyzed by ELISA using BgAgs (Core-I, Core-II, H-I, H-II, Leb, Ley and Lex). C. jejuni was pre-incubated with 34 μM Fe(QA)3 and specific inhibition was also analyzed by post-treatment of C. jejuni with Fe(QA)3 which bound to BgAgs at the time. The result showed that Fe(QA)3 conferred a 90% inhibition of binding, while Quinic Acid alone provided no inhibition of C. jejuni binding to all examined BgAgs. In addition the results from the bacterial culture (MH) containing Fe(QA)3 approach also demonstrated reproducible inhibition of microbial adherence. In addition, the sequential passages (P) of bacteria to the new plate containing Fe(QA)3 didn't cause any resistance concerning the binding abilities (see FIGS. 12 and 13).


To further clarify the growth-effect properties of Fe(QA)3, we investigated the effect of adding Fe(QA)3 to the culture medium. Supplementation with the different concentrations of Fe(QA)3, (34 and 340 μM) did not affect the growth of C. jejuni NCTC11168 strain.


These inhibitory properties against C. jejuni adherence to BgAgs were analyzed in vivo. Ferric Quinate was used as an additive to water (0.034-0.34 mM) and as an inhibitor of C. jejuni NCTC11168 strain adherence to, and thus colonization, in the chicken intestinal tract. 6-weeks old birds (n=10 per group) were challenged with 3×103-5 cfu wild-type strain NCTC11168-O by oral gavage. Caecal colonisation levels were determined in birds from each group at 3 and 7 days post-challenge.


The complex reduced significantly the adhesion of C. jejuni (2-3 Log at 0.34 mM concentration) to the intestinal mucosa and epithelial lining by inhibiting the binding between bacterial adhesins, such as MOMP (confirmed by model), may FlaA, and the corresponding binding sites in the host intestinal epithelium see FIGS. 14 and 15.


In A Metagenomic analysis of population treated with FeQ at a Genus/species level a difference can be seen between FeQ treated and non-treated birds at day 7, there is a shift in the population with increase of Bacteriodetes phylum, especially Bacteroides feacalis (1, 2, 3).


MOMP is O-Glycosylated.


Campylobacter specifically modify their flagellar proteins with O-linked glycans that can constitute up to 10% of the protein mass. These modifications are necessary for flagellum assembly, and thus affect secretion of virulence-modulating proteins, bacterial colonization of the gastrointestinal tract, autoagglutination and biofilm formation.


MOMP was purified from strains NCTC11168 and Cj-281 under native conditions and analysed by Nanoflow LC-MS/MS FT/ICR following in-gel protein digestion as described in A. Shevchenko, M. Wilm, O. Vorm, M. Mann, Anal Chem 68, 850 (Mar. 1, 1996). The migration of trypsin-digested MOMP peptides from both strains was essentially identical except for one peptide corresponding to amino acids 268-278, corresponding to the predicted loop 6: the strain NCTC11168 peptide showed a greater mass; MS/MS analysis confirmed that glycosylation of Thr-268 with a Hex-(HexN-acetylamine)3 (where Hex can be Glucose or Galactose) was responsible for the observed shift (FIGS. 3A, B and C). FASTA sequence alignment of clinical isolates indicated that Thr-268 on loop 6 of strain NCTC11168 appears to be conserved in 52% of isolates.


Site-directed substitution of Thr268 to Gly was carried out on MOMP of strain NCTC11168 and a clinical isolate Cj-266 (yielding MOMP268T/G, S5—Table). This substitution caused a clear shift in the protein's migration, strongly suggesting the loss of its glycosylation (S5). The ability of this mutant to bind to a range of BgAgs in an ELISA assay was examined and it was shown to have a reduction in binding to each of examined BgAgs (FIG. 2A). Also, a reduced biofilm formation was observed, which indicates that O-glycosylation of MOMP plays an important role in this context (S8—Fig. A and B).


The Role of PglB and PseD Transferases on MOMP Glycosylation.

Flagellin is the only O-glycosylated C. jejuni protein to have been reported and glycans constitute ca. 10% to this protein's weight. The predominant O-glycans attached to the Campylobacter flagellum are derivatives of pseudaminic acid or legionaminic acid, which are C9 sugars that are related to sialic acids. In addition, the related human gastric pathogen H. pylori also O-glycosylates its flagella with Pse, similarly to C. jejuni, and modification is required for bacterial motility and flagellar assembly.


Interestingly, specific loss of Pse5Am due to mutation of the Pse biosynthesis A gene (pseA) in C. jejuni subsp. jejuni 81-176 resulted in loss of auto-agglutination and reduced adherence to and invasion of intestinal epithelial cells in vitro, and reduced virulence in the ferret model.


Also, PseD as a putative PseAm transferase showed that mutation in pseD lacked PseAm on flagellin and failed to auto-agglutinate.


The general protein glycosylation (Pgl) pathway involves several key “Pgl” enzymes, of which PglB is critical for protein N-glycosylation i.e. transfer of the first glycan molecules to the target proteins at specific Asn residues.


In order to evaluate the contribution of PseD and PglB transferases on C. jejuni MOMP glycosylation and its role on bacterial binding activity, a pglB deletion mutant was created in strain Cj81-176 and pseD deletion in strain NCTC11168; pglB deletion had no detectable impact on MOMP gel migration, glycan staining (data not shown), or bacterial binding to any of the examined BgAgs (S7—Fig. A). However, strain NCTC11168 pseD deletion resulted a significant reduction in binding to all examined BgAs and biofilm formation (data not shown).


These findings indicate that C. jejuni strain NCTC11168 encodes a transferase that is involved in post-translational modification of protein, which plays an important role in bacterial adhesion and reveals unusual post-translational modifications; an O-linked Hex-(HexNAc)3 at Thr268. These post-translational modifications might undergo phase variation and may also vary in structure from one generation of C. jejuni to the next, and have a function in immune escape.


Moreover, these findings provide new insights into MOMP structure and resolve long-standing issues regarding the adhesion molecules which mediate the bacterial binding to the BgAgs. The pathogenesis and study the effects on processes such as colonization, invasion, and the ability to stimulate the host inflammatory response remain to be elucidated.


Determination of MOMP Glycan Composition.

Lectin kit was used for determination of the MOMP glycosylation constituent. The kit consists of 7 different lectins with overlapping specificity. The purified NCTC11168-MOMP in lectin array revealed significant binding to Jacalin lectin and in a lesser extent to GSL and LEL (FIG. 3D). Among the galactose-specific lectins, the lectin from Artocarpus integrifolia, known in the literature as Jacalin, exhibits specificity toward human tumour specific Thomsen-Friedenreich disaccharide (T-antigen, Galβ1-3GalNAcα1-Ser/Thr).


Moreover, to confirm the Jacalin binding specificity, monoclonal anti-T-antigen was used against purified MOMP isolated from different strains (NCTC11168-MOMP, NCTC11168 MOMP268T/G and two clinical isolates with low binding activity; Cj281 and Cj-255). FIG. 3E shows that anti-T antigen antibody and Jacalin lectin reacted specifically with purified NCTC11168-MOMP. The observation that NCTC11168-MOMP interacts with Jacalin and anti-T antigen but not MOMP isolated from low binder strains and NCTC11168 MOMP268T/G (FIG. 3E) indicates that strain NCTC11168-MOMP is likely to be the O-linked trimeric form of T-antigen (Galβ1-3GalNAcβ1-4GalNAcβ1-4GalNAcα1-Thr268).


Glycosylation of MOMP with T-antigen presented herein provides an important insight on the role of glycosylation for C. jejuni binding activity to Lewis antigens and in MOMP immunogenicity. Further determination of the other N- and O-glycosylated outer membrane proteins may shed light into the development of a glycoconjugate based vaccine in the future.


The Role of Glycan in MOMP Binding to BgAgs

The advances in computer technology and new modelling techniques have facilitated simulations of peptide folding at the atomic level. Although gram-negative bacteria possess quite different homology in primary sequences of their porins, they are remarkably similar in their beta-barrel structure. Hence, we employed the beta-barrel structure from Comamonas acidovorans (1E54.pdb) as a template and constructed our model based on this assumption. In order to understand better the role of MOMP glycosylation in C. jejuni binding to the BgAgs, here we present the construction and molecular dynamic properties of MOMP and its glycosylated form.


The initial structure was constructed and showed to have 9 loops and 18 beta-strands. The lowest energy structure obtained from molecular dynamics (MD) simulations at 300 Kelvin (K) is represented in S9—Fig. A and B. This structure was glycosylated at residue 268 with a glycosyl group. The lowest energy structure of glycosylated MOMP (gly-MOMP) obtained from MD simulations was superimposed on the lowest energy structure of MOMP to see the conformational changes induced by the introduction of glycosylation as presented in FIG. 4B. It shows that the major changes occur in loops 4, 6 and 7 constructed roughly of 169-200, 256-274 and 296-333 residues where loop 6 bears the glycosyl group. However, it shows that a small change appears in the barrels. The approximate boundaries of two proteins in the hydrophobic part of the outer membrane are indicated by horizontal lines as represented in FIG. 4A. Interestingly, the galactosyl residue has a favourable interaction with Arg328 residue as indicated in FIG. 4 but upon complex with H-II the glycosylated residue undergoes considerable conformational changes where this interaction vanishes and the group tends to move towards loop 4 to interact with Thr186 and 187 (FIG. 4A). In contrast, this conformational change did not occur in the case of gly-MOMP with Leb.


The MOMP protein has a canal-like cavity as seen in S9—Fig. A and B, which is expected to be capable of accommodating very large molecules. A mimic of Lewis antigen, type-1 Lewis carbohydrate determinant (Leb) and type-2 H-II antigen (S9—Scheme 2) were docked into the cavity of MOMP and gly-MOMP. These complexes were computed for MD simulations. The average energies derived from MD simulations of complexes are listed in S9—Table. The introduction of the ligands within the cavity of MOMP leads to a remarkable effect on conformational changes in the loops, especially in loops 4 and 7. These two loops are the longest among the rest and obviously undergo significant conformational changes compared with others. Interestingly, it was found that gly-MOMP has a relatively stable structure since it shows that only loop 7 slightly undergoes conformational changes upon this complex. This may mean that glycosylation enhances the stability of the protein and allow it to be immunologically inert through molecular mimicry of its host.


Corresponding MOMP amino acids, which mediate binding to Leb and H-II antigens. The interactions involved in the complexes of both proteins with Leb and H-II are represented in FIG. 5A-F. The channel of these barrel proteins largely contains arginine and lysine residues, which are likely responsible for the recognition of these sugars. It is apparent that gly-MOMP has favourable interactions with Leb compared to MOMP. The residues Arg352, Lys278 and 385 seems to be the major contributor in the interaction of the glycosylated protein with Leb via hydrogen bonds whereas only the residues Asn258 and Lys278 are involved in the interaction of MOMP with Leb. The residues 352 and 385 are the members of the beta-barrel 7, which are the part of loop 7. This loop, as mentioned earlier, mostly undergoes conformation changes during the molecular dynamic simulation (FIG. 4B). The glycosyl group interacts with this loop, thus leading to favourable conformational change for the interaction, and consequently resulting in a well-orientation of these residues to interact with Leb. The glycosyl group is sandwiched between loops 4 and 7, probably influencing the dynamics of these loops, thus contributing to the binding ability of the protein. Calculations also show that the glycosylated protein has more favourable van der Waals (vdw) interactions compared with MOMP. It appears that the residues Leu290, Tyr294, Phe395 and Ile337 are well-located over the hydrophobic surface of Leb in the complex of gly-MOMP compared with MOMP (FIGS. 5B and C). This is reflected in 67 kcal/mol vdw energy difference between two complexes. It seems that H-II is bound to proteins with a similar mode to Leb. The residues Lys278, Arg352 and 381 are involved in the complex of both proteins with H-II (FIGS. 5E and F). The only difference is in the residues Asp261 and Ser397, the first is involved in the complex of MOMP and the second in gly-MOMP. The very large binding energy obtained for the complex of H-II by MMPBSA could not be explained but it still shows that gly-MOMP binds to H-II better than MOMP itself.


The other outcome gathered from MD calculations is the conformation and alignment of the ligands within the cavities of two proteins. They show that both ligands have different conformational orientations in the active sites of the proteins as indicated in S9-FIG. 2A,B.


In conclusion, although MD simulations were carried out in short MD simulation time and in implicit salvation medium, it still shows that glycosylation of major outer membrane proteins provides better conformational changes and consequently affinity for binding and hence recognition of Lewis antigens compared with its parent protein. Conformational MOMP epitopes are important in host immunity, and variation in surface-exposed regions probably occurs as a result of positive immune selection during infection. porA diversity has been exploited in genotyping studies using highly discriminatory nucleotide sequences to identify potentially epidemiologically linked cases of clinical manifestations of C. jejuni infection. Interestingly, the host immune response has been suggested to play a role in defining the more antigenically homogeneous clonal complexes, and this could also reflect niche adaptation. For example, alignment of MOMP sequences isolated from human and chicken associated strains demonstrates that they differ predominantly at loop 4, therefore variation of loop 4 could influence the bacterial binding ability and consequently niche adaptation.


Moreover, identification of protein glycosylation profile of C. jejuni, mainly those related to outer membrane, are fundamental to understanding the diverse pathogenicity of C. jejuni strains among different hosts. The model can be mined for sub-networks of biological interest, such as essential amino acid that suggest candidate drug targets. Importantly, some low confidence interactions may be found to be biologically significant by experimental validation.


The model for C. jejuni interaction to Leb and H-II antigens mediated by MOMP generated here substantially increases our knowledge about the protein and its glycosylation and the role in interactions detected thus far for the C. jejuni outer membrane.


Thus, the structural glycobiology will play a key role in unravelling other glycan structures that mediate the host—bacteria interaction through MOMP/FlaA proteins, contributing decisively for identification and validation of new glycan receptors for these bacterial lectins. This information will be of major importance for the improvement and design of new therapies to overcome the C. jejuni infection.


Biofilm Formation

Auto-agglutination (AAG) has been demonstrated to be critical for virulence for a variety of pathogens, and can play a role in adherence, microcolony formation, biofilm formation, and resistance to acid and phagocytosis. In two previous studies on AAG of C. jejuni (N. Misawa, M. J. Blaser, Infect Immun 68, 6168 (November, 2000) and N. J. Golden, D. W. Acheson, Infect Immun 70, 1761 (April, 2002)), there appeared to be an association with adherence or invasion of intestinal epithelial cells.


The impact of flaA mutation and/or MOMP-T/G substitution on biofilm was examined. Biofilms were generated over 48 h on polystyrene plates at 42° C. under microaerophilic conditions, and stained with crystal violet before they were assessed by opacity measurement, using an ELISA reader at A595. In control samples without sugar added, biofilm formation of strain NCTC11168-ΔflaA deletion and MOMPT/G were significantly lower than wild type strain (WT). Already known from previous studies, O-linked glycosylation of flagellin is necessary for proper assembly of flagella filaments, also flaA mutation leads to reduction in biofilm formation due to reduced motility. To determine the role of host BgAgs in inhibiting biofilm formation, various antigens were added into the media inoculated with different strains. A reduced biofilm formation was observed in presence of free sugar structures in media; most dramatic drop is seen in WT. For wild type strain, the H-II produced the highest reduction by 90% and followed by Leb structure with 80% compared with other examined BgAgs. Probably, the greater reduction is due to the higher affinity, which effects the equilibrium equation, and requires longer time for detachment of free sugar from surface molecules and prevents the biofilm formation.


Although, the stronger binding affinity more interruption in biofilm formation. These data suggest that BgAgs compete with AAG and biofilm determinants on flagellin and MOMP, also confirmed the validity of the model and underlined the critical role of O-glycosylation in biofilm formation (FIG. 7—Figure A and B).


This experiment was repeated and same pattern was achieved. Taking in account that position of plate might affect growth; we added the samples and its control in identical position on different plates. In addition, we took an aliquot from each sample and grow on CCDA, it showed that growth were equal in all.


The Lowest Energy Structure of MOMP Protein.

Functional and structural studies of outer membrane proteins from Gram-negative bacteria are frequently carried out using refolded proteins. Although several structures of bacterial OMPs (outer membrane proteins) are now available, a large number of these proteins are still structurally and functionally poorly characterized. A model was generated for C. jejuni MOMP to study the effect of glycosylation on MOMP conformation and also the role of it in bacterial binding activity. The model may be used for predicting the functions of uncharacterized proteins and for mapping functional pathways in C. jejuni and other prokaryotes. The data can provide a framework for understanding dynamic biological processes, such as the C. jejuni primary attachment to histo-blood group antigens.


Alignment of porA from Different Bacterial Isolates


CLUSTAL W (1.81) multiple sequence alignment using BLOSUM weight matrix, of Campylobacter jejuni major outer membrane sequences downloaded from the Uniprot Database (http://www.uniprot.org/). Also, three non-binder (NB) and three high binder (HB) clinical isolates were added into this series (in house sequencing). Amino acid positions refer to positions in strain NCTC11168 (P80672).


The alignment showed the major contributors of the interaction of the glycosylated MOMP with Leb via hydrogen bonds are residues 352 (Arg), 381 (Arg), and 278 (Lys), whereas only the residues 352 and 278 are involved in the interaction of non-glycosylated MOMP with Leb. Amino acid sequence alignments indicating MOMP active sites of C. jejuni isolates from different patients has been sufficiently stable for this purpose. Interestingly, residue 278 (Lys) is semi-conserved in 16 isolates and was substituted by Arg which is able to mediate the binging through hydrogen bond in similar fashion as residues 381(Arg) and 352(Arg).


In addition, alignment of these sequences also demonstrates that they differ predominantly at loop 4 but the binding pocket between loop 4 and 7 is relatively conserved. A definitive study on MOMP host association would require glycosylation analysis data for isolates from a wide variety of hosts. A complicating factor in exploring these relationships for all C. jejuni may be their ability to colonize multiple hosts and thereby undergo exposure to many different immune responses.


Moreover, the glycosylation site Thr268 in the MOMP proteins was conserved in 52% of bacterial isolates aligned in this study, which indicate the importance role of Thr in 268 position.


Computational Modelling

All molecular dynamic simulations were conducted by using AMBER (version 10.0) (40) suite of programmes on the Linux/Intel PC cluster of TR-GRID maintained by TUBITAK (Scientific and Technologic Research Council of Turkey). Simulations were initiated using the following amino acid sequence SEQ ID No. 1(MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSG VLRYRYDTGNFDKNFVNNSNLNNSKQDHKYRAQVNF SAAIADNFKAFVQ FDYNAADGGYGANGIKNDQKGLFVRQLYLTYTNEDVATSVIAGKQQLNLI WTDNAIDGLVGTGVKVVNNSIDGLTLAAFAVDSFMAAEQGADLLEHSNIS TTSNQAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQLWLAYWDQVAFFY AVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKTHANGNLFALKGSIEVN GWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNGDTG RNIFGYVTGGYTFNETVRVGADFVYGGTKTEAANHLGGGKKLEAVARVD YKYSPKLNFSAFYSYVNLDQGVNTNES ADHSTVRLQALYKF). The model was constructed using the idea of the similarity of secondary structure of these class of proteins. The core structure of MOMP was initiated by using the skeleton of outer membrane protein of anion-selective porin from Comamonas acidovorans (1E54.pdb) and Pseudomonas aeruginosa (2QTK.pdb) as described in S. Biswas, M. M. Mohammad, L. Movileanu, B. van den Berg, Structure 16, 1027 (July, 2008), as a template to build the beta-barrels. A combination of HyperChem (HyperChem™ Professional 7.51), chimera (UCSF), and the LEaP module as implemented in AMBER was used to build the core and add the loops and turns. The initial structure was heated from 0 Kelvin (K) to 325 K with a restrain of 10 kcal mol−1 {acute over (Å)}−2 on residues of beta-barrels to avoid the effect of conformational changes in loops on beta-barrels for a period of 200 ps in four steps, followed by simulations from 0 K to 325 K for another period of 200 ps without any restrains in four steps. The system was further simulated at 300 K for a period of 8 ns. All molecular dynamics (MD) simulations were carried out using pmemd (Particle Mesh Ewald Molecular Dynamics) model of programme as implemented in AMBER. The ff99SB force field was employed and solvation effects were incorporated using the Generalized Born model, as implemented in AMBER. A lower energy structure was chosen and this was glycosylated at the residue 268 (Thr) with Gal(β 1-3)-GalNAc(β 1-4)-GalNAc(β 1-4)-GalNAc-α-linked to the protein as illustrated in Scheme 1 using xleap as implemented in AMBER. Glycam04 force field was used for carbohydrate unit. The charge on the oxygen of the site chain of Thr was changed from −0.6761 to −0.4599 and the atom type of OS was assigned. The angle and dihedral parameters for dimethylether (CT-OS-CG) and dimethoxymethane (H2-CG-OS-CT) were used for the glycosylated angle and dihedral for the carbohydrate linkage.


The system was minimized with 500 steps of steepest descent minimization followed by 500 steps of conjugate gradient minimization and heated at 400 K for a period of 10 ps to avoid bad contacts with a restrain of 10 kcal mol−1 {acute over (Å)}−2 on the protein backbone and to have the carbohydrate groups in a good shape. The system was heated from 0 K to 325 K for a period of 200 ps without any restrains, followed by simulation at 300 K for a period of 3.5 ns.


Root-mean-square deviation (RMSD) analysis for the complex system was carried out on the trajectories by the ptraj module of AMBER (v10). 3D structures were displayed using by Chimera (UCSF), and RMSD graphics are shown by XMGRACE package programme.


Docking calculations were performed to accommodate the Lewis antigen (Leb) and H-II antigen as seen Scheme 2 within the cavity of the protein. Docking of the Leb was carried out using DOCK 6.0. Docking was performed with default settings to obtain a population of possible conformations and orientations for Leb at the binding site. Spheres around the centre of the binding pocket were defined as binding pocket for the docking runs. Since Dock 6.0 program employs sphgen to produce spheres and hence for technical reasons, sphgen cannot handle more than 99999 spheres, the residues forming loops were stripped off and thus the calculations of spheres and grids were only performed with the beta-barrels forming the cavity. Then the coordinates of the Leb obtained was recorded and AM1-Bcc (Austian model with Bond and charge correction), atomic partial charges and atom types of general amber force field (GAFF) were assigned for it using antechamber as implemented in AMBER. Xleap was used to accommodate the Leb within the cavity of MOMP with combine command as well as to produce topology/parameter and coordinate files. The atom type of Leb was changed to those described in Glycam04 force field. The system was minimized, followed by MD simulation at 300 K for about 6.0 ns. The same procedure was applied to the glycosylated protein.


MM/PBSA Calculations:


This study applies a second-generation form of the Mining Minima algorithm, termed M2, to analyze the binding reactions of host-guest complexes in water. The MM-PB/SA module of AMBER (v9) was applied to compute the binding free energy (ΔGbind) of each complex using the MM/PBSA method. For each complex, a total number of 200 snapshots were extracted from the last 1 ns of the complex trajectories.


During conformational searching and the evaluation of configuration integrals, Welec is computed with a simplified but fast generalized Born model. The electrostatic solvation energy of each energy-well is then corrected toward a more accurate but time-consuming finite-difference solution of the Poisson equation. The dielectric cavity radius of each atom is set to the mean of the solvent probe radius 1.4 Å for water and the atom's van der Waals radius, and the dielectric boundary between the molecule and the solvent is the solvent-accessible molecular surface. The solvation calculations use a water dielectric constant of 80. The MM/PB SA method can be conceptually summarized as:





ΔGbind=Gcomplex−[Ghost+Gligand]   (1)






G=E
gas
+G
sol
−TS   (2)






E
gas
=E
bond
+E
angle
+E
torsion
+E
vdw
+E
ele   (3)






G
sol
=G
PB
+G
SA   (4)






H=E
gas
+G
sol   (5)






G
sol
=G
PB
+G
SA   (6)






H=E
gas
+G
sol   (7)






S
tot
=S
vib
+S
trans
+S
tot  (8)





ΔG=ΔH−TΔS   (9)


where Gcomplex, Ghost, and Gligand are the absolute free energies of the complex, host and the ligand species respectively as shown equation (1). Each of them is calculated by summing an internal energy in gas phase (Egas), a solvation free energy (Gsol), and a vibrational entropy term equation (eq 2). Egas is Standard force field energy, including strain energies from covalent bonds and torsion angles as well as noncovalent van der Waals and electrostatic energies (eq 3). The solvation free energy, Gsol, is calculated with a PB/SA model, which dissects solvation free energy as the sum of an electrostatic component (GPB) and a nonpolar component (GSA) as shown in eq. 8, Stot is the total entropy comprising of translational (Strans), vibrational (Svib) and rotational (Srot) entropies as gas phase for each species as shown in eq. 6. In present study the entropy term was not included in calculations.




embedded image




embedded image


Building and Developing Amber Parameters for the Inhibitors
1) Charge Derivation for the Inhibitor

The model was divided into two fragments, one included quinate caped with NHMe ((1) in FIG. 9) and another included N,N-bis-(2-aminoethyl)ethane-1,2-diamine core ((2) in FIG. 9), which was further simplified into N,N-dimethylethane-1,2-diamine caped with acetyl ((3) in FIG. 9). The first stage was to optimize quinate amide and acate amide residues. This was done with a QM method at a reasonably high level of theory, which was done with MP2/6-31G* employing Gaussian 03 package programme. The original x-ray structure of quinic acid was used for quinate amide. The next stage was to calculate an ESP for each of the two optimized geometries that can ultimately be read by the RESP programme. HF/6-31G* as the level of theory was used to derive ESP for two structures. The RESP programme implemented in amber was used to derive the charges for each fragment. The capes, acetyl and NHMe were removed from each fragment and the model was built using xleap. ff99SB library was used to build library file for the model, which includes parameters such as atom type, bond, angles and dihedral. The topology and coordinate files were recorded for the model.


2) Conformational Search Using Molecular Dynamic Simulation

The structure was minimized at a total of 1000 steps; 500 of steepest descent (ncyc=500) followed by 500 of conjugate gradient (maxcyc-ncyc) in vacuum, followed by heating from 0 K to 700 K at seven steps each with 100 ps. The system was further run at 700 K for 1 ns. Few conformational minima were chosen and they were and they were cooled down to 300 K, each of which was further run at 300 K for 5 ns. From these runs a few conformations with minimum energy were chosen and they were minimized amber then with quantum mechanical calculation at B3LYP/6-31G* level of theory to locate the structure with the lowest energy.


Alignment of porA from Different C. jejuni Isolates.


CLUSTAL W (1.81) multiple sequence alignment using BLOSUM weight matrix, of Campylobacter jejuni major outer membrane sequences downloaded from the Uniprot Database (http://www.uniprot.org/). Also, three non-bind (NB) and three high binder (HB) clinical isolates were added into this series from in house sequencing. Amino acid positions referred to in this application relate to the amino acid positions in strain NCTC11168 (P80672) SEQ ID No 1.











        10         20         30         40



MKLVKLSLVA ALAAGAFSAA NATPLEEAIK DVDVSGVLRY 







        50         60         70         80



RYDTGNFDKN FVNNSNLNNS KQDHKYRAQV NFSAAIADNF







        90        100        110        120



KAFVQFDYNA ADGGYGANGI KNDQKGLFVR QLYLTYTNED







       130        140        150        160



VATSVIAGKQ QLNLIWTDNA IDGLVGTGVK VVNNSIDGLT







       170        180        190        200



LAAFAVDSFM AAEQGADLLE HSNISTTSNQ APFKVDSVGN







       210        220        230        240



LYGAAAVGSY DLAGGQFNPQ LWLAYWDQVA FFYAVDAAYS







       250        260        270        280



TTIFDGINWT LEGAYLGNSL DSELDDKTHA NGNLFALKGS







       290        300        310        320



IEVNGWDASL GGLYYGDKEK ASTVVIEDQG NLGSLLAGEE







       330        340        350        360



IFYTTGSRLN GDTGRNIFGY VTGGYTFNET VRVGADFVYG







       370        380        390        400



GTKTEAANHL GGGKKLEAVA RVDYKYSPKL NFSAFYSYVN 







       410        420



LDQGVNTNES ADHSTVRLQA LYKF






Annotation with “*”, “:”, “.” refers to identical, conserved, semi-conserved amino acid substitutions respectively.














Hb1








MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q2LAB2



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q2LAB0



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Hb2



MKLVKLSLVAALAASAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





NB1



MKLVKLSLVAALAASAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q9F791



MKLVKLSLVAALAASAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Hb3



MKLVKLSLVAALAASAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





D3FNB0



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q2LAB1



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q2LAB8



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q2LAA5



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q2LAB6



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q2LA95



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





P80672 (SEQ ID No. 1)



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q2LAC5



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q2LAA2



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q2LAB7



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q2LAB9



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q2LA91



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





NB2



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q2LA98



MKLVKLILVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





A3ZHA2



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q9F792



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q2LAC0



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q0GF63



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q2LAB3



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFVN-NSNLNN
 59





Q2LA93



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGTFDKNWGTPNSNLND
 60





Q2LAA0



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGTFDKNWGTPNSNLND
 60





Q2LAC1



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGTFDKNWGTPNSNLND
 60





Q2LAC4



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGTFDKNWGTPNSNLND
 60





Q2LA94



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGTFDKNWGTPNSNLND
 60





Q2LA92



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFLN-NSNLNN
 59





Q2LAA4



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFIN-NSNLNN
 59





Q2LA89



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYDTGNFDKNFIN-NSNLNN
 59





NB3



MKLVKLSLVAALAAGAFSAANATPLEEAIKDVDVSGVLRYRYETSN-DWSNANFGSGIS-
 58





Q2LAA9



MKLVKLSLVAALAAGAFSAANATPLEEAIKDIDVSGVLRYRYETSN-DWSNANFGSGIS-
 58





B5QHE5



MKLVKLSLVAALAASAFSAANATPLEEAIKDIDVSGVLRYRYESSN-PWSNANFGSGIS-
 58





Q2LA96



MKLVKLSLVAALAASAFSAANATPLEEAIKDIDVSGVLRYRYESSN-PWSNANFGSGIS-
 58





Q2LAB4



MKLVKLSLVAALAASAFSAANATPLEEAIKDIDVSGVLRYRYESSN-PWSNANFGSGIS-
 58





Q2LA97



MKLVKLSLVAALAASAFSAANATPLEEAIKDIDVSGVLRYRYESSN-PWSNANFGSGIS-
 58





Q2LAA7



MKLVKLSLVAALAAGAFSAANATPLEEAIKDIDVSGVLRYRYESSN-PWSNANFGSGIS-
 58





Q9F788



MKLVKISLVAALAAGAFSAANATPLEEAIKDIDVSGVLRYRYESSN-PWSNANFGSGIS-
 58





Q2LA87



MKLVKLSLVAALAAGAFSAANATPLEEAIKDIDVSGVLRYRYESSN-PWSNANFGSGIS-
 58





Q2LA90



MKLVKLSLVAALAAGAFSAANATPLEEAIKDIDVSGVLRYRYESSN-PWSNANFGSGIS-
 58





Q2LAA3



MKLVKLSLVAALAAGAFSAANATPLEEAIKDIDVSGVLRYRYESSN-PWSNGNYGSGIS-
 58





Q0GF62



MKLVKLSLVAALAAGAFSAANATPLEEAIKDIDVSGVLRYRYDTSN-DWNNAGFGSGIS-
 58


*****: *******.****************:**********::..   .    .*.:.






Hb1



SKQDHKYRAQVNFSAAIADNFKAFVQFDYNAADGGY----GANGIKNDQKGLFVRQLYLT
115





Q2LAB2



SKQDHKYRAQVNFSAAIADNFKAFVQFDYNAADGGY----GANGIKNDQKGLFVRQLYLT
115





Q2LAB0



SKQDHKYRAQVNFSAAIADNFKAFVQFDYNAADGGY----GANGIKNDQKGLFVRQLYLT
115





Hb2



SKQDHKYRAQVNFSAAIADNFKAFVQFDYNAADGGY----GANGIKNDQKGLFVRQLYLT
115





NB1



SKQDHKYRAQVNFSAAIADNFKAFVQFDYNAADGGY----GANGIKNDQKGLFVRQLYLT
115





Q9F791



SKQDHKYRAQVNFSAAIADNFKAFVQFDYNAADGGY----GANGIKNDQKGLFVRQLYLT
115





Hb3



SKQDHKYRAQVNFSAAIADNFKAFVQFDYNAADGGY----GANGIKNDQKGLFVRQLYLT
115





D3FNB0



SKQNHKYRAQVNFSAAIADNFKAFIQFDYNAADGGY----GANGIKNDQKGLFVRQLYLT
115





Q2LAB1



SKQDHKYRAQVNFSAAIADNFKAFVQFDYNAADGGY----GANGIKNDQKGLFVRQLYLT
115





Q2LAB8



SKQDHKYRAQVNFSAAIADNFKAFVQFDYNAADGGY----GANGIKNDQKGLFVRQLYLT
115





Q2LAA5



SKQDHKYRAQVNFSAAIADNFKAFVQFDYNAADGGY----GANGIKNDQKGLFVRQLYLT
115





Q2LAB6



SKQDHKYRAQVNFSAAIADNFKAFVQFDYNAADGGY----GANGIKNDQKGLFVRQLYLT
115





Q2LA95



SKQDHKYRAQVNFSAAIADNFKAFVQFDYNAADGGY----GANGIKNDQKGLFVRQLYLT
115





P80672 (SEQ ID No. 1)



SKQDHKYRAQVNFSAAIADNFKAFVQFDYNAADGGY----GANGIKNDQKGLFVRQLYLT
115





Q2LAC5



NKQDHKYRAQVNFSAAIADNFKAFIQFDYNAVDGGT----GVNNVKNAEKGLFVRQLYLT
115





Q2LAA2



NKQDHKYRAQVNFSAAIADNFKAFIQFDYNAVDGGT----GVDNVTNAEKGLFVRQLYLT
115





Q2LAB7



NKQDHKYRAQVNFSAAIADDFKAFIQFDYNAVDGGT----GVDNVTNAEKGLFVRQLYLT
115





Q2LAB9



SKQDHKYRAQVNFSAAIADNFKAFIQFDYNAVDGGT----GVDNVTNTEKGLFVRQLYLT
115





Q2LA91



NKQDHKYRAQVNFSAAIADNFKAFIQFDYNAVDGGT----GVDNVTNAEKGLFVRQLYLT
115





NB2



NKQDHKYRAQVNFSAAIADNFKAFIQFDYNAVDGGT----GVDNVTNAEKGLFVRQLYLT
115





Q2LA98



NKQDHKYRAQVNFSAAIADNFKAFIQFDYNAVDGGT----GVDNVTNAEKGLFVRQLYLT
115





A3ZHA2



NKQDHKYRAQVNFGAAIADNFKAFIQFDYNAVDGGT----GVDNVTNAEKGLFVRQLYLT
115





Q9F792



NKQDHKYRAQVNFGAAIADNFKAFIQFDYNAVDGGT----GVDNVTNAEKGLFVRQLYLT
115





Q2LAC0



NKQDHKYRAQVNFGAAIADNFKAFIQFDYNAVDGGT----GVGNVKNAEKGLFVRQLYLT
115





Q0GF63



NKQDHKYRAQVNFSAAIADNFKAFIQFDYNAVDGGT----GVDNVTNAEKGLFVRQLYLT
115





Q2LAB3



NKQDHKYRAQVNFSAAIADNFKAFIQFDYNAVDGGT----GVDNATNAEKGLFVRQLYLT
115





Q2LA93



SKQDHKYRAQVNFSAAIADNFKAFIQFDYNAVDGGT----GVDNKTNAEKGLFVRQLYLT
116





Q2LAA0



SKQDHKYRAQVNFSAAIADNFKAFIQFDYNAVDGGT----GVDNKTNAEKGLFVRQLYLT
116





Q2LAC1



SKQDHKYRAQVNFSAAIADNFKAFVQFDYNAVDGGT----GVDNATNAQKGFFVRQLYLT
116





Q2LAC4



SKQDHKYRAQVNFSAAIADNFKAFVQFDYNAVDGGT----GVDNATNAQKGFFVRQLYLT
116





Q2LA94



SKQDHKYRAQVNFSAAIADNFKAFIQFDYNAVDGGT----GVDNATNAEKGLFVRQLYLT
116





Q2LA92



SKQDHKYRAQVNFSAAIADNFKAFVQFDYNAVDGGT----GVDNATNAEKGLFVRQLYLT
115





Q2LAA4



SKQDHKYRAQVNFSAAIADNFKAFVQFDYNAADGGT----GVDNATNAQKGLFVRQLYLT
115





Q2LA89



SKQDHKYRAQVNFSAAIADNFKAFVQFDYNAADGGY----GANEIKNDQKGLFVRQLYLT
115





NB3



GKQDHKYRAQVNFGAASADNFKAFVQFDYSQADGGY----GADSISNTSDTLSVRQLYLT
114





Q2LAA9



GKQDHKYRAQVNFSGAISDNFKAFVQFDYNSQDGGY----GADSISNTSDTLSVRQLYLT
114





B5QHE5



GKQDHKYRAQVNFSGAISDNFKAFVQFDYNSQDGGY----GADSISNTSDTLSVRQLYLT
114





Q2LA96



GKQDHKYRAQVNFSGAISDNFKAFVQFDYNSQDGGY----GADSISNTSDTLSVRQLYLT
114





Q2LAB4



GKQDHKYRAQVNFSGAISDNFKAFVQFDYNSQDGGY----GTDSISNTSDTLTVRQLYLT
114





Q2LA97



GKQDHKYRAQVNFSGAISDNFKAFVQFDYNSQDGGY----GTDSISNTSDTLTVRQLYLT
114





Q2LAA7



GKQDHKYRAQVNFSGAISDNFKAFVQFDYNSQDGGY----GTDSISNTSDTLTVRQLYLT
114





Q9F788



GKQDHKYRAQVNFSGAISDNFKAFVQFDYNSQDGGY----GTDSISNTSDTLTVRQLYLT
114





Q2LA87



GKQDHKYRAQVNFSGAISDNFKAFVQFDYNSQDGGY----GTDSISNTSDTLTVRQLYLT
114





Q2LA90



GKQDHKYRAQVNFSGAISDNFKAFVQFDYNSQDGGY----GADSISNTSDTLTVRQLYLT
114





Q2LAA3



GKQDHKYRAQVNFNTAIADNFKAFVQFDYNSKDGGY----GENSISNTSDTLSVRQLYLT
114





Q0GF62



GKQTHNYRAQINFSGAIADNFKAFVQFDYAAVDGGYNVTNGTGNQRNDQNSLTVRQLYLT
118


.** *:****:**. * :*:****:****   ***     * .   * .. : ******* 






Hb1



YTNEDVATSVIAGKQQLNLIWTDNAIDGLVGTGVKVVNNSIDGLTLAAFAVDSFMAAEQG
175





Q2LAB2



YTNEDVATSVIAGKQQLNLIWTDNAIDGLVGTGVKVVNNSIDGLTLAAFAVDSFMAAEQG
175





Q2LAB0



YTNEDVATSVIAGKQQLNLIWTDNAIDGLVGTGVKVVNNSIDGLTLAAFAVDSFMAAEQG
175





Hb2



YTNEDVATSVIAGKQQLNTIWTDNGVDGLVGTGIKVVNNSIDGLTLAAFAVDSFMAEEQG
175





NB1



YTNEDVATSVIAGKQQLNTIWTDNGVDGLVGTGIKVVNNSIDGLTLAAFAVDSFMAEEQG
175





Q9F791



YTNEDVATSVIAGKQQLNTIWTDNGVDGLVGTGIKVVNNSIDGLTLAAFAVDSFMAEEQG
175





Hb3



YTNEDVATSVIAGKQQLNTIWTDNGVDGLVGTGIKVANNSIDGLTLAAFAVDSFMAEEQG
175





D3FNB0



YTNEDVATSVIAGKQQLNTIWTDNGVDGLVGTGIKVVNNSIDGLTLAAFAVDSFMAEEQG
175





Q2LAB1



YTNEDVATSVIAGKQQLNTIWTDNGVDGLVGTGIKVVNNSIDGLTLAAFAVDSFMAEEQG
175





Q2LAB8



YTNEDVATSVIAGKQQLNTIWTDNGVDGLVGTGIKVVNNSIDGLTLAAFAVDSFMAEEQG
175





Q2LAA5



YTNEDVATSVIAGKQQLNTIWTDNGVDGLVGTGIKVVNNSIDGLTLAAFAVDSFMAEEQG
175





Q2LAB6



YTNEDVATSVIAGKQQLNTIWTDNGVDGLVGTGIKVVNNSIDGLTLAAFAVDSFMAEEQG
175





Q2LA95



YTNEDVATSVIAGKQQLNTIWTDNGVDGLVGTGIKVVNNSIDGLTLAAFAVDSFMAAEQG
175





P80672 (SEQ ID No. 1)



YTNEDVATSVIAGKQQLNLIWTDNAIDGLVGTGVKVVNNSIDGLTLAAFAVDSFMAAEQG
175





Q2LAC5



YTNEDVATSVIAGKQQLNLIWTDNAIDGLVGTGVKVVNNSIDGLTLAAFAADSFMAAEQG
175





Q2LAA2



YTNEDVATSVIAGKQQLNLIWTDNAIDGLVGTGVKVVNNSIDGLTLAAFAADSFMAAEQG
175





Q2LAB7



YTNEDVATSVIAGKQQLNLIWTDNAIDGLVGTGVKVVNNSIDGLTLAAFAADSFMAAEQG
175





Q2LAB9



YTNEDVATSVIAGKQQLNLIWTDNAIDGLVGTGVKVVNNSIDGLTLAAFAADSFMAAEQG
175





Q2LA91



YTNEDVATSVIAGKQQLNLIWTDNAIDGLVGTGVKVVNNSIDGLTLAAFAVDSFMAAEQG
175





NB2



YTNEDVATSVIAGKQQLNLIWTDNAIDGLVGTGIKVVNNSIDGLTLAAFAADSFMAAEQG
175





Q2LA98



YTNEDVATSVIAGKQQLNLIWTDNAIDGLVGTGIKVVNNSIDGLTLAAFAADSFMAAEQG
175





A3ZHA2



YTNEDVATSVIAGKQQLNLIWTDNAIDGLVGTGVKVVNNSIDGLTLAAFAADSFMAAEQG
175





Q9F792



YTNEDVATSVIAGKQQLNLIWTDNAIDGLVGTGVKVVNNSIDGLTLAAFAADSFMAAEQG
175





Q2LAC0



YTNEDVATSVIAGKQQLNLIWTDNAIDGLVGTGVKVVNNSIDGLTLAAFAADSFMAAEQG
175





Q0GF63



YTNEDVATSVIAGKQQLNFIWTDNAIDGLVGTGVKVVNNSIDGLTLAAFAVDSFMAAEQG
175





Q2LAB3



YTNEDVATSVIAGKQQLNLIWTDNAIDGLVGTGVKVVNNSIDGLTLAAFAVDSFMTAEQG
175





Q2LA93



YTNEDVATSVIAGKQQLNIIWTDNGVDGLVGTGIKVVNNSIDGLTLAAFAVDSFMAAEQG
176





Q2LAA0



YTNEDVATSVIAGKQQLNIIWTDNGVDGLVGTGIKVVNNSIDGLTLAAFAVDSFMAAEQG
176





Q2LAC1



YTNEDVATSVIAGKQQLNIIWTDNGIDGLVGTGVKVVNNSIDGLTLAAFAVDSFMATEQG
176





Q2LAC4



YTNEDVATSVIAGKQQLNIIWTDNGIDGLVGTGVKVVNNSIDGLTLAAFAVDSFMATEQG
176





Q2LA94



YTNEDVATSVIAGKQQLNTIWTDNGIDGLVGTGVKVVNNSIDGLTLAAFAVDSFMATEQG
176





Q2LA92



YTNEDVATSVIAGKQQLNIIWTDNGVDGLVGTGVKVVNNSIDGLTLAAFAVDSFMATEQG
175





Q2LAA4



YTNEDVATSVIAGKQQLNTIWTDNGIDGLVGTGVKVVNNSIDGLTLAAFAVDSFMAEEQG
175





Q2LA89



YTNEDVATSVIAGKQQLNTIWTDNGIDGLVGTGVKVINNSIDGLTLAAFAVDSFMAAEQG
175





NB3



YTNEDVATSVIAGKQQLNTIWTDNGIDGLVGTGIKVVNNSIDGLTLAAFAMDSFNEEVPA
174





Q2LAA9



YTNEDVATSVIAGKQQLNTIWTDNGIDGLVGTGIKVVNNSIDGLTLAAFAMDSFNEEVPA
174





B5QHE5



YTNEDVATSVIAGKQQLNTIWTDNAIDGLVGTGIKVVNNSIDGLTLAAFAMDSFNEASDT
174





Q2LA96



YTNEDVATSVIAGKQQLNTIWTDNAIDGLVGTGIKVVNNSIDGLTLAAFAMDSFNEASDT
174





Q2LAB4



YTNEDVATSVIAGKQQLNTIWTDNGIDGLVGTGVKVVNNSIDGLTLAAFAMDSFNEASDT
174





Q2LA97



YTNEDVATSVIAGKQQLNTIWTDNGVDGLVGTGIKVVNNSIDGLTLAAFAMDSFNEASDT
174





Q2LAA7



YTNEDVATSVIAGKQQLNTIWTDNGIDGLVGTGVKVVNNSIDGLTLAAFAMDSFNEASDT
174





Q9F788



YTNEDVATSVIAGKQQLNTIWTDNGIDGLVGTGVKVVNNSIDGLTLAAFAMDSFNEASDT
174





Q2LA87



YTNEDVATSVIAGKQQLNTIWTDNAIDGLVGTGVKVVNNSIDGLTLAAFAMDSFNEASDT
174





Q2LA90



YTNEDVATSVIAGKQQLNFIWTDNAIDGLVGTGIKVVNNSIDGLTLAAFAMDSFNEASDT
174





Q2LAA3



YTNEDVATSVIAGKQQLNTIWTDNGVDGLVGTGIKVVNNSIDGLTLAAFAMDSFNEASDT
174





Q0GF62



YTNEDVATSVIAGKQQLNTIWTDNDIDGLVGTGIKVVNNSIDGLTLAAFAVDSYNTDE--
176


****************** ***** :*******:** ************* **:






Hb1



AD----------LLGHS-TTS----TTQKAAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
220





Q2LAB2



AD----------LLGHS-TTSTTH-TTQKAAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
223





Q2LAB0



AD----------LLGHS-TTS----TTQKAAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
220





Hb2



AD----------LLGQS-TIS----TTQNAAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
220





NB1



AD----------LLGQS-TIS----TTQNAAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
220





Q9F791



AD----------LLGQS-TIS----TTQNAAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
220





Hb3



AD----------LLGQS-TIS----TTQNAAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
220





D3FNB0



AD----------LLGKS-TIS----TTQKAAPFQADSLGNLYGAAAVGSYDLAGGQFNPQ
220





Q2LAB1



AD----------LLGQS-TIS----TTQKAAPFQADSLGNLYGAAAVGSYDLAGGQFNPQ
220





Q2LAB8



AD----------LLGQS-TIS----TTQKAAPFQADSLGNLYGAAAVGSYDLAGGQFNPQ
220





Q2LAA5



TD----------LLGQS-TIS----TTQNTAPFQADSLGNLYGAAAVGSYDLAGGQFNPQ
220





Q2LAB6



TD----------LLGQS-TIS----TTQNTALFQADSLGNLYGAAAVGSYDLAGGQFNPQ
220





Q2LA95



AD----------LLGHSNTST----ATPNQVPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
221





P80672 (SEQ ID No. 1)



AD----------LLEHS-NIS----TTSNQAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
220





Q2LAC5



AD----------LLGHS-NIS----TTSKQAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
220





Q2LAA2



AD----------LLGHS-TTSTT----QATAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
220





Q2LAB7



AD----------LLGHS-TTSTT----QATAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
220





Q2LAB9



AD----------LLEHS-TISTT----QNAAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
220





Q2LA91



AD----------LLGHS-NISTT---NANQAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
221





NB2



AD----------LLGHS-NIST----TPNQAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
220





Q2LA98



AD----------LLGHR-NISTI---TPNQAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
221





A3ZHA2



AD----------LLGHS-NISTT---S-NQVPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
220





Q9F792



AD----------LLGHS-NISTT---S-NQAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
220





Q2LAC0



AD----------LLGHS-NTSTA---TPNQAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
221





Q0GF63



AE----------LLGHS-NIS----TTSNQAPFKVDSVGNLYGAAAVGSYDLAGGQFNPQ
220





Q2LAB3



AD----------LLGHN------------GSQFNPDSIGNLYGAAAVGSYDLAGGQFNPQ
213





Q2LA93



SD----------LVG------------ANN-TFKVDSIGNLYGAAAVGSYDLAGGQFNPQ
213





Q2LAA0



SD----------LVG------------ANNSTFKVDSIGNLYGAAAVGSYDLAGGQFNPQ
214





Q2LAC1



SD----------LVG------------HNGSQFNPDSIGNLYGAAAVGSYDLAGGQFNPQ
214





Q2LAC4



SD----------LVG------------HNGSQFNPDSIGNLYGAAAVGSYDLAGGQFNPQ
214





Q2LA94



SD----------LVG------------HNGSKFSPDSIGNLYGAAAVGSYDLAGGQFNPQ
214





Q2LA92



SD----------LLGQSTYVSND---KNNNDSFKLDSIGNLYGAAAVGSYDLAGGQFNPQ
222





Q2LAA4



AD----------LLGHS-NIS--S-AN-NSAPFKLDSIGNLYGGAAVGSYEFLGGQFNPQ
220





Q2LA89



AD----------LLGHS-NIS--S-AKPNIAPFKLDSIGNLYGGAAVGSYEFLGGQFNPQ
221





NB3



TT-----------TNG-FNKGNV--NGDGDVSSALDWSKNIYGAAAIGSYDLIGGQFNPQ
220





Q2LAA9



TT-----------TNGNFNKGNV--NGDGDVSSALDWSKNIYGAAAIGSYDIAGGQFNPQ
221





B5QHE5



TVTITQD-NSQKITGVQFNRGNP--KGDSDVSGALDWSKNIYGAAAIGSYDIAGGQFNPQ
231





Q2LA96



TVTITQD-NSQKITGVQFNRGNP--KGDSDVSGALDWSKNIYGATAIGSYDIAGGQFNPQ
231





Q2LAB4



TVTITQD-SNQKITGVQFNRGNP--KGDSDVSGALDWSKNIYGAAAIGSYDIAGGQFNPQ
231





Q2LA97



TVTITQN-SSQKITGVQFNRGNP--KGDGDVSGALDWSKNIYGAAAIGSYDITGGQFNPQ
231





Q2LAA7



TVTITQD-NNQKITGVQFNRGNP--KGDSDVSGALDWSKNIYGAAAIGSYDIAGGQFNPQ
231





Q9F788



TVTITQD-NNQKITGVQFNRGNP--KGDSDVSGALDWSKNIYGAAAIGSYDIAGGQFNPQ
231





Q2LA87



TVTITQD-NNQKITGVQFNRGNP--KGDSDVSGALDWSKNIYGAAAIGSYDIAGGQFNPQ
231





Q2LA90



TVTITQN-GSQKITGVQFNRGNP--KGDGDASGALDWSKNIYGAAAIGSYDLAGGQFNPQ
231





Q2LAA3



TVIITQDPSSNKITGVQFNRGNP--KGDGDVSGALDWSKNIYGAAAIGSYDIAGGQFNPQ
232





Q0GF62



-------------QGYKDNNGRPDLTYTGDASQYLTWG-NIYGAAAVGSYDLAGGQFNPQ
222


                                       *:**.:*:***:: *******






                                  (Ser 262) (Thr 268)



Hb1



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKTHAN---------
271





Q2LAB2



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKTHAN---------
274





Q2LAB0



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKTHAN---------
271





Hb2



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKTHAN---------
271





NB1



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKTHAN---------
271





Q9F791



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKTHAN---------
271





Hb3



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKTHAN---------
271





D3FNB0



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELNDKRHAN---------
271





Q2LAB1



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKRHAN---------
271





Q2LAB8



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKTHAN---------
271





Q2LAA5



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKRHAN---------
271





Q2LAB6



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKRHAN---------
271





Q2LA95



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDTTHAN---------
272





P80672 (SEQ ID No. 1)



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKTHAN---------
271





Q2LAC5



LWLAYWDQVTFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKTHAN---------
271





Q2LAA2



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKTHAN---------
271





Q2LAB7



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKTHAN---------
271





Q2LAB9



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKTHAN---------
271





Q2LA91



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKTHAN---------
272





NB2



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKTHAN---------
271





Q2LA98



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKTHAN---------
272





A3ZHA2



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDKTHAN---------
271





Q9F792



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDQAHAN---------
271





Q2LAC0



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDTTHAN---------
272





Q0GF63



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTIEGAYLGNSIDSELDDTTHTN---------
271





Q2LAB3



LWLAYWDQVAFFYALDASYSTTIFDGINWTLEGAYLGNSVDSDLDSTRYAN---------
264





Q2LA93



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSVDSDLNSAEHAN---------
264





Q2LAA0



LWLAYWDQVAFFYALDVSYSTTIFDGINWTLEGAYLGNSLDSELNDKTYAN---------
265





Q2LAC1



LWLAYWDQVAFFYALDASYSTTIFDGINWTLEGAYLGNSVDSDLDSAKYAN---------
265





Q2LAC4



LWLAYWDQVAFFYALDASYSTTIFDGINWTLEGAYLGNSVDSDLDSARYAN---------
265





Q2LA94



LWLAYWDQVAFFYALDASYSTTIFDGINWTLEGAYLGNSVDSDLNSAEYAN---------
265





Q2LA92



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSLDSELDDRTYAN---------
273





Q2LAA4



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSIDSELDKTTHTN---------
271





Q2LA89



LWLAYWDQVAFFYAVDAAYSTTIFDGINWTLEGAYLGNSIDSELDDKTHTN---------
272





NB3



LWLAYMSDNAFLYALDAAYSTTIFDGINWSIEGAYLGNSVDNKLKDRLDAA--------N
272





Q2LAA9



LWLAYMSDNAFLYALDAAYSTTIFDGINWSIEGAYLGNSVDNKLKDRLDAA--------N
273





B5QHE5



LWLAYMSDNAFLYALDATYSTTIFDGINWTIEGAYLGNSVDNKLKDRLDAA--------N
283





Q2LA96



LWLAYMSDNAFLYALDATYSTTIFDGINWTIEGAYLGNSVDNKLKDRLDAA--------N
283





Q2LAB4



LWLAYMSDNAFLYALDAAYSTTIFDGINWTIEGAYLGNSVDNKLKDRLDAA--------N
283





Q2LA97



LWLAYMSDNAFLYALDAAYSTTIFDGINWSIEGAYLGNSVDNKLKDRLGVA--------N
283





Q2LAA7



LWLAYMSDNAFLYALDAAYSTTIFDGINWTIEGAYLGNSVDNKLKDRLDAA--------N
283





Q9F788



LWLAYMSDNAFLYALDAAYSTTIFDGINWTIEGAYLGNSVDNKLKDRLDAA--------N
283





Q2LA87



LWLAYMSDNAFLYALDAAYSTTIFNGINWTIEGAYLGNSVDNKLKDRLDAA--------N
283





Q2LA90



LWLAYMSDNAFLYALDAAYSTTIFDGINWTIEGAYLGNSVDNKLKDRLNVA--------N
283





Q2LAA3



LWLAYMSDNAFLYALDAAYNTTIFDGINWTIEGAYLGNSVDNKLKDRLDAA--------N
284





Q0GF62



LWLAYMSDNAFLYALDLAYNTTIFDGINWSIEGAYLGNSVDNKLKDRFHAAGDPESSAAN
282


***** .: :*:**:* :*.****:****::********:*..*..   .






(Lys 278)



Hb1



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





Q2LAB2



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
334





Q2LAB0



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





Hb2



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





NB1



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





Q9F791



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





Hb3



GNLFALLGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





D3FNB0



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





Q2LAB1



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





Q2LAB8



GNLFALKGTIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





Q2LAA5



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





Q2LAB6



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





Q2LA95



GNLFALRGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
332





P80672 (SEQ ID No. 1)



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





Q2LAC5



GNLFALKGTIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





Q2LAA2



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





Q2LAB7



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





Q2LAB9



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





Q2LA91



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
332





NB2



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





Q2LA98



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
332





A3ZHA2



GNLFALRGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





Q9F792



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
331





Q2LAC0



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
332





Q0GF63



GNFFALRGGIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLSSLLAGEEIFYTTGSRLNG
331





Q2LAB3



GNFFALKGGIEVNGWDASLGGLYYGDKEKASTVIIDDQGNLSSLLAGEEIFYTTGSRLNG
324





Q2LA93



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
324





Q2LAA0



GNLFALRGSIEVNGWDASLGGLYYGDKEKASTVAIEDQGNLGSLLAGEEIFYTTGSRLNG
325





Q2LAC1



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
325





Q2LAC4



GNLFALRGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
325





Q2LA94



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
325





Q2LA92



GNLFALKGSIEVNGWDASLGGLYYGDKEKASTVVIEDQGNLGSLLAGEEIFYTTGSRLNG
333





Q2LAA4



GNLFALRGSVELNGWDASLGGLYYGDKEKASTVVIEDQGNIGSLLAGEEIFYTTGSRLNG
331





Q2LA89



GNLFALRGSVELNGWDASLGGLYYGDKEKASTVVIEDQGNIGSLLAGEEIFYTTGSRLNG
332





NB3



GNFFALRGTVEVNGWDASLGGLYYGKKDKATVTTIEDQGNIGSLLAGEEIFYTRGSNLNG
332





Q2LAA9



GNFFALRGTVEVNGWDASLGGLYYGKKDKATVTTIEDQGNIGSLLAGEEIFYTRGSNLNG
333





B5QHE5



GNFFALRGTVEVNGWDASLGGLYYGKKDKITVTTIEDQGNLGSLLAGEEIFYTRGSNLNG
343





Q2LA96



GNFFALRGTVEVNGWDASLGGLYYGKKDKITVTTIEDQGNLGSLLAGEEIFYTRGSNLNG
343





Q2LAB4



GNFFALRGTVEVNGWDASLGGLYYGKKDKITVTTIEDQGNLGSLLAGEEIFYTRGSNLNG
343





Q2LA97



GNFFALRGTVEVNGWDASLGGLYYGKKDKVTVTTIEDQGNLGSLLAGEEIFYTRGSNLNG
343





Q2LAA7



GNFFALRGTVEVNGWDASLGGLYYGKKDKVTLTTIEDQGNLGSLLAGEEIFYTNGSNLNG
343





Q9F788



GNFFALRGTVEVNGWDASLGGLYYGKKDKVTLTTIEDQGNLGSLLAGEEIFYTNGSNLNG
343





Q2LA87



GNFFALRGTVEVNGWDASLGGLYYGKKDKVTLTTIEDQGNLGSLLAGEEIFYTNGSNLNG
343





Q2LA90



GNFFALRGTVEVNGWDATLGGLYYGDKDNLTVTTIEDQGNLGSLLAGEEIFYTRGSNLNG
343





Q2LAA3



GNFFALRGTVEVNGWDASLGGLYYGKKDKATVTTIEDQGNLGSLLAGQEIFYTRGSNLNG
344





Q0GF62



GNFFALRGTVEVNGWDASLGGLYYGKKDKFTVTTIEDQGNLGSLLAGEEIFYTHGSRLNG
342


**:***:* :*:*****:*******.*:: : . *:****:.*****:***** **.***






Hb1



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAN-HLGGGKKLEAVARVDYKYSPKL
390





Q2LAB2



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAN-HLGGGKKLEAVARVDYKYSPKL
393





Q2LAB0



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAN-HLGGGKKLEAVARVDYKYSPKL
390





Hb2



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAN-HLGGGKKLEAVARWDYKYSPKL
390





NB1



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAN-HLGGGKKLEAVARWDYKYSPKL
390





Q9F791



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAN-HLGGGKKLEAVARVDYKYSPKL
390





Hb3



DTGRNIFGYVTGGYTFNEIVRVGADFVYGGTKTEAAN-HLGGGKKLEAVARVDYKYSPKL
390





D3FNB0



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEATN-HLGGGKKLEAVARVDYKYSPKL
390





Q2LAB1



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEATN-HLGGGKKLEAVARVDYKYSPKL
390





Q2LAB8



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEATN-HLGGGKKLEAVARVDYKYSPKL
390





Q2LAA5



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEATN-HLGGGKKLEAVARVDYKYSPKL
390





Q2LAB6



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEATN-HLGGGKKLEAVARVDYKYSPKL
390





Q2LA95



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAN-HLGGGKKLEAVARVDYKYSPKL
391





P80672 (SEQ ID No.1)



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAN-HLGGGKKLEAVARVDYKYSPKL
390





Q2LAC5



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAANHLGGGKKLEAVARVDYKYSPKL
391





Q2LAA2



DTGRNIFGYVTGGYTFNETVIRVGADFVYGGTKTEAAN-HLGGGKKLEAVAVDYKYSPKL
390





Q2LAB7



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAN-HLGGGKKLEAVARVDYKYSPKL
390





Q2LAB9



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAN-HLGGGKKLEAVARVDYKYSPKL
390





Q2LA91



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAN-HLGGGKKLEAVARVDYKYSPKL
391





NB2



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEDTA-HVGGGKKLEAVARVNYKYSPKL
390





Q2LA98



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEDTA-HVGGGKKLEAVARVDYKYSPKL
391





A3ZHA2



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAN-HLGGGKKLEAVARVDYKYSPKL
390





Q9F792



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAN-HLGGGKKLEAVARVDYKYSPKL
390





Q2LAC0



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAS-HLGGGKKLEAVARVDYKYSPKL
391





Q0GF63



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAS-HLGGGKKLEAVARVDYKYSPKL
390





Q2LAB3



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAN-HLGGGKKLEAVARVDYKYSPKL
383





Q2LA93



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAS-HLGGGKKLEAVARVDYKYSPKL
383





Q2LAA0



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAG-HLGGGKKLEAVARVDYKYSPKL
384





Q2LAC1



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAN-HLGGGKKLEAVARVDYKYSPKL
384





Q2LAC4



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAN-HLGGGKKLEAVARVDYKYSPKL
384





Q2LA94



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEATT-HLGGGKKLEAVARVDYKYSPKL
384





Q2LA92



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAVG-HLGGGKKLEAVARVDYKYSPKL
392





Q2LAA4



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTETAG-HLGGGKKLEAVARVDYKYSPKL
390





Q2LA89



DTGRNIFGYVTGGYTFNETVRVGADFVYGGTKTEAAN-HLGGGKKLEAVARVDYKYSPKL
391





NB3



DIGRNIFGYVTGGYTFNETVRVGADFVYGGTKTNIIG---GGGKKLEAVARVDYKYSPKL
389





Q2LAA9



DIGRNIFGYVTGGYTFNETVPVGADFVYGGTKTNIIG---QGGKKLEAVARVDYKYSPKL
390





B5QHE5



DLGRNIFGYVTGGYTFNEAVAVGADFVYGGTKTNIIG---QGGKKLEAVARVDYKYSPKL
400





Q2LA96



DLGRNIFGYVTGGYTFNEAVRVGADFVYGGTKTNIIG---QGGKKLEAVARVDYKYSPKL
400





Q2LAB4



DLGRNIFGYVTGGYTFNEAVRVGADFVYGGTKTNIIG---QGGKKLEAVARVDYKYSPKL
400





Q2LA97



DLGRNIFGYVTGGYTFNEAVRVGADFVYGGTKTNIIG---QGGKKLEAVARVDYKYSPKL
400





Q2LAA7



DIGRNIFGYVTAGYTFNETVRVGADFVYGGTKTNIIG---QGGKKLEAVASVDYKYSPKL
400





Q9F788



DIGRNIFGYVTAGYTFNETVRVGADFVYGGTKTNIIG---QGGKKLEAVARVDYKYSPKL
400





Q2LA87



DIGRNIFGYVTAGYTFNETVRVGADFVYGGTKTNIIG---QGGKKLEAVARVDYKYSPKL
400





Q2LA90



DLGRNIFGYVTGGYTFNEAVSVGADFVYGGTKTNIIG---QGGKKLEAVARVDYKYSPKL
400





Q2LAA3



DLGRNIFGYVTAGYTFNEAVAVGADFVYGGTKTGEIG---NGGKKLEAVARVDYKYSPKL
401





Q0GF62



DAGRNIFGYVTGGYTFNETVRVGADFVYGGTKTENVG---EGGKKLEAVARVDYKYSPKL
399







* *********.****** ************** *********,*:*******












Hb1
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
424





Q2LAB2
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
427





Q2LAB0
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
424





Hb2
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
424





NB1
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
424





Q9F791
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
424





Hb3
NFSAFYSYVNLDQGVNTNESADHXTVRLQALYKF
424





D3FNB0
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
424





Q2LAB1
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
424





Q2LAB8
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
424





Q2LAA5
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
424





Q2LAB6
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
424





Q2LA95
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
425





P80672




(SEQ ID No. 1)
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
424





Q2LAC5
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
425





Q2LAA2
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
424





Q2LAB7
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
424





Q2LAB9
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
424





Q2LA91
NFSAFYSYVNLDQGANTNESADHSTVRLQALYKF
425





NB2
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
424





Q2LA98
NFSAFYSYVNLDQGVNTNESADHSTVKLQALYKF
425





A3ZHA2
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
424





Q9F792
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
424





Q2LAC0
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
425





Q0GF63
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
424





Q2LAB3
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
417





Q2LA93
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
417





Q2LAA0
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
418





Q2LAC1
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
418





Q2LAC4
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
418





Q2LA94
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
418





Q2LA92
NFSAFYSYVNLDQGVNTNESADHSTVRLQALYKF
426





Q2LAA4
NFSAFYSYVNLDEGVNTKESADHSTVRLQALYKF
424





Q2LA89
NFSAFYSYVNLDEGVNTKESADHSTVRLQALYKF
425





NB3
NFSAFYSYVNVDT---DPESTHHDAVRLQALYKF
420





Q2LAA9
NFSAFYSYVNVDT---DPESTHHDAVRLQALYKF
421





B5QHE5
NFSAFYSYVNVDT---DPESTHHDAVRLQALYKF
431





Q2LA96
NFSAFYSYVNVDT---DPESTHHDAVKLQALYKF
431





Q2LAB4
NFSAFYSYVNVDT---DPESTHHDAVRLQALYKF
431





Q2LA97
NFSAFYSYVNVDT---DPESTHHDAVRLQALYKF
431





Q2LAA7
NFSAFYSYVNVDT---DPESTHHDAVRLQALYKF
431





Q9F788
NFSAFYSYVNVDT---DPESTHHDAVRLQALYKF
431





Q2LA87
NFSAFYSYVNVDT---DPESTHHDAVRLQALYKF
431





Q2LA90
NFSAFYSYVNVDT---DPESTHHDAVRLQALYKF
431





Q2LAA3
NFSAFYSYVNVDT---DPESTHHDAVRLQALYKF
432





QOGF62
NFSAFYSYVNVDR---DPESTHHDAVRLQALYKF
430









**********:*      **:.* :*:*******









The major contributors in the interaction of glycosylated MOMP with Leb are residues Arg352,381 and Lys278, whereas only residues 352 and 278 are involved in the interaction of non-glycosylated MOMP with Leb; FIG. 5 (paper). Residues Arg352,381 are conserved in all sequences examined, whilst residue Lys278 is semi-conserved and is replaced by Arg in some strains. The molecular properties of this amino acid suggests it would be able to mediate BgAg binding through hydrogen bond formation in a similar fashion to residues Arg352,381.

Claims
  • 1-29. (canceled)
  • 30. A composition comprising ferric quinate, complex of a 3,4-dihydroxyphenylalanine or tyrosine with Fe III or a compound with a structure selected from the group consisting of:
  • 31. The composition of claim 30, wherein the composition is an animal feed, a food supplement, drinking water or drinking water supplement.
  • 32. The composition of claim 30, wherein the compound is present in a concentration range between 34 to 340 μM.
  • 33. The composition of claim 30, wherein the compound specifically binds to at least one amino acid residue selected from the group consisting of Arg3S2, Thr268, Lys278, Lys385, Asn258, Leu290, Tyr294, Phe395, Ile337, Arg381, Asp261, and Ser397 of MOMP (SEQ ID NO:1).
  • 34. The composition of claim 33, wherein the compound specifically binds to at least amino acid residue Thr268 of MOMP (SEQ ID NO.1).
  • 35. The composition of claim 30, wherein the compound reduces the campylobacter colony forming units in the gastrointestinal tract of the animal by at least 50%.
  • 36. The composition of claim 30, the Campylobacter is Campylobacter jejuni or Campylobacter coli.
  • 37. The composition of claim 30, wherein the compound is a complex of Fe III with 3,4-dihydroxyphenylalanine or tyrosine.
  • 38. The composition of claim 30, wherein the compound is ferric quinate.
  • 39. A method for treating or reducing Campylobacter colonization in an animal subject comprising administering to the animal, the composition of claim 30.
  • 40. The method of claim 39, wherein the Campylobacter is Campylobacter jejuni or Campylobacter Coli.
  • 41. The method of claim 39, wherein the compound is administered orally.
  • 42. The method of claim 39, wherein the compound specifically binds to at least one amino acid residue selected from the group consisting of Arg3S2 Thr268, Lys278, Lys385, Asn258, Leu290, Tyr294, Phe395, Ile337, Arg381, Asp261, and Ser397 of MOMP (SEQ ID NO:1).
  • 43. The method of claim 39, wherein the compound specifically binds to at least amino acid residue Thr268 of MOMP (SEQ ID NO.1).
  • 44. The method of claim 39, wherein the compound reduces the campylobacter colony forming units in the gastrointestinal tract of the animal by at least 50%.
  • 45. The method of claim 39, wherein the compound is a complex of Fe III with 3,4-dihydroxyphenylalanine or tyrosine.
  • 46. The method of claim 39, wherein the compound is ferric quinate.
  • 47. The method of claim 39, wherein the animal is selected from the group consisting of poultry, cattle, sheep, pigs, goats and deer.
  • 48. The method of claim 47, wherein the poultry is selected from the group consisting of chickens, geese, turkeys and ducks.
  • 49. The composition of claim 30, wherein the composition is a foodstuff or a food for human consumption selected from the group consisting of a fresh meat product, a processed meat product, a chilled meat product, a frozen meat product or a cooked meat product, wherein the meat product is selected from the group consisting of beef, lamb, pork, duck, chicken, goose, turkey, and rabbit.
Priority Claims (2)
Number Date Country Kind
1202681.1 Feb 2012 GB national
1220158.8 Nov 2012 GB national
Divisions (1)
Number Date Country
Parent 14379473 Aug 2014 US
Child 15458177 US
Continuations (2)
Number Date Country
Parent 16055935 Aug 2018 US
Child 16266946 US
Parent 15458177 Mar 2017 US
Child 16055935 US