Reduction of hair growth

Abstract
Mammalian hair growth is reduced by applying an agonist of farnesoid X receptor.
Description
BACKGROUND

The invention relates to reducing hair growth in mammals, particularly for cosmetic purposes.


A main function of mammalian hair is to provide environmental protection. However, that function has largely been lost in humans, in whom hair is kept or removed from various parts of the body essentially for cosmetic reasons. For example, it is generally preferred to have hair on the scalp but not on the face.


Various procedures have been employed to remove unwanted hair, including shaving, electrolysis, depilatory creams or lotions, waxing, plucking, and therapeutic antiandrogens. These conventional procedures generally have drawbacks associated with them. Shaving, for instance, can cause nicks and cuts, and can leave a perception of an increase in the rate of hair regrowth. Shaving also can leave an undesirable stubble. Electrolysis, on the other hand, can keep a treated area free of hair for prolonged periods of time, but can be expensive, painful, and sometimes leaves scarring. Depilatory creams, though very effective, typically are not recommended for frequent use due to their high irritancy potential. Waxing and plucking can cause pain, discomfort, and poor removal of short hair. Finally, antiandrogens—which have been used to treat female hirsutism—can have unwanted side effects.


It has previously been disclosed that the rate and character of hair growth can be altered by applying to the skin inhibitors of certain enzymes. These inhibitors include inhibitors of 5-alpha reductase, ornithine decarboxylase, S-adenosylmethionine decarboxylase, gamma-glutamyl transpeptidase, and transglutaminase. See, for example, Breuer et al., U.S. Pat. No. 4,885,289; Shander, U.S. Pat. No. 4,720,489; Ahluwalia, U.S. Pat. No. 5,095,007; Ahluwalia et al., U.S. Pat. No. 5,096,911; and Shander et al., U.S. Pat. No. 5,132,293.


Farnesoid X receptor (also known as “FXR”, “RIP14”, “bile acid receptor”, “BAR”, “HRR1” and “NR1H4”) is a member of the family of ligand-activated transcription factors that bind to specific cis-acting regulatory elements in the promoters of their target genes and modulate gene expression in response to ligands. Some of these receptors bind to their target genes as dimers consisting of two molecules of the same receptor (homodimers), while others bind to as dimers consisting of one molecule each of two different receptors (heterodimers). Famesoid X receptor forms a heterodimer with the retinoid X receptor (RXR) and binds to an inverted hexanucleotides repeat spaced by one nucleotide in the promoters of its target genes. Famesoid X receptor is activated through interaction with ligands such as farnesoids and bile acids. In addition, coactivators (DRIP205/TRAP220, SRC-1 and PGC-1 alpha) that bridge between the ligand-activated farnesoid X receptors and the basal transcription machinery, and/or influence the chromatin structure, can enhance the transcriptional activity of famesoid X receptor.


Farnesoid X receptor helps maintain bile acid homeostasis by modulating the expression of genes involved in the synthesis and transport of bile acid. Bile acids are the end product of cholesterol catabolism. Synthesis of bile acid is the predominant mechanisms for the excretion of excess cholesterol. Most bile acids in human are chenodeoxycholic acid, cholic acid, deoxycholic acid, ursodeoxycholic acid and lithocholic acid. While the level of bile acids is increased, famesoid X receptor is activated and upregulates the expression of the bile salt export pump that is responsible for bile acid excretion. In addition to bile acid excretion, bile acid-activated farnesoid X receptor represses the transcription of cholesterol 7alpha-hydroxylase (CYP7A1), which the rate-limiting enzyme in the bile acid biosynthesis pathway.


SUMMARY

In one aspect, the invention provides a method (typically a cosmetic method) of reducing unwanted mammalian (preferably human) hair growth by applying to the skin an agonist of famesoid X receptor in an amount effective to reduce hair growth. Preferably, the agonist interacts strongly with the famesoid X receptor. The unwanted hair growth may be undesirable from a cosmetic standpoint.


In another aspect, the invention provides a method of reducing unwanted mammalian hair growth by applying to the skin a compound selected from the group consisting of bile acids, analogs of bile acids, and derivatives of bile acids.


In another aspect, the invention provides a method of reducing unwanted mammalian hair growth by applying to the skin a compound selected from the group consisting of farnesoids, analogs of farnesoids, and derivatives of farnesoids.


In a another aspect, the invention provides a method of reducing unwanted mammalian hair growth by applying to the skin a compound that increases the formation of FXR-RXR heterodimer, the expression of famesoid X receptor, or promotes coactivator recruitment and interaction with FXR-RXR heterodimer.


In a further aspect, the invention provides a method of providing a benefit to exfoliated skin by applying any of the above agonists/compounds.


Typically, in practicing the aforementioned methods, the agonist/compound will be included in a topical composition along with a dermatologically or cosmetically acceptable vehicle. Accordingly, the present invention also relates to topical compositions comprising a dermatologically or cosmetically acceptable vehicle and an agonist of farnesoid X receptor. The present invention further relates to topical compositions comprising a dermatologically or cosmetically acceptable vehicle and (a) a compound selected from the group consisting of bile acids, analogs or derivatives of bile acids; (b) a compound selected from the group consisting of farnesoids, analogs or derivatives of farnesoids; and/or (c) a compound that increases the formation of FXR-RXR heterodimer, the expression of famesoid X receptor, or promotes coactivator recruitment and interaction with FXR-RXR heterodimer.


In addition, the present invention relates to the use of an agonist of famesoid X receptor for the manufacture of a therapeutic topical composition for reducing hair growth. Further, the present invention relates to the use of a compound for the manufacture of a therapeutic topical composition for reducing hair growth, wherein the compound is (a) a compound that selected from the group consisting of bile acids, analogs or derivatives of bile acids; (b) a compound selected from the group consisting of farnesoids, analogs or derivatives of farnesoids; and/or (c) a compound that increases the formation of FXR-RXR heterodimer, the expression of farnesoid X receptor, or promotes coactivator recruitment and interaction with FXR-RXR heterodimer.


In some embodiments, the agonist/compound is not a carbomate or ester of α-difluoromethylornithine. Carbamates, esters, and other conjugates of α-difluoromethylornithine are described in U.S. Ser. No. 10/397,132, which was filed on Mar. 26, 2003, is owned by the same owner as the present application, and is hereby incorporated herein by reference.


“Agonist of farnesoid X receptor”, as used herein, means a compound that activates farnesoid X receptor.


An agonist that “interacts strongly” with the farnesoid X receptor is one that binds the receptor with such affinity that it elicits a response that is at least approximately comparable to (in magnitude) to that elicited by farnesoids.


Specific compounds include both the compound itself and pharmacologically acceptable salts of the compound.


Other features and advantages of the invention may be apparent from the detailed description and from the claims.







DETAILED DESCRIPTION

An example of a preferred composition includes at least one agonist of famesoid X receptor in a cosmetically and/or dermatologically acceptable vehicle. The composition may be a solid, semi-solid, or liquid. The composition may be, for example, a cosmetic and dermatologic product in the form of an, for example, ointment, lotion, foam, cream, gel, or solution. The composition may also be in the form of a shaving preparation, an aftershave or an antiperspirant. The vehicle itself can be inert or it can possess cosmetic, physiological and/or pharmaceutical benefits of its own.


Examples of agonists of famesoid X receptor include bile acids, farnesoids, their analogs and derivatives, and other compounds.


Derivatives and analogs of bile acids are known. For example, J. Med. Chem. (2004), 47, 4559-4569 describes bile acid derivatives. J. Biol. Chem. (2004), 279(10),8856-8861. describes various bile acids. Derivatives and analogs of farnesoids are known. For example, U.S. Pat. No. 6,187,814 describes famesoid derivatives. Other examples of agonists of famesoid X receptor are disclosed in WO200400752 1, WO3015771, WO2004048349, WO3076418, WO2004046162, WO3060078, WO2072598, WO3080803, WO2003086303, WO 2004046068, U.S. Pat. 20030187042, U.S. Pat. 0040176426, U.S. Pat. 20040180942, U.S. Pat. No. 6,452,032, U.S. Pat. 2003203939, U.S. Pat. 2005004165, J. med. Chem. (2000), 43(6), 2971-2974, Mol. Gen. Met. (2004), 83, 184-187, Drugs for the future 91999), 24(4), 431-438, Current Pharmaceutical Design (2001), 7, 231-259. Examples of coactivators involved in FXR-RXR hetrodimer are disclosed in Genes & Dev. (2004), 18, 157-169 and J. Biol. Chem. (2004), 279(35), 36184-36191. All of these references are incorporated by reference.


Specific examples of agonists of farnesoid X receptor are provided in Tables I.

TABLE IExamples of Farnesoid X receptor agonistsFarnesolFarnesalFarnesyl acetateFarnesoic acidMethyl farnesyl etherMethyl farnesoateEthyl farnesyl etherEthyl farnesoate7-Methyl-9-(3,3-dimethyloxivanyl)-3-methyl-2,6-nonadienoic acid methylester (also known as Juvenile hormone III)Lithocholic acidCholic acidDeoxycholic acidChenodeoxycholic acidUrsodeoxycholic acid6-alpha-Ethyl chenodeoxycholic acidBenzenesulfonamide, N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]-(also known as T0901317)Benzoic acid, 3-[2-[2-chloro-4-[[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]- (also known as GW4064)Phosphonic acid, [[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethenylidene]bis-, tetraethyl ester (also known asSR-12813)Phosphonic acid, [2-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethylidene]bis-, tetrakis(1-methylethyl) ester(also known as SR-45023A or apomine)Phosphonic acid, [2-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethylidene]bis-, tetraethyl ester (also known as SR-9213)Phosphonic acid, [[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethenylidene]bis-, tetrakis(1-methylethyl) ester(also known as SR-12823i)7-Methyl-9-(3,3-dimethyloxivanyl)-3-methyl-2,6-nonadienoic acid ethylester3α,7α-dihydroxy-6α-ethyl-5p-cholan-24-oic acid3α,7α-dihydroxy-6α-propyl-5p-cholan-24-oic acid3α,7α-dihydroxy-6α-allyl-5p-cholan-24-oic acid


The composition may include more than one agonist of famesoid X receptor. In addition, the composition may include one or more other types of hair growth reducing agents, such as those described in U.S. Pat. No. 4,885,289; U.S. Pat. No. 4,720,489; U.S. Pat. No. 5,132,293; U.S. Pat. 5,096,911; U.S. Pat. No. 5,095,007; U.S. Pat. No. 5,143,925; U.S. Pat. No. 5,328,686; U.S. Pat. No. 5,440,090; U.S. Pat. No. 5,364,885; U.S. Pat. No. 5,411,991; U.S. Pat. No. 5,648,394; U.S. Pat. No. 5,468,476; U.S. Pat. No. 5,475,763; U.S. Pat. No. 5,554,608; U.S. Pat. No. 5,674,477; U.S. Pat. No. 5,728,736; U.S. Pat. 5,652,273; WO 94/27586; WO 94/27563; and WO 98/03149, all of which are incorporated herein by reference.


The concentration of the agonist in the composition may be varied over a wide range up to a saturated solution, preferably from 0.1% to 30% by weight or even more; the reduction of hair growth increases as the amount of agonist applied increases per unit area of skin. The maximum amount effectively applied is limited only by the rate at which the agonist penetrates the skin. The effective amounts may range, for example, from 10 to 3000 micrograms or more per square centimeter of skin.


The vehicle can be inert or can possess cosmetic, physiological and/or pharmaceutical benefits of its own. Vehicles can be formulated with liquid or solid emollients, solvents, thickeners, humectants and/or powders. Emollients include stearyl alcohol, mink oil, cetyl alcohol, oleyl alcohol, isopropyl laurate, polyethylene glycol, petroleum jelly, palmitic acid, oleic acid, and myristyl myristate. Solvents include ethyl alcohol, isopropanol, acetone, diethylene glycol, ethylene glycol, dimethyl sulfoxide, and dimethyl formamide.


The composition optionally can include components that enhance the penetration of the agonist into the skin and/or to the site of action. Examples of penetration enhancers include urea, polyoxyethylene ethers (e.g., Brij-30 and Laureth-4), 3-hydroxy-3,7,11-trimethyl-1,6,10-dodecatriene, terpenes, cis-fatty acids (e.g., oleic acid, palmitoleic acid), acetone, laurocapram, dimethylsulfoxide, 2-pyrrolidone, oleyl alcohol, glyceryl-3-stearate, propan-2-ol, myristic acid isopropyl ester, cholesterol, and propylene glycol. A penetration enhancer can be added, for example, at concentrations of 0.1% to 20% or 0.5% to 5% by weight.


The composition also can be formulated to provide a reservoir within or on the surface of the skin to provide for a continual slow release of the agonist. The composition also may be formulated to evaporate slowly from the skin, allowing the agonist extra time to penetrate the skin.


A topical cream composition containing an agonist of famesoid X receptor may be prepared by mixing together water and all water soluble components in a mixing vessel-A. The pH is adjusted in a desired range from about 3.5 to 8.0. In order to achieve complete dissolution of ingredients the vessel temperature may be raised to up to 45° C. The selection of pH and temperature will depend on the stability of the agonist. The oil soluble components, except for the preservative and fragrance components, are mixed together in another container (B) and heated to up to 70° C. to melt and mix the components. The heated contents of vessel B are poured into the water phase (container A) with brisk stirring. Mixing is continued for about 20 minutes. The preservative components are added at temperature of about 40° C. Stirring is continued until the temperature reaches about 25° C. to yield a soft cream with a viscosity of 8,000-12,000 cps, or a desired viscosity. The fragrance components are added at about 25° C.-30° C. while the contents are still being mixed and the viscosity has not yet built up to the desired range. If it is desired to increase the viscosity of the resulting emulsion, shear can be applied using a conventional homogenizer, for example a Silverson L4R homogenizer with a square hole high sheer screen. The topical composition can be fabricated by including the agonist in the water phase during formulation preparation or can be added after the formulation (vehicle) preparation has been completed. The agonist can also be added during any step of the vehicle preparation. The components of come cream formulations are described in the examples below.


EXAMPLE 1
Cream



















INCI Name
W/w (%)









DI Water
61.00-75.00



Agonist of farnesoid X receptor
 1.00-15.00



Mineral oil
1.90



Glyceryl stearate
3.60



PEG 100 stearate
3.48



Cetearyl alcohol
2.59



Ceteareth-20
2.13



Dimethicone, 100 ct
0.48



Lipidure PMBa
3.00



Advanced moisture complexb
5.00



Stearyl alcohol
1.42



Preservative, fragrance and color pigment
qs



Total
100.00 










apolyquartinium-51 (Collaborative Labs, NY);







bglycerin and water and sodium PCA and urea and trehalose and polyqauternium-51 and sodium hyaluronate (Collaborative Labs, NY)







EXAMPLE 2
Cream



















INCI Name
w/w (%)









Agonist of farnesoid X receptor
 0.5-15.00



Glycerol (glycerin)
0-5



Isoceteth-20
3-7



Glyceryl isostearate
1.5-5  



Dicaprylyl ether
 3-15



Glyceryl triacetate (triacetin)
0.5-10 



Preservative, fragrance and color pigment
q.s.



Water
q.s. to 100.00










EXAMPLE 3
Cream



















INCI Name
w/w (%)









Agonist of farnesoid X receptor
 0.5-15.00



Glycerol (glycerin)
0-5



Isoceteth-20
3-7



Glyceryl isostearate
1.5-5  



Dicaprylyl ether
 3-15



1-dodecyl-2-pyrrolidanone
 0.5-10%



Preservative, fragrance and color
q.s.



Water
to 100.00










EXAMPLE 4
Cream



















INCI Name
w/w (%)



















Water
70



Glyceryl stearate
4



PEG-100
4



Cetearyl alcohol
3



Ceteareth-20
2.5



Mineral oil
2



Stearyl alcohol
2



Dimethicone
0.5



Preservatives
0.43



1-Dodecyl-2-pyrrolidanone
1-10



Total
100.00










An agonist of farnesoid X receptor is added to the example 4 formulation and mixed until solubilized.


EXAMPLE 5
Cream



















INCI Name
w/w (%)









Water
70-80



Glyceryl stearate
4



PEG-100
4



Cetearyl alcohol
3



Ceteareth-20
2.5



Mineral oil
2



Stearyl alcohol
2



Dimethicone
0.5



Preservatives
0.43



Monocaprylate/Caprate
 1-10



(Estol 3601, Uniquema, NJ)




Total
100.00










An agonist of famesoid X receptor is added to the example 5 formulation and mixed until solubilized.


EXAMPLE 6
Cream



















INCI Name
w/w (%)









Water
70-80



Glyceryl stearate
4



PEG-100
4



Cetearyl alcohol
3



Ceteareth-20
2.5



Mineral oil
2



Stearyl alcohol
2



Dimethicone
0.5



Preservatives
0.43



cis Fatty acids
 1-10



Total
100.00










An agonist of farnesoid X receptor is added to the example 6 formulation and mixed until solubilized.


EXAMPLE 7
Cream



















INCI Name
w/w (%)









Water
70-80%



Glyceryl stearate
4



PEG-100
4



Cetearyl alcohol
3



Ceteareth-20
2.5



Mineral oil
2



Stearyl alcohol
2



Dimethicone
0.5



Preservatives
0.43



Terpene(s)
1-10



Total
100.00










An agonist of farnesoid X receptor is added to the example 7 formulation and mixed until solubilized.


EXAMPLE 8
Cream



















INCI Name
w/w (%)









Water
70-80%



Glyceryl stearate
4



PEG-100
4



Cetearyl alcohol
3



Ceteareth-20
2.5



Mineral oil
2



Stearyl alcohol
2



Dimethicone
0.5



Preservatives
0.43



Polyoxyethylene sorbitans (tween)
1-10



Total
100.00










An agonist of famesoid X receptor is added to the example 8 formulation and mixed until solubilized.


A hydroalcoholic formulation containing an agonist of farnesoid X receptor is prepared by mixing the formulation components in a mixing vessel. The pH of the formulation is adjusted to a desired value in the range of 3.5-8.0. The pH adjustment can also be made to cause complete dissolution of the formulation ingredients. In addition, heating can be applied to up to 45° C., or even up to 70° C. depending on the stability of the agonist to achieve dissolution of the formulation ingredients. The components of two hydroalcoholic formulations are listed below.


EXAMPLE 9
Hydro-Alcoholic



















INCI Name
w/w (%)









Water
48.00-62.50



An agonist of farnesoid X receptor
 0.5-15.00



Ethanol
16.00



Propylene glycol
5.00



Dipropylene glycol
5.00



Benzyl alcohol
400



Propylene carbonate
2.00



Captex-300a
5.00



Total
100.00










acaprylic/capric triglyceride (Abitec Corp., OH).







EXAMPLE 10
Hydro-Alcoholic



















INCI Name
w/w (%)









Water
53.00-67.9



An agonist of farnesoid X receptor
  0.1-15.00



Ethanol
16.00



Propylene glycol
5.00



Dipropylene glycol dimethyl ether
5.00



Benzyl alcohol
4.00



Propylene carbonate
2.00



Total
100.00




























INCI Name
w/w (%)



















Ethanol (alcohol)
80



Water
17.5



Propylene glycol dipelargonate
2.0



Propylene glycol
0.5



Total
100.00










EXAMPLE 11
Hydro-Alcoholic

An agonist of farnesoid X receptor is added to the example 11 formulation and mixed until solubilized.


The composition should be applied topically to a selected area of the body from which it is desired to reduce hair growth. For example, the composition can be applied to the face, particularly to the beard area of the face, i.e., the cheek, neck, upper lip, and chin. The composition also may be used as an adjunct to other methods of hair removal including shaving, waxing, mechanical epilation, chemical depilation, electrolysis and laser-assisted hair removal. Other actions that make their concept appearance are concurrent skin benefits in addition to hair reduction.


The composition can also be applied to the legs, arms, torso or armpits. The composition is suitable, for example, for reducing the growth of unwanted hair in women. In humans, the composition should be applied once or twice a day, or even more frequently, to achieve a perceived reduction in hair growth. Perception of reduced hair growth could occur as early as 24 hours or 48 hours (for instance, between normal shaving intervals) following use or could take up to, for example, three months. Reduction in hair growth is demonstrated when, for example, the rate of hair growth is slowed, the need for removal is reduced, the subject perceives less hair on the treated site, or quantitatively, when the weight of hair removed (i.e., hair mass) is reduced.


Human Hair Follicle Growth Assay:


Human hair follicles in growth phase (anagen) were isolated from face-lift tissue (obtained from plastic surgeons) under dissecting scope using a scalpel and watchmakers forceps. The skin was sliced into thin strips exposing 2-3 rows of follicles that could readily be dissected. Follicles were placed into 0.5 ml William's E medium (Life Technologies, Gaithersburg, Md.) supplemented with 2 mM L-glutamine, 10 μg/ml insulin, 10 ng/ml hydrocortisone, 100 units of penicillin, 0.1 mg/ml streptomycin and 0.25 μg/ml amphotericin B. The follicles were incubated in 24-well plates (1 follicle/well) at 37° C. in an atmosphere of 5% CO2 and 95% air. Compounds are dissolved into dimethyl sulfoxide as 100-fold stock solution. The control hair follicles were treated with dimethyl sulfoxide without prostaglandin. The follicles were photographed in the 24-well plates under the dissecting scope at a power of 10×. Typically, image recordings were made on day 0 (day follicles were placed in culture), and again on day 7. The length of hair follicle was assessed using an image analysis software system. The growth of hair fiber was calculated by the subtracting the follicle length on day 0 from that determined on day 7.


Hamster Hair Mass Assay:


Hamster hair mass was determined using a method similar to that described in previous patent (US2004/0198821).


The agonists of famesoid X receptor demonstrated a significant reduction of human hair follicle growth. All of the six agonists of farnesoid X receptor tested significantly reduced hair growth. The results are provided in Table II. The hair growth inhibition profile by the agonists of famesoid X receptor was found to be dose-dependent. The results are provided in Table III.

TABLE IIInhibition of human hair follicle growth bythe agonists of farnestoid X receptor.DoseHair follicle length increase (mm)FXR agonists(μM)TreatedControl% InhibitionDeoxycholic acid1000.06 ± 0.051.07 ± 0.1494.3 ± 4.7Ursodeoxycholic acid2000.20 ± 0.111.07 ± 0.14 81.3 ± 10.3Chenodeoxycholic1000.05 ± 0.061.07 ± 0.1495.3 ± 5.6acidLithocholic acid500.02 ± 0.021.07 ± 0.1498.1 ± 1.9Farnesol1000.04 ± 0.070.87 ± 0.2395.4 ± 8.0Juvenile hormone III1000.21 ± 0.150.87 ± 0.23 75.9 ± 17.2









TABLE III










Dose-dependent reduction of human hair follicle


growth by the agonists of farnestoid X receptor.










Dose
Growth of follicle (mm)











FXR agonists
(μM)
Treated
Control
% Reduction














Deoxycholic acid
10
1.20 ± 0.49
1.76 ± 0.36
31.8 ± 18.1



50
0.54 ± 0.34
1.76 ± 0.36
69.3 ± 13.6



100
0.54 ± 0.34
1.76 ± 0.36
69.3 ± 13.6


Ursodeoxycholic acid
50
1.12 ± 0.24
1.76 ± 0.36
36.3 ± 13.6



100
0.86 ± 0.20
1.76 ± 0.36
51.1 ± 11.4



150
0.61 ± 0.20
1.76 ± 0.36
65.3 ± 11.4


Chenodeoxycholic
5
1.53 ± 0.29
1.55 ± 0.02
 1.3 ± 18.7


acid
25
0.79 ± 0.27
1.55 ± 0.02
49.0 ± 17.4



50
0.13 ± 0.10
1.55 ± 0.02
91.6 ± 6.5 


Lithocholic acid
2
0.82 ± 0.14
1.24 ± 0.23
33.9 ± 11.3



10
0.44 ± 0.16
1.24 ± 0.23
64.5 ± 12.9



20
0.03 ± 0.06
1.24 ± 0.23
97.6 ± 4.8









Furthermore, the agonists of farnestoid X receptor were tested in the hamster hair mass assay. The agonists reduced hair mass in vivo as shown in Table IV.

TABLE IVReduction of hamster hair mass by the agonists of farnestoid X receptor.DoseHair mass (mg)FXR agonists(w/v)Vehicle*TreatedControl% InhibitionLithocholic acid4%ethanol1.01 ± 0.121.96 ± 0.1946.4 ± 6.0Chenodeoxycholic acid5%ethanol0.54 ± 0.082.28 ± 0.1976.4 ± 2.6Deoxycholic acid5%ethanol0.92 ± 0.142.66 ± 0.2863.6 ± 6.0Ursodeoxycholic acid5%ethanol1.02 ± 0.162.43 ± 0.3156.8 ± 3.8
*The vehicle contains 90% ethanol and 10% propylene glycol.


Accordingly, other embodiments are within the scope of the following claims.

Claims
  • 1. A method of reducing mammalian hair growth which comprises selecting an area of skin from which reduced hair growth is desired; and applying to said area of skin a dermatologically acceptable composition comprising an agonist of farnesoid X receptor in an amount effective to reduce hair growth, wherein said agonist is not a carbamate or ester of α-difluoromethylomithine and farnesol.
  • 2. The method of claim 1, wherein said agonist is a bile acid.
  • 3. The method of claim 1, wherein said agonist is an analog of a bile acid.
  • 4. The method of claim 1, wherein said agonist is a derivative of a bile acid.
  • 5. The method of claim 1, wherein said agonist interacts strongly with the famesoid X receptor.
  • 6. The method of claim 1, wherein said agonist is lithocholic acid.
  • 7. The method of claim 1, wherein said agonist is cholic acid.
  • 8. The method of claim 1, wherein said agonist is deoxycholic acid.
  • 9. The method of claim 1, wherein said agonist is chenodeoxycholic acid.
  • 10. The method of claim 1, wherein said agonist is ursodeoxycholic acid.
  • 11. The method of claim 1, wherein said agonist is 6-alpha-ethyl chenodeoxycholic acid.
  • 12. The method of claim 1, wherein said agonist is a famesoid.
  • 13. The method of claim 1, wherein said agonist is an analog of a famesoid.
  • 14. The method of claim 1, wherein said agonist is a derivative of a famesoid.
  • 15. The method of claim 1, wherein said agonist is farnesol.
  • 16. The method of claim 1, wherein said agonist is farnesal.
  • 17. The method of claim 1, wherein said agonist is farnesyl acetate.
  • 18. The method of claim 1, wherein said agonist is farnesoic acid
  • 19. The method of claim 1, wherein said agonist is methyl farnesyl ether.
  • 20. The method of claim 1, wherein said agonist is methyl farnesoate.
  • 21. The method of claim 1, wherein said agonist is ethyl farnesyl ether.
  • 22. The method of claim 1, wherein said agonist is ethyl farnesoate.
  • 23. The method of claim 1, wherein said agonist is 7-methyl-9-(3,3-dimethyloxivanyl)-3-methyl-2,6-nonadienoic acid methyl ester (juvenile hormone III).
  • 24. The method of claim 1, wherein said agonist is 7-methyl-9-(3,3-dimethyloxivanyl)-3-methyl-2,6-nonadienoic acid ethyl ester.
  • 25. The method of claim 1, wherein said agonist is 3alpha, 7alpha-dihydroxy-6alpha-ethyl-5p-cholan-24-oic acid.
  • 26. The method of claim 1, wherein said agonist is 3alpha, 7alpha-dihydroxy-6alpha-propyl-5p-cholan-24-oic acid.
  • 27. The method of claim 1, wherein said agonist is 3alpha, 7alpha-dihydroxy-6alpha -allyl-5p-cholan-24-oic acid.
  • 28. The method of claim 1, wherein said agonist is benzenesulfonamide, N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]-.
  • 29. The method of claim 1, wherein said agonist is benzoic acid, 3-[2-[2-chloro-4-[[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]-.
  • 30. The method of claim 1, wherein said agonist is phosphonic acid, [[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethenylidene]bis-, tetraethyl ester.
  • 31. The method of claim 1, wherein said agonist is phosphonic acid, [2-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethylidene]bis-, tetrakis(1-methylethyl)ester.
  • 32. The method of claim 1, wherein said agonist is phosphonic acid, [2-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethylidene]bis-, tetraethyl ester.
  • 33. The method of claim 1, wherein said agonist is phosphonic acid, [[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethenylidene]bis-, tetrakis(1-methylethyl)ester.
  • 34. The method of claim 1, wherein the concentration of said agonist in said composition is between 0.1% and 30%.
  • 35. The method of claim 1, wherein the composition provides a reduction in hair growth of at least 30% when tested in the Human Hair Follicle assay.
  • 36. The method of claim 1, wherein the agonist is applied to the skin in an amount of from 10 to 3000 micrograms of said agonist per square centimeter of skin.
  • 37. The method of claim 1, wherein said area of skin is on the face of a human.
  • 38. The method of claim 37, wherein the composition is applied to the area of skin in conjunction with shaving.
  • 39. The method of claim 1, wherein said area of skin is on a leg of the human.
  • 40. The method of claim 1, wherein said area of skin is on an arm of the human.
  • 41. The method of claim 1, wherein said area of skin is in an armpit of the human.
  • 42. The method of claim 1, wherein said area of skin is on the torso of the human.
  • 43. The method of claim 1, wherein said hair growth comprises androgen stimulated hair growth.
  • 44. The method of claim 1, wherein the composition further includes a second component that also causes a reduction in hair growth.
  • 45. A method of reducing mammalian hair growth, which comprises selecting an area of skin including hair follicles from which reduced hair growth is desired; and applying to the area of skin a dermatologically acceptable composition comprising a compound selected from the group consisting of bile acids, bile acid analogues, and bile acid derivatives in an amount effective to reduce hair growth.
  • 46. A method of reducing mammalian hair growth, which comprises selecting an area of skin including hair follicles from which reduced hair growth is desired; and applying to the area of skin, in an amount effective to reduce hair growth, a dermatogically acceptable composition comprising a compound, other than a carbamate or ester of a-difluoromethylomithine and farnesol, selected from the group consisting of compounds that increase the formation of FXR-RXR heterodimer, compounds that promote coactivator recruitment and interaction with FXR-RXR, and compounds that increase the expression of famesoid X receptor.
  • 47. A method of reducing mammalian hair growth, which comprises selecting an area of skin from which reduced hair growth is desired; and applying to the area of skin a dermatologically acceptable composition comprising a compound selected from the group consisting of farsenoids, analogues of farsenoids, and derivatives of farsenoids in an amount effective to reduce hair growth.
  • 48. A method of treating an area of exfoliated skin, comprising applying an agonist of famesoid X receptor to the area of exfoliated skin.
  • 49. The method of claim 48, wherein the area of exfoliated skin has been shaved prior to application of the agonist of famesoid X receptor.