Reduction of physiological metric error due to inertial cadence

Information

  • Patent Grant
  • 10542896
  • Patent Number
    10,542,896
  • Date Filed
    Friday, September 28, 2018
    6 years ago
  • Date Issued
    Tuesday, January 28, 2020
    4 years ago
Abstract
The heart rate monitor disclosed herein removes a step rate component from a measured heart rate by using one or more filtering techniques when the step rate is close to the heart rate. In general, a difference between the step rate and the heart rate is determined, and the step rate is filtered from the heart rate based on a function of the difference.
Description
BACKGROUND

Personal health monitors provide users with the ability to monitor their overall health and fitness by enabling the user to monitor heart rate or other physiological information during exercise, athletic training, rest, daily life activities, physical therapy, etc. Such devices are becoming increasingly popular as they become smaller and more portable.


A heart rate monitor represents one example of a personal health monitor. A common type of heart rate monitor uses a chest strap that includes surface electrodes to detect muscle action potentials from the heart. Because such surface electrodes provide a relatively noise free signal, the information produced by monitors that use surface electrodes is relatively accurate. However, most users find chest strap monitors uncomfortable and inconvenient.


Another type of monitor uses photoplethysmograph (PPG) sensors disposed in an ear bud. The ear provides an ideal location for a monitor because it is a relatively immobile platform that does not obstruct a person's movement or vision. PPG sensors proximate the ear may have, e.g., access to the inner ear canal and tympanic membrane (for measuring core body temperature), muscle tissue (for monitoring muscle tension), the pinna and earlobe (for monitoring blood gas levels), the region behind the ear (for measuring skin temperature and galvanic skin response), and the internal carotid artery (for measuring cardiopulmonary functioning). The ear is also at or near the point of the body's exposure to environmental breathable toxins of interest (volatile organic compounds, pollution, etc.), noise pollution experienced by the ear, lighting conditions for the eye, etc. Further, as the ear canal is naturally designed for transmitting acoustical energy, the ear provides a good location for monitoring internal sounds, such as the heartbeat, breathing rate, mouth motion, etc.


PPG sensors measure the relative blood flow using an infrared or other light source that projects light that is ultimately transmitted through or reflected off tissue, and is subsequently detected by a photodetector and quantified. For example, higher blood flow rates result in less light being absorbed, which ultimately increases the intensity of the light that reaches the photodetector. By processing the signal output by the photodetector, a monitor using PPG sensors may measure the blood volume pulse (the phasic change in blood volume with each heartbeat), the heart rate, heart rate variability, and other physiological information.


PPG sensors are generally small and may be packaged such that they do not encounter the comfort and/or convenience issues associated with other conventional health monitors. However, PPG sensors are also highly sensitive to noise, and thus are more prone to accuracy problems. For example, a motion component of a user, e.g., a step rate of a jogger, is often as strong as or stronger than a heart rate component, which may corrupt a heart rate measurement. U.S. Pat. No. 7,144,375, which discloses using an accelerometer as a motion reference for identifying the potential step rate component(s) of a PPG sensor output, provides one possible solution to this problem. When the step rate is close to the heart rate, the '375 patent teaches spectrally transforming the step rate and heart rate waveforms, e.g., over a window of samples, respectively provided by the step rate and heart rate sensors to create a step rate spectrum and a heart rate spectrum. If the spectral transform operation uses a 6 s window, the average latency incurred for the transform operation is 3 s. After performing the spectral transform, the '375 patent spectrally subtracts the heart rate and step rate spectrums. The '375 patent further keeps a history of the top ten peaks from the output of the spectral subtraction to perform various statistical analyses in order to achieve the desired accuracy before making a decision regarding whether there is a cross-over between the heart rate and the step rate, and before making a decision regarding which spectral peak corresponds to the heart rate. Thus, the post-transform operations implemented by the '375 patent incur an additional processing latency, e.g., of ten seconds, which is undesirable. Thus, there remains a need for alternative solutions that provide an accurate heart rate with less latency when the step rate is close to the heart rate.


SUMMARY

The solution disclosed herein removes a step rate component from a measured heart rate by using one or more filtering techniques when the step rate is lose to the heart rate. In general, a difference between the step rate and the heart rate is determined, and the step rate is filtered from the heart rate based on a function of the difference.


In one exemplary embodiment a step rate processor computes a step rate of a user based on a waveform provided by a step rate sensor, and a heart rate processor computes a first heart rate of the user based on a waveform provided by a heart rate sensor. A noise processor then computes a difference between the step rate and the heart rate, computes a second heart rate of the user as a function of the difference, and outputs the second heart rate. For example, the noise processor may filter the heart rate as a function of the difference.


More broadly, an exemplary physiological monitor comprises an inertial sensor, an inertial processor, a physiological sensor, a physiological processor, and a noise processor. The inertial processor computes an inertial cadence of a user based on an inertial waveform provided by the inertial sensor. The physiological processor computes a first physiological metric of the user based on a physiological waveform provided by the physiological sensor. The noise processor computes a difference between the inertial cadence and the first physiological metric, computes a second physiological metric as a function of the difference, and outputs the second physiological metric.


An exemplary method reduces noise in data output by a physiological monitor. To that end, the method includes computing an inertial cadence of a user based on an inertial waveform provided by an inertial sensor in the physiological monitor, and computing a first physiological metric of the user based on a physiological waveform provided by a physiological sensor in the physiological monitor. Subsequently, the method computes a difference between the inertial cadence and the first physiological metric, computes a second physiological metric as a function of the difference, and outputs the second physiological metric.


Because the solution disclosed herein processes only the current spectrally transformed data, e.g., the current step rate and heart rate spectrums, the present invention essentially eliminates the post-transform latency incurred by the '375 patent. Thus, the solution disclosed herein provides sufficient accuracy without the undesirable latency associated with the prior art.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an exemplary heart rate monitor disposed in an ear bud.



FIG. 2 shows a block diagram of an exemplary physiological monitoring system disposed in a housing.



FIG. 3 shows an exemplary process for removing an inertial cadence from a physiological metric.



FIG. 4 shows another exemplary process for removing the inertial cadence from the physiological metric.



FIG. 5 shows an exemplary block diagram for the physiological processor of FIG. 2.



FIGS. 6A-6D show exemplary results of simulated step rate and heart rate spectrums, and the resulting difference spectrums and estimated heart rates.



FIG. 7 show an exemplary result of a simulation used to estimate a heart rate according to the solution disclosed herein.





DETAILED DESCRIPTION

The techniques disclosed herein improve the accuracy of the results achieved when processing data, e.g., heart rate data, provided by a physiological sensor. FIG. 1 shows an exemplary monitoring system 12 disposed in an ear bud 10. The ear bud 10 may comprise a wireless or wired ear bud that communicatively couples to a remote device, e.g., a music player, a smart phone, a personal data assistant, etc. The monitoring system 12 monitors the heart rate and/or other physiological metrics, and outputs such physiological information to the user and/or to other processing functions. While the monitoring system 12 disclosed herein is presented as being part of an ear bud 10, it will be appreciated that monitoring system 12 may be disposed into any device that secures to the body of a user, e.g., a device that secures to an ear, finger, toe, limb, wrist, nose, etc. In some embodiments, the device may comprise a patch, e.g., a bandage, designed to attach the system 12 to any desired location on the user's body.



FIG. 2 shows a block diagram of an exemplary monitoring system 12 according to one exemplary embodiment. System 12 comprises a processor 100 coupled to one or more physiological sensors 20 and one or more inertial sensors 30, an output interface 40, and memory 50. Physiological sensor(s) 20 produce a physiological waveform responsive to the physiological state of the user, Inertial sensor(s) 30 produce an inertial waveform responsive to the movement of the user. An exemplary inertial sensor includes, but is not limited to, an accelerometer, an optical emitter/detector pair, an optical detector, a CCD camera, a piezoelectric sensor, a thermal sensor, or any type of sensor capable of capturing motion information, Exemplary optical emitters comprise one or more light emitting diodes, laser diodes, organic light-emitting diodes, miniature light emitters, electromagnetic emitters, etc. It will be appreciated that the sensors disclosed herein are not limited to optical wavelengths of the electromagnetic spectrum. In some embodiments, emitters and/or detectors configured for shorter or longer wavelengths may be used to accommodate shorter or longer wavelengths in the electromagnetic spectrum. The optical detector may comprise a photodetector, an electromagnetic detector, a photodiode, etc. Processor 100 processes the physiological and inertial waveforms using the technique(s) disclosed herein, along with information stored in memory 50, to remove an inertial cadence from a heart rate and; or one or more physiological metrics. Output interface 40 outputs the determined physiological metric(s), It will be appreciated that output interface may comprise a transceiver for transmitting the data output by the processor 100 to a remote device. Alternatively or additionally, the output interface may provide the output data to a user interface, e.g., a display, a database, another processor, and/or a processing function.


While the physiological sensors 20 may comprise any known physiological sensor, the physiological sensor(s) 20 in exemplary embodiments comprise photoplethysmograph (PPG) sensors that generate an electrical physiological waveform responsive to detected light intensity. PPG sensors comprise light intensity sensors that generally rely on optical coupling of light into the blood vessels. As used herein, the term “optical coupling” refers to the interaction or communication between excitation light entering a region and the region itself. For example, one form of optical coupling may be the interaction between excitation light generated from within a light-guiding ear bud 10 and the blood vessels of the ear. Light guiding ear buds are described in co-pending U.S. Patent Application Publication No. 2010/0217102, which is incorporated herein by reference in its entirety. In one embodiment, the interaction between the excitation light and the blood vessels may involve excitation light entering the ear region and scattering from a blood vessel in the ear such that the intensity of the scattered light is proportional to blood flow within the blood vessel. Another form of optical coupling may result from the interaction between the excitation light generated by an optical emitter within the ear bud 10 and the light-guiding region of the ear bud 10.


Processor 100 comprises an inertial processor 110, physiological processor 120, and noise processor 140. Inertial processor 110 determines an inertial cadence I, e.g., a step rate, from the inertial waveform using any known means. The determined inertial cadence may include the true inertial cadence as well as one or more harmonics of the true inertial cadence, e.g., the ½×, 3/2×, and 2× harmonics of the true inertial cadence. For example, the inertial processor may spectrally transform the inertial waveform to generate an inertial spectrum, and set the inertial cadence to the frequency of the largest peak of the inertial spectrum. It will be appreciated that other methods may alternatively be used to determine the inertial cadence. Physiological processor 120 determines one or more physiological metrics H, e.g., a heart rate, from the physiological waveform, as discussed further herein. The determined physiological metric may also refer to a physiological assessment computed from one or more physiological metrics. Noise processor 140 filters the determined metric(s) to remove the inertial cadence, and therefore, to produce a revised physiological metric Ĥ having an improved accuracy.


For simplicity, the following describes the processor 100 in terms of a noise processor 140 that determines a heart rate by removing a step rate by using one or more filtering techniques when the step rate determined by the inertial processor 110 is close to the heart rate determined by the physiological processor 120. In general, a difference between the step rate and the heart rate is determined, and the step rate is filtered from the heart rate based on a function of the difference. It should be noted, however, that the physiological processor 120, and thus processor 100, may alternatively or additionally determine other physiological metrics, e.g., a respiration rate, a heart rate variability (HRV), a pulse pressure, a systolic blood pressure, a diastolic blood pressure, a step rate, an oxygen uptake (VO2), a maximal oxygen uptake (VO2 max), calories burned, trauma, cardiac output and/or blood analyte levels including percentage of hemoglobin binding sites occupied by oxygen (SPO2), percentage of methomoglobins, a percentage of carbonyl hemoglobin, and/or a glucose level. Alternatively or additionally, processor 100 may determine and filter one or more physiological assessments, e.g., a ventilatory threshold, lactate threshold, cardiopulmonary status, neurological status, aerobic capacity (VO2 max), and; or overall health or fitness. Further, it will be appreciated that the processor 100 may additionally or alternatively remove other inertial cadences, e.g., rhythmic head movements, body movements (e.g., arm movements, weight lifting, etc.), etc., from the heart rate.



FIG. 3 shows an exemplary method 200 that may be implemented by processor 100 to compute an output heart rate. After processor 100 receives the inertial and physiological waveforms from the sensor(s) 20 and 30 (block 210), the inertial processor 110 determines a step rate I (block 220), and the physiological processor 120 determines a first estimate H of the heart rate (block 230). The noise processor 140 computes a revised estimate Ĥ of the heart rate as a function of the difference between the step rate and the heart rate (block 240), and subsequently outputs the revised heart rate estimate Ĥ to output interface 40 (block 290). It will be appreciated that processor 100 may also store the revised heart rate estimate Ĥ in memory 50, e.g., so that it may be used in subsequent calculations.



FIG. 4 shows an exemplary method 240 for computing the revised heart rate Ĥ as a function of the difference between the step rate and the first heart rate. The exemplary method 240 of FIG. 4 includes multiple levels, where a first level includes block 242, a second level includes blocks 244 to 248, a third level includes block 250, a fourth level includes block 260, a fifth level includes block 270, and a sixth level includes blocks 280 to 284. It will be appreciated, however, that some exemplary embodiments may implement one or more of these levels, as described further herein, and/or that the present invention does not require each level to be implemented in the order shown in FIG. 4.


The first level (blocks 242 and 243) comprises an initialization level, where the heart rate processor 120 and/or noise processor 140 initializes and/or determines one or more variables useful for determining the output heart rate based on pre-determined values, values stored in memory, and measured information (blocks 242 and 243), e.g., an instantaneous heart rate Hinst, a filtered heart rate Hfilt, a lock count Clk, a second (or output) heart rate H, etc. For example, to determine Hinst, heart rate processor 120 comprises a spectral transformer 122 (FIG. 5) that spectrally transforms the physiological waveform output by the heart rate sensor(s) 20 to generate a physiological spectrum. For example, the spectral transformer 122 may transform the heart rate waveform over a window of samples, e.g., 6 s. It will be appreciated that such a transform operation incurs a latency half the length of the window, e.g., 3 s. The heart rate processor 120 initializes the first heart rate by identifying the frequency F1 of the spectral peak of the physiological spectrum having the largest amplitude as an initial instantaneous heart rate Hinst, where the initial instantaneous heart rate corresponds to the first heart rate (block 243). The heart rate processor 1120 may further identify the frequency F2 of the spectral peak of the physiological spectrum having the next largest amplitude. Alternatively or additionally, a filtered heart rate may be initialized, e.g., by retrieving a previously determined filtered heart rate from memory 50 or by setting Hfilt to an empirically determined value, e.g., 83. Further, Clk may be initialized by setting it equal to zero, where Clk represents, e.g., the number of successive frames where the difference between the heart rate and the step rate satisfies a predetermined threshold, Noise processor 140 may also determine an initial second (or output) heart rate H, where the second heart rate represents the heart rate ultimately output by the noise processor 140. In some cases, the processor 140 may set the initial H to an empirically determined value, e.g., 83. Alternatively or additionally, the noise processor 140 may initialize H to the Ĥ value from a previous frame after the first iteration through the process 240.


The second level (blocks 244 to 248) determines an instantaneous heart rate as a function of a difference between an initial instantaneous heart rate and the step rate, and particularly addresses the scenario when the results of spectral subtraction wipe out the primary spectral peak typically used to determine the instantaneous heart rate. More particularly, the second level determines whether the step rate I provided by inertial processor 110 is close to the initial instantaneous heart rate Hinst by determining whether the initial instantaneous heart rate is within a crossover window (block 244), and adjusts the instantaneous heart rate based on that determination. For example, noise processor 140 may determine whether the initial Hinst is within the crossover window by determining whether the difference between the step rate I and the initial Hinst is less than or equal to a threshold Tw, e.g., Tw=8. In one embodiment, noise processor 140 adjusts the initial Hinst only when the initial Hinst is within the crossover window, where the adjustment is based on a weighted average of the frequencies of two or more of the spectral peaks provided by the spectral transformer 122 (block 248). For example, noise processor 140 may compute a weight w according to:










w
=


M
1



M
1

+

M
2




,




(
1
)








where M1 represents the magnitude of the largest spectral peak of the physiological spectrum and M2 represents the magnitude of a second spectral peak of the physiological spectrum, e.g., the next largest spectral peak. The noise processor 140 then adjusts the instantaneous heart rate by computing a weighted average of the frequencies of the two spectral peaks, e.g., according to:

Hinst=wF1+(1−w)F2,  (2)

where F1 represents the frequency of the largest spectral peak (and corresponds to the initial instantaneous heart rate), and F2 represents the frequency of the second spectral peak.


In some embodiments, the second level may also optionally determine whether the frequency F2 of the second spectral peak of the physiological spectrum is also in the crossover window and whether the step rate I is between the initial Hinst and F2 (block 246) when the condition of block 244 is satisfied. For example, the noise processor 140 may determine whether F2 is within the crossover window by determining whether the difference between F2 and I is less than or equal to a threshold, e.g., 8. Further, the noise processor 140 may determine whether I is between F2 and the initial Hinst by determining whether sign(Hinst−I)≠sign(F2−I). In any event, for this example, noise processor 140 executes the operation of block 248 only when the conditions of blocks 244 and 246 are both satisfied.


The third level (block 250) filters the instantaneous heart rate using rate limits. More particularly, the third level computes a revised filtered heart rate Ĥfilt as a function of a current filtered heart rate Hfilt the instantaneous heart rate Hinst output by the second level, and a rate limit Δr. For this embodiment, the heart rate processor 120 may further include a filter 124, as shown in FIG. 5. In general, after comparing Hinst to Hfilt, which may be retrieved from memory 50 or provided by initialization block 242, filter 124 computes the revised filtered heart rate estimate Ĥfilt as a function of Hfilt, Hinst, and the rate limit Δ, based on the comparison, where Δr may also be retrieved from memory 50. In one exemplary embodiment, when Hinst≥Hfilt, filter 124 computes the revised filter estimate Ĥfilt according to:

Ĥfilt=Hfilt+min(Δr+,Hinst−Hfilt)  (3)

where Δr+ represents an increasing rate limit. However, when Hinst<Hfilt, filter 124 computes the revised filter estimate Ĥfilt according to:

Ĥfilt=Hfilt+max(Δr−,Hinst−Hfilt)  (4)

where Δr− represents a decreasing rate limit. As used herein, the rate limit represents a limit to the rate of change for the heart rate. For example, the rate limit may represent the rate of change in beats per minute (BPM) that the heart rate may experience in a 1 second frame period. Such a rate limit may be determined based on empirical evidence, and is generally predetermined. It will be appreciated that the rate limit may be expressed as the rate of change experienced for any length frame period, where for example, the rate limit in BPM/s is multiplied by the length of the frame period (in seconds), Additional details for the implementation of block 250 may be found in U.S. Provisional Application Ser. No. 61/586,874 filed concurrently herewith and titled “Physiological Metric Estimation Rise and Fall Limiting,” which is incorporated by reference herein in its entirety.


In the fourth level (block 260), the noise processor 140 biases the filtered heart rate toward the step rate to minimize wandering due to blindness during a crossover. To that end, the noise processor 140 further adjusts the revised filter estimate Ĥfilt as a function of the differenced between the step rate and Ĥfilt. For example, the noise processor 140 may determine whether the revised filter estimate Ĥfilt output by block 250 is within a crossover window by comparing the difference between Ĥfilt and I to a threshold, e.g., abs(I−Hfilt)≤8. If Ĥfilt is within the crossover window, noise processor 140 may further adjust Ĥfilt as a function of the difference between Ĥfilt and I. For example, the noise processor 140 may further adjust Ĥfilt according to:

Ĥfiltfilt+0.5 sign(I−Ĥfilt).  (5)


In the fifth level (block 270), the noise processor 140 counts the number of successive frames where the heart rate is within a crossover window. To that end, the noise processor updates a lock count Clk as a function of the difference between I and Ĥfilt output by block 260, where Clk represents, e.g., the number of successive frames where the difference between Ĥfilt and I satisfy a threshold requirement. For example, when Clk, is compared to 0 for equality (e.g., Clk==0), and when abs(Hfilt−1)<6, noise processor 140 may set Clk−1. However, when Clk>0, and when abs(Hfilt−I)>6, noise processor 140 may set Clk=0, and when Clk>0, and when abs(Hfilt−I)≤6, noise processor 140 may increment Clk, e.g., set Clk=Clk±1.


In the sixth level (blocks 280 to 284), the noise processor 140 filters the oscillations of the instantaneous heart rate that occur during a crossover sustained for a number of successive frames. For example, the Ĥfilt output by block 260 is further filtered responsive to a comparison between the lock count and a threshold Tc to generate the second (or output) heart rate Ĥ to be output to the output interface 40. For example, if Clk>Tc, the output heart rate Ĥ may be determined as a first function of a previously determined (or initialized) output heart rate H and Ĥfilt, e.g., according to f1(H, Hfilt) (block 282). In one exemplary embodiment, the first function may comprise:

Ĥ=f1(H,Hfilt)=H+(Hfilt−H)/4,  (6)

where H represents an initialized second heart rate from block 242, or a previously determined second (or output) heart rate that may, e.g., be retrieved from memory 50. If, however, Clk≤Tc, the output heart rate Ĥ may be determined as a second function of the previously determined (or initialized) output heart rate H and Ĥfilt, e.g., according to f2(H, Hfilt) (block 284). In one exemplary embodiment, the second function may comprise:

H=f2(H,Hfilt)=H+(Hfilt−H)/2.  (7)


It will be appreciated that not all of the six levels of FIG. 4 are required to determine Ĥ output to the output interface 40. For example, exemplary embodiments may compute the output heart rate using:

    • the second and third levels, where the output heart rate comprises the filtered heart rate Ĥfilt output by filter 124 of FIG. 5 and block 250 of FIG. 4.
    • the third and fourth levels, where the output heart rate comprises the filtered heart rate Ĥfilt output by block 260 of FIG. 4, and the input heart rates comprise e.g., an initial instantaneous heart rate Hinst from block 242 of Figure and an initial filtered heart rate Hfilt obtained from block 242 of FIG. 4 or previously determined and retrieved from memory 50.
    • the fourth level, where the output heart rate comprises the filtered heart rate Ĥfilt output by block 260 of FIG. 4, and the input heart rate comprises, e.g., an initial filtered heart rate Hfilt obtained from block 242 of FIG. 4 or previously determined and retrieved from memory 50.
    • the third, fourth, fifth, and sixth levels, where the output heart rate comprises Ĥ as output by one of blocks 282 and 284 of FIG. 4, and the input heart rates comprise an initial instantaneous heart rate Hinst from block 242 of Figure and an initial filtered heart rate Hfilt obtained from block 242 of FIG. 4 or previously determined and retrieved from memory 50.
    • the fourth, fifth, and sixth levels, where the output heart rate comprises Ĥ as output by one of blocks 282 and 284 of FIG. 4, and the input heart rate comprises an initial filtered heart rate obtained from block 242 of FIG. 4 or previously determined and retrieved from memory 50.
    • the fifth and sixth levels, where the output heart rate comprises Ĥ as output by one of blocks 282 and 284 of FIG. 4, and the input heart rates comprise an initial second heart rate H obtained from block 242 of FIG. 4 and an initial filtered heart rate obtained from block 242 of FIG. 4 or previously determined and retrieved from memory 50.
    • the sixth level, where the output heart rate comprises Ĥ as output by one of blocks 282 and 284 of FIG. 4, and the input heart rates comprise an initial second heart rate H obtained from block 242 of FIG. 4 and an initial filtered heart rate obtained from block 242 of FIG. 4 or previously determined and retrieved from memory 50. In this case, the decision diamond 280 not only considers how the lock count compares to the threshold, but it also considers whether the filtered heart rate is within a crossover window, e.g., by determining whether the difference between Ĥfilt and I is less than or equal to a threshold Tw.
    • the third, fifth, and sixth levels, where the output heart rate comprises Ĥ as output by one of blocks 282 and 284 of FIG. 4, and the input heart rates comprise an initial instantaneous heart rate Hinst from block 242 of Figure and an initial filtered heart rate Hfilt obtained from block 242 of FIG. 4 or previously determined and retrieved from memory 50.


It will be appreciated that other combinations not explicitly disclosed herein may also be used to generate the output heart rate.



FIGS. 6A-6D and 7 further illustrate both the impact of a step rate on a measured heart rate, and how the solution disclosed herein addresses this problem. First, FIGS. 6A-6D simulate the problems that occur when the step rate and the heart rate are close together. In particular, FIG. 6A shows a step rate spectrum generated responsive to an accelerometer waveform, while FIG. 6B shows a heart rate spectrum generated responsive to a waveform output by a PPG sensor, and thus includes both step rate and heart rate elements. FIG. 6C shows the spectrum produced when the accelerometer spectrum of FIG. 6A is simply subtracted from the heart rate spectrum of FIG. 6B. As shown in FIG. 60, when the step rate is close to the heart rate, e.g., between 600 and 800 s, the heart rate is attenuated. Thus, while simple spectral subtraction removes the step rate component, it also corrupts the heart rate measurements subsequently obtained from the heart rate spectrum. In particular, FIG. 6D shows how the peak frequency of the difference spectrum of FIG. 6C has large oscillating errors in the crossover window.



FIG. 7 shows the simulation results when the heart rate is estimated using the techniques disclosed herein, e.g., the techniques of FIG. 4. As shown in FIG. 7, the errors around the crossover regions have nearly disappeared, which results in a more accurate heart rate estimate.


The solution disclosed herein provides an accurate heart rate estimate, as shown for example by the simulated results of FIG. 7, without incurring the latency problems associated with the known prior art solution. In particular, because the solution disclosed herein does not require multiple spectrums or statistics to be buffered in a look-ahead fashion in order to detect the initial crossover, which leads to an undesirable latency, the solution disclosed herein avoids the latency problems associated with the prior art without sacrificing accuracy.


While the present invention is described in terms of PPG sensors, it will be appreciated that sensors 20 may comprise any sensor able to generate a physiological waveform, e.g., an electroencephalogram (EEG) waveform, and electrocardiogram (ECG) waveform, a radio frequency (RF) waveform, an electro-optical physiological waveform, and electro-photoacoustic waveform including a photacoustic waveform, an electro-mechanical physiological waveform, and/or an electro-nuclear physiological waveform.


The present invention may, of course, be carried out in other ways than those specifically set forth herein without departing from essential characteristics of the invention. The present embodiments are to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.

Claims
  • 1. A heart rate monitor for sensing a heart rate of a user, the heart rate monitor comprising: a photoplethysmograph (PPG) sensor configured to: sense light scattered from a body of the user; andprovide PPG information responsive to the sensed light;a step rate sensor configured to: sense motion from the user; andprovide motion information responsive to the sensed motion;at least one processor circuit configured to: determine a step rate of a user from the motion information provided by the step rate sensor;determine an initial instantaneous heart rate from the PPG information provided by the PPG sensor and the motion information provided by the step rate sensor;compute a difference between the initial instantaneous heart rate and the step rate;determine a second instantaneous heart rate as a function of the difference; andoutput a revised heart rate as a function of the second instantaneous heart rate and a rate limit.
  • 2. The heart rate monitor of claim 1 wherein the at least one processor circuit determines the second instantaneous heart rate by: comparing the initial instantaneous heart rate to a current filtered heart rate;revising the initial instantaneous heart rate based on the comparison between the initial instantaneous heart rate and the current filtered heart rate by computing a revised filtered heart rate as a function of the current filtered heart rate and the rate limit, and based on the comparison between the initial instantaneous heart rate and the current filtered heart rate;if the revised filtered heart rate is within a crossover window relative to the step rate, determining the second instantaneous heart rate as a function of a difference between the revised filtered heart rate and the step rate; andelse; setting the second instantaneous heart rate equal to revised filtered heart rate.
  • 3. The heart rate monitor of claim 2 wherein the at least one processor circuit: is further configured to update a lock count based on whether the second heart rate is within a crossover window relative to the step rate; anddetermines the second instantaneous heart rate as a function of the difference between the step rate and the initial instantaneous heart rate by: selecting a filter responsive to a comparison between the lock count and a threshold; anddetermining the second instantaneous heart rate as a function of the selected filter.
  • 4. The heart rate monitor of claim 1 wherein the at least one processor circuit determines the initial instantaneous heart rate by determining the initial instantaneous heart rate using a combination of two or more dominant signals in said PPG information provided by the PPG sensor when the initial instantaneous heart rate is within a crossover window relative to the step rate.
  • 5. The heart rate monitor of claim 1 wherein the at least one processor circuit determines the initial instantaneous heart rate by determining the initial instantaneous heart rate using a combination of two or more dominant signals in said PPG information output by the PPG sensor when at least one of the two or more dominant signals is within a crossover window relative to the step rate.
  • 6. The heart rate monitor of claim 1 wherein the at least one processor circuit determines the second instantaneous heart rate as a function of the difference between the step rate and the initial instantaneous heart rate by; if the initial instantaneous heart rate is within a crossover window relative to the step rate, determining the second instantaneous heart rate as a function of the difference between the initial instantaneous heart rate and the step rate; andelse, setting the second instantaneous heart rate equal to the initial instantaneous heart rate.
  • 7. The heart rate monitor of claim 1 wherein the at least one processor circuit determines the second instantaneous heart rate as a function of the difference between the step rate and the initial instantaneous heart rate by: selecting a filter responsive to a comparison between the difference and a threshold; anddetermining the second instantaneous heart rate as a function of the selected filter.
  • 8. A method of sensing a heart rate of a user comprising: sensing light scattered from a body of the user using a photoplethysmograph (PPG) sensor to determine PPG information;sensing motion information from the user using a step rate sensor;determining a step rate of a user from the motion information provided by the step rate sensor;determining an initial instantaneous heart rate from the PPG information provided by the PPG sensor and the motion information provided by the step rate sensor;computing a difference between the initial instantaneous heart rate and the step rate;determining a second instantaneous heart rate as a function of the difference; andoutputting a revised heart rate as a function of the second instantaneous heart rate and a rate limit.
  • 9. The method of claim 8 wherein determining the second instantaneous heart rate comprises: comparing the initial instantaneous heart rate to a current filtered heart rate;revising the initial instantaneous heart rate based on the comparison between the initial instantaneous heart rate and the current filtered heart rate by computing a revised filtered heart rate as a function of the current filtered heart rate and the rate limit, and based on the comparison between the initial instantaneous heart rate and the current filtered heart rate;if the revised filtered heart rate is within a crossover window relative to the step rate, determining the second instantaneous heart rate as a function of a difference between the revised filtered heart rate and the step rate; andelse, setting the second instantaneous heart rate equal to revised filtered heart rate.
  • 10. The method of claim 9: further comprising updating a lock count based on whether the second heart rate is within a crossover window relative to the step rate;wherein determining the second instantaneous heart rate as a function of the difference between the step rate and the initial instantaneous heart rate comprises; selecting a filter responsive to a comparison between the lock count and a threshold; anddetermining the second instantaneous heart rate as a function of the selected filter.
  • 11. The method of claim 8 wherein determining the initial instantaneous heart rate comprises determining the initial instantaneous heart rate using a combination of two or more dominant signals in said PPG information provided by the PPG sensor when the initial instantaneous heart rate is within a crossover window relative to the step rate.
  • 12. The method of claim 8 wherein determining the initial instantaneous heart rate comprises determining the initial instantaneous heart rate using a combination of two or more dominant signals in said PPG information output by the PPG sensor when at least one of the two or more dominant signals is within a crossover window relative to the step rate.
  • 13. The method of claim 8 wherein determining the second instantaneous heart rate as a function of the difference between the step rate and the initial instantaneous heart rate comprises; if the initial instantaneous heart rate is within a crossover window relative to the step rate, determining the second instantaneous heart rate as a function of the difference between the initial instantaneous heart rate and the step rate; andelse, setting the second instantaneous heart rate equal to the initial instantaneous heart rate.
  • 14. The method of claim 8 wherein determining the second instantaneous heart rate as a function of the difference between the step rate and the initial instantaneous heart rate comprises: selecting a filter responsive to a comparison between the difference and a threshold; anddetermining the second instantaneous heart rate as a function of the selected filter.
RELATED APPLICATIONS

This application is a Continuation Application of pending U.S. application Ser. No. 14/370,689, filed 3 Jul. 2014, which National Phase of International Application PCT/US2012/071594 filed 24 Dec. 2012, which in turn claims benefit of U.S. Provisional Application No. 61/586,884, filed 16 Jan. 2012. The disclosures of each of these references are incorporated in their entireties by reference herein.

US Referenced Citations (127)
Number Name Date Kind
3636617 Schmidt et al. Jan 1972 A
3704706 Herczfeld et al. Dec 1972 A
4672976 Kroll Jun 1987 A
4830014 Goodman et al. May 1989 A
4952928 Carroll et al. Aug 1990 A
4955379 Hall Sep 1990 A
5139025 Lewis et al. Aug 1992 A
5226417 Swedlow et al. Jul 1993 A
5243992 Eckerle et al. Sep 1993 A
5297548 Prologe Mar 1994 A
5299570 Hatschek Apr 1994 A
5396893 Oberg et al. Mar 1995 A
5448082 Kim Sep 1995 A
5482036 Diab et al. Jan 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5503016 Koen Mar 1996 A
5575284 Athan et al. Nov 1996 A
5673692 Schulze et al. Oct 1997 A
5797841 Delonzor et al. Aug 1998 A
5817008 Rafert et al. Oct 1998 A
5807267 Bryars et al. Nov 1998 A
5846190 Woehrle Dec 1998 A
5853005 Scanlon Dec 1998 A
5906582 Kondo et al. May 1999 A
5908396 Hayakawa et al. Jun 1999 A
5941837 Amano et al. Aug 1999 A
5954644 Dettling et al. Sep 1999 A
5964701 Asada et al. Oct 1999 A
6022748 Charych et al. Feb 2000 A
6042549 Amano et al. Mar 2000 A
6067462 Diab et al. May 2000 A
6198394 Jacobsen et al. Mar 2001 B1
6241684 Amano et al. Jun 2001 B1
6267721 Welles Jul 2001 B1
6393311 Edgar, Jr. et al. May 2002 B1
6443890 Schulze et al. Sep 2002 B1
6527711 Stivoric et al. Mar 2003 B1
6608562 Kimura et al. Aug 2003 B1
6656151 Blatter Dec 2003 B1
6702752 Dekker Mar 2004 B2
6721584 Baker, Jr. et al. Apr 2004 B2
6725072 Steuer et al. Apr 2004 B2
6745061 Hicks et al. Jun 2004 B1
6748254 O'Neil et al. Jun 2004 B2
6801799 Mendelson Oct 2004 B2
6898451 Wuori May 2005 B2
6995665 Appelt et al. Feb 2006 B2
6996427 Ali et al. Feb 2006 B2
6997879 Turcott Feb 2006 B1
7018338 Vetter et al. Mar 2006 B2
7107088 Aceti Sep 2006 B2
7113815 O'Neil et al. Sep 2006 B2
7144375 Kosuda Dec 2006 B2
7190986 Hannula et al. Mar 2007 B1
7209775 Bae et al. Apr 2007 B2
7336982 Yoo Feb 2008 B2
7378954 Wendt May 2008 B2
7438688 Kobayashi et al. Oct 2008 B2
7539533 Tran May 2009 B2
7962308 Makino Jun 2011 B2
8055469 Kulach et al. Nov 2011 B2
8109874 Kong Feb 2012 B2
8923941 LeBoeuf et al. Dec 2014 B2
9005129 Venkatraman et al. Apr 2015 B2
9044180 LeBoeuf et al. Jun 2015 B2
9717412 Roham Aug 2017 B2
20020013538 Teller Jan 2002 A1
20030065269 Vetter et al. Apr 2003 A1
20030109791 Kondo et al. Jun 2003 A1
20030176815 Baba et al. Sep 2003 A1
20030181798 Al-Ali Sep 2003 A1
20030233051 Verjus et al. Dec 2003 A1
20030236647 Yoon et al. Dec 2003 A1
20040004547 Appelt et al. Jan 2004 A1
20040039254 Stivoric et al. Feb 2004 A1
20040054291 Schulz et al. Mar 2004 A1
20040059236 Margulies et al. Mar 2004 A1
20040186387 Kosuda et al. Sep 2004 A1
20040186695 Aoshima et al. Sep 2004 A1
20040178913 Penuela et al. Nov 2004 A1
20040236233 Kosuda et al. Nov 2004 A1
20040242976 Abreu Dec 2004 A1
20040254501 Mault Dec 2004 A1
20050007582 Villers et al. Jan 2005 A1
20050043652 Lovett et al. Feb 2005 A1
20050059870 Aceti Mar 2005 A1
20050075542 Goldreich Apr 2005 A1
20050192516 Takiguchi et al. Sep 2005 A1
20050209516 Fraden Sep 2005 A1
20050212405 Negley Sep 2005 A1
20050228463 Mac et al. Oct 2005 A1
20050245839 Stivoric et al. Nov 2005 A1
20060064037 Shalon et al. Mar 2006 A1
20060084879 Nazarian et al. Mar 2006 A1
20060178588 Brody Aug 2006 A1
20060258927 Edgar, Jr. et al. Nov 2006 A1
20070016086 Inukai et al. Jan 2007 A1
20070027367 Oliver et al. Feb 2007 A1
20070116314 Grilliot et al. May 2007 A1
20070123763 Al-Ali et al. May 2007 A1
20070135717 Uenishi et al. Jun 2007 A1
20070197881 Wolf et al. Aug 2007 A1
20080076972 Dorogusker et al. Mar 2008 A1
20080081972 Debreczeny Apr 2008 A1
20080132798 Hong et al. Jun 2008 A1
20080133699 Craw et al. Jun 2008 A1
20080146890 LeBoeuf et al. Jun 2008 A1
20080154098 Morris et al. Jun 2008 A1
20080177162 Bae et al. Jul 2008 A1
20080200774 Luo Aug 2008 A1
20080269625 Halperin et al. Oct 2008 A1
20090010461 Klinghult et al. Jan 2009 A1
20090023556 Daly Jan 2009 A1
20090097689 Prest et al. Apr 2009 A1
20090105556 Fricke et al. Apr 2009 A1
20090112111 Shimizu Apr 2009 A1
20090131761 Moroney, III et al. May 2009 A1
20090281435 Ahmed et al. Nov 2009 A1
20090287067 Dorogusker et al. Nov 2009 A1
20090306736 Dobak, III Dec 2009 A1
20100189209 O'Rourke Jul 2010 A1
20100274109 Hu Oct 2010 A1
20110022352 Fujita et al. Jan 2011 A1
20110178759 Uchida Jul 2011 A1
20120197093 LeBoeuf et al. Aug 2012 A1
20120303319 Kirkeby Nov 2012 A1
20130006583 Weast et al. Jan 2013 A1
Foreign Referenced Citations (28)
Number Date Country
1545979 Nov 2004 CN
101317188 Dec 2008 CN
101910846 Dec 2010 CN
101980659 Feb 2011 CN
102168986 Aug 2011 CN
102297701 Dec 2011 CN
102435203 May 2012 CN
0729726 Sep 1996 EP
1354553 Oct 2003 EP
2229880 Sep 2010 EP
2182839 Oct 2011 EP
H10258039 Sep 1998 JP
2004283228 Oct 2004 JP
2004358271 Dec 2004 JP
2005040261 Feb 2005 JP
2005270544 Oct 2005 JP
0021435 Apr 2000 WO
0044274 Aug 2000 WO
2005010568 Feb 2005 WO
2005036212 Apr 2005 WO
2006009830 Jan 2006 WO
2007013054 Feb 2007 WO
2007122375 Nov 2007 WO
2011026669 Mar 2011 WO
2011105914 Sep 2011 WO
2013038296 Mar 2013 WO
2013109389 Jul 2013 WO
2014109982 Jul 2014 WO
Non-Patent Literature Citations (106)
Entry
Wise, K., “Integrated sensors, MEMS, and microsystems: Reflections on a fantastic voyage,” Sensors and Actuators A, vol. 136, Feb. 5, 2007, pp. 39-50.
Gigoi, B.P., et al., “Integration Technology for MEMS Automotive Sensors,” 28th Annual Conference of the IEEE, Jan. 1, 2002, pp. 2712-2717.
Ko, W., “Trends and frontiers of MEMS,” Sensors and Actuators A, vol. 136, Feb. 1, 2007, pp. 62-67.
Barbour, N., “Inertial Sensor Technology Trends,” IEEE Sensors Journal, vol. 1, No. 4, Dec. 1, 2001, pp. 332-339.
Vigario, R., “Independent Component Approach to the Analysis of EEG and MEG Recordings,” IEEE Transactions on Biomedical Engineering, vol. 47, No. 5, May 1, 2000, pp. 589-593.
Mayer-Kress, G., “Localized Measures for Nonstationary Time-Series of Physiological Data,” Integr. Physiol. Behav. Sci., vol. 29, No. 3, Jul. 1, 1994, pp. 205-210.
Shaw, G.A., et al., “Warfighter Physiological and Environmental Monitoring: A Study for the U.S. Army Research Institute in Environmental Medicine and the Soldier Systems Center,” Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA., Nov. 1, 2004, pp. 1-128.
Laguna, P., et al., “Power Spectral Density of Unevenly Sampled Data by Least-Square Analysis: Performance and Application to Heart Rate Signals,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 6, Jun. 1, 1998, pp. 698-715.
Richardson, J.E., “Physiological Responses of Firefighters Wearing Level 3 Chemical Protective Suits While Working in Controlled Hot Environments,” J. Occup. Environ. Med., vol. 43, No. 12, Dec. 1, 2001, pp. 1064-1072.
Scanlon, M., “Acoustic Sensors in the Helmet Detect Voice and Physiology,” Proceedings of SPIE, vol. 5071, Jan. 1, 2003, pp. 41-51.
Arnold, M., et al., “Adaptive AR Modeling of Nonstationary Time Series by Means of Kalman Filtering,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 5, May 1, 1998, pp. 553-562.
Yan, Y., et al., “Reduction of motion artifact in pulse oximetry by smoothed pseudo Wigner-Ville distribution,” Journal of NeuroEngineering and Rehabilitation, vol. 2, No. 3, Mar. 1, 2005, pp. 1-9.
Lee, C.M., et al., “Reduction of Motion Artifacts from Photoplethysmographic Recordings Using a Wavelet Denoising Approach,” IEEE EMBS Asian-Pacific Conference on Biomedical Engineering, Jan. 1, 2003, pp. 194-195.
Foo, J.Y.A., “Comparison of wavelet transformation and adaptive filtering in restoring artefact-induced time-related measurement,” Biomedical Signal Processing and Control vol. 1, No. 1 (2006), Mar. 24, 2006, pp. 93-98.
Wood, L., et al., “Active Motion Artifact Reduction for Wearable Sensors Using Laguerre Expansion and Signal Separation,” Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, Sep. 1, 2005, pp. 3571-3574.
Cacioppo, J., “Inferring Psychological Significance From Physiological Signals,” American Psychologist, vol. 45, No. 1, American Psychological Association, Jan. 1, 1990, pp. 16-28.
Rhee, S., et al., “Artifact-Resistant Power-Efficient Design of Finger-Ring Plethysmographic Sensors,” IEEE Transactions on Biomedical Engineering, vol. 48, No. 7, Jul. 1, 2001, pp. 795-805.
Wagner, J., et al., “From Physiological Signals to Emotions: Implementing and Comparing Selected Methods for Feature Extraction and Classification,” IEEE Int. Conf. Multimedia and Expo, Jan. 1, 2005, pp. 1-4.
Parkka, J., et al., “Activity Classification Using Realistic Data From Wearable Sensors,” IEEE Transactions on Information Technology in Biomedicine, vol. 10, No. 1, Jan. 1, 2006, pp. 119-128.
Georgoulas, G., et al., “Predicting the Risk of Metabolic Acidosis for Newborns Based on Fetal Heart Rate Signal Classification Using Support Vector Machines,” IEEE Transactions on Biomedical Engineering, vol. 53, No. 5, May 1, 2006, pp. 875-884.
Liao, W., et al., “A Real-Time Human Stress Monitoring System Using Dynamic Bayesian Network,” Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jan. 1, 2005, pp. 1-8.
Moy, M., et al., “Accuracy of uniaxial accelerometer in chronic obstructive pulmonary disease,” Journal of Rehabilitation Research and Development, vol. 45, No. 4, Nov. 4, 2008, pp. 611-618.
Moy, M., et al., “Ambulatory Monitoring of Cumulative Free-Living Activity,” IEEE Engineering in Medicine and Biology Magazine May/Jun. 2003, May 1, 2003, pp. 89-95.
Ricke, AD, et al. “Automatic Segmentation of Heart Sound Signals Using Hidden Markov Models,” IEEE Computers in Cardiology 2005; vol. 32, Jan. 1, 2005, pp. 953-956.
Acharya, R., et al., “Classification of cardiac abnormalities using heart rate signals,” Medical and Biological Engineering and Computing 2004, vol. 42, No. 3, Jan. 1, 2004, pp. 288-293.
Allen, F., et al., “Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models,” Institute of Physics Publishing Physiological Measurement, vol. 27, No. 10, Jul. 25, 2006, pp. 935-951.
Lee, J., et al., “Design of filter to reject motion artifact of pulse oximetry,” Computer Standards & Interfaces, vol. 26 (2004), Jul. 4, 2003, pp. 241-249.
Rezek, I.A., et al., “Stochastic Complexity Measures for Physiological Signal Analysis,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 9, Sep. 1, 1998, pp. 1186-1191.
Gibbs, P., et al., “Active motion artifact cancellation for wearable health monitoring sensors using collocated MEMS accelerometers,” Smart Struct. Mater., International Society for Optics and Photonics, Jan. 1, 2005, pp. 1-9.
Merletti, R., et al., “Advances in processing of surface myoelectric signals: Part 1,” Medical and Biological Engineering and Computing, vol. 33, No. 3, May 1, 1995, pp. 362-372.
Asada, H., et al., “Active Noise Cancellation Using MEMS Accelerometers for Motion-Tolerant Wearable Bio-Sensors,” Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, Sep. 1, 2004, pp. 2157-2160.
Newman, A., et al., “Sleep Disturbance, Psychosocial Correlates, and Cardiovascular Disease in 5201 Older Adults: The Cardiovascular Health Study,” Journal of American Geriatric Society, vol. 45, No. 1, Jan. 1, 1997, pp. 1-7.
Chan, K.W., et al., “Adaptive Reduction of Motion Artifact from Photoplethysmographic Recordings using a Variable Step-Size LMS Filter,” IEEE, Sensors, Jun. 1, 2002, pp. 1342-1346.
Dew, M.A., et al., “Healthy Older Adults' Sleep Predicts All-Cause Mortality at 4 to 19 Years of Follow-Up,” Psychosomatic Medicine, vol. 65, Jan. 1, 2003, pp. 63-73.
Gibbs, P., et al., “Reducing Motion Artifact in Wearable Bio-Sensors Using MEMS Accelerometers for Active Noise Cancellation,” IEEE American Control Conference, Jun. 1, 2005, pp. 1581-1586.
Yang, B-H, et al., “Development of the ring sensor for healthcare automation,” Robotics and Autonomous Systems, vol. 30. Jan. 1, 2000, pp. 273-281.
Healey, J., et al., “Detecting Stress During Real-World Driving Tasks Using Physiological Sensors,” IEEE Transactions on Intelligent Transportation Systems, vol. 6, No. 2, Jun. 1, 2005, pp. 156-166.
Hayes, M.J., et al., “A New Method for Pulse Oximetry Possessing Inherent Insensitivity to Artifact,” IEEE Transactions on Biomedical Engineering, vol. 48, No. 4, Apr. 1, 2001, pp. 452-461.
Wilson, G., et al., “An Analysis of Mental Workload in Pilots During Flight Using Multiple Psychophysiological Measures,” The International Journal of Aviation Psychology, vol. 12, No. 1, May 1, 2001, pp. 3-18.
Baddeley, A.D., “Selective Attention and Performance in Dangerous Environments,” HPEE, vol. 5, No. 1, Oct. 1, 2000, pp. 86-91.
Wilson, G.F., et al., “Performance Enhancement with Real-time Physiologically Controlled Adapative Aiding,” Proceedings of the IEA 2000 / HFES 2000 Congress, vol. 44, Jul. 30, 2000, pp. 61-64.
Skinner, M.J., et al., “Workload Issues in Military Tactical Airlift,” The International Journal of Aviation Psychology, vol. 12, No. 1, May 1, 2001, pp. 79-93.
Helander, M., “Applicability of Drivers' Electrodermal Response to the Design of the Traffic Environment,” Journal of Applied Psychology, vol. 63, No. 4, Jan. 18, 1978, pp. 481-488.
Perala, C.H., “Galvanic Skin Response as a Measure of Soldier Stress,” Army Research Laboratory, ARL-TR-4114, May 1, 2007, pp. 1-35.
Zhai, J., et al., “Stress Detection in Computer Users Based on Digital Signal Processing of Noninvasive Physiological Variables,” Conf Proc IEEE Eng Med Biol Soc., New York, NY, Aug. 31, 2006; pp. 1355-1358.
Zhai, J., et al., “Stress Recognition Using Non-invasive Technology,” FLAIRS Conference, Melbourne Beach, Florida, May 11, 2006, AAAI Press, pp. 395-401.
Endler, J., “Signals, Signal Conditions, and the Direction of Evolution,” The American Naturalist, vol. 139, Supplement, Mar. 1, 1992, pp. S125-S153.
Sadeh, A., “The role of actigraphy in sleep medicine,” Sleep Medicine Reviews, vol. 6, No. 2, Jan. 1, 2002, pp. 113-124.
Bumgardner, W., “Top 8 Walking Speedometers and Odometers”, retrieved on Jun. 18, 2014, retrieved from internet: http://walking.about.com/od/measure/tp/speedometer.htm.
Garmin, “Running Watches Heart Rate Monitor”, Swim Watch, Heart Rate Monitors Reviews, Oct. 12, 2010, retrieved from internet: http://web.archive.org/web/*/http://heartratemonitors-reviews.com/category/swim-watch/.
Han et al. “Artifacts in wearable photoplethysmographs during daily life motions and their reduction with least mean square based active noise cancellation method,” Computers in Biology and Medicine 42 (2012), Published Dec. 27, 2011, Elsevier Ltd., pp. 387-393.
Poh, Ming-Zher et al., “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation.” Optics Express, vol. 18, No. 10, May 7, 2010, pp. 1-13.
Asada, H., et al., “Mobile Monitoring with Wearable Photoplethysmographic Biosensors,” IEEE Engineering in Medicine and Biology Magazine, May/Jun. 2003 Issue, May 1, 2003, pp. 28-40.
Wang, L. et al. “Multichannel Reflective PPG Earpiece Sensor with Passive Motion Cancellation,” IEEE Transactions on Biomedical Circuits and Systems, vol. 1, No. 4, Dec. 1, 2007, pp. 235-241.
Mendelson, Y. et al., “Skin Reflectance Pulse Oximetry: In Vivo Measurements from the Forearm and Calf,” Journal of Clinical Monitoring, vol. 7, No. 1, Jan. 1, 1991; pp. 7-12.
Konig, V. et al., “Reflectance Pulse Oximetry—Principles and Obstetric Application in the Zurich System,” Journal of Clinical Monitoring and Computing, vol. 14, No. 6, Aug. 1, 1998; pp. 403-412.
Tremper, K. et al., “Pulse Oximetry,” Medical Intelligence Article, Anesthesiology, vol. 70, No. 1, Jan. 1, 1989; pp. 98-108.
Haahr, R. et al. “A Wearable ‘Electronic Patch’ for Wireless Continuous Monitoring of Chronically Diseased Patients,” Proceedings of the 5th International Workshop on Wearable and Implantable Body Sensor Networks, Jun. 1-3, 2008; pp. 66-70.
Asada, H. et al., “The Ring Sensor: A New Ambulatory Wearable Sensor for Twenty-Four Hour Patient Monitoring,” Proceedings of the 20th Annual Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, No. 4, Jan. 1, 1998; pp. 1906-1909.
Comtois, G. et al., A Comparative Evaluation of Adaptive Noise Cancellation Algorithms for Minimizing Motion Artifacts in a Forehead-Mounted Wearable Pulse Oximeter, Proceedings of the 29th Annual International Conference of the IEEE EMBS, Lyon, France, Aug. 23, 2007, pp. 1-4.
Gupta, G. Sen et al., “Design of a Low-cost Physiological Parameter Measurement and Monitoring Device,” IMTC 2007—Instrumentation and Measurement Technology Conference, Warsaw, Poland, May 1, 2007, pp. 1-6.
Lee, R.G. et al. “A Mobile Care System With Alert Mechanism” IEEE Transactions on Information Technology in Biomedicine, vol. 11, Issue 5, Sep. 1, 2007.
Declaration of Brian W. Anthony, Ph.D. in Support of Petition for Inter Partes Review of U.S. Pat. No. 9,044,180, Exhibit 1003, Petition for Inter Partes Review of U.S. Pat. No. 9,044,180; Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01947, filed Aug. 26, 2-17, pp. 1-153.
Mendelson, J., et al., “Measurement Site and Photodetector Size Considerations iin Optimizing Power Consumption of a Wearable Reflectance Pulse Oximeter”, Proceedings of the 25th Annual International Conference of the IEEE EMBS, Engineering in Medicine and Biology Society, Cancun, Mexico, Sep. 17, 2003, pp. 1-4.
Palder, et al., “Vascular Access for Hemodialysis, Patency rates and Results of Revision”, Annals of Surgery, vol. 202, No. 2, Aug. 1, 1985, pp. 1-5.
Spigulis, J., et al., “Wearable wireless photoplethysmography sensors,” Biophotonics: Photonic Solutions for Better Health Care, Proceedings of SPIE, vol. 6991, May 1, 2008, pp. 1-7.
Sandberg, M., et al., “Non-invasive monitoring of muscle blood perfusion by photoplethysmography: evaluation of a new application,” Acta Physiol Scand., vol. 183, No. 4, Dec. 7, 2004, pp. 335-343.
Sum, K.W., et al. “Vital Sign Monitoring for Elderly at Home: Development of a Compound Sensor for Pulse Rate and Motion,” Studies in Health Technology and Informatics, Personalised Health Management Systems, IOS Press, Jan. 1, 2005, pp. 43-50.
Mendelson, Y., et al., “A Wearable Reflectance Pulse Oximeter for Remote Physiological Monitoring,” Proceedings of the 28th IEEE EMBS Annual International Conference New York City, USA, Aug. 30, 2006, pp. 912-915.
Jung, W., “Chapter H: OP Amp History,” Op Amp Applications Handbook, published by Newnes/Elsevier, Jan. 1, 2005, ISBN-0-7506-7844-5, pp. H.1-H.72.
Texas Instruments, “General Purpose Operational Amplifiers”, SLOSS094B, Nov. 1, 1970, pp. 1-19.
Schmitt, O., “A simple differential amplifier,” Review of Scientific Instruments vol. 8, No. 126, Apr. 1, 1937, American Institute of Physics, pp. 1-3, available at: http://dx.doi.org/10.1063/1.1752256.
Gray, p, et al., “Recent Advances in Monolithic Operational Amplifier Design,” IEEE Transactions on Circuits and Systems, vol. CAS-21, No. 3, May 1, 1974, pp. 317-327.
Horowitz, P., et al., “The Art of Electronics,” Second Edition, Cambridge University Press, Jan. 1, 1989, pp. 98-102.
Petition for Inter Partes Review of U.S. Pat. No. 9,044,180; Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01947, filed Aug. 15, 2017, pp. 1-86.
Buchanan, T., et al., “Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements From Measurements of Neural Command,” J Appl Biomech, vol. 20, No. 4, Nov. 1, 2004, pp. 1-34.
Stolwijk, J., “Mathematical Models of Thermal Regulation,” Annals of the New York Academy of Sciences, vol. 335, No. 1, Jan. 1, 1980, pp. 98-106.
Wiggs, L., et al., “Sleep patterns and sleep disorders in children with autistic spectrum disorders: insights using parent report and actigraphy,” Developmental Medicine and Child Neurology 2004, vol. 46, No. 6, Jan. 1, 2004, pp. 372-380.
Hastings, P.C., “Symptom burden of sleep-disordered breathing in mild-to-moderate congestive heart failure patients,” European Respiratory Journal, vol. 27, No. 4, Jan. 1, 2006, pp. 748-755.
Carskadon, M., et al., “Chapter 2—Normal Human Sleep: an Overview,” Monitoring and staging human sleep, from Principles and practice of sleep medicine, 5th edition, St. Louis: Elsevier Saunders, Jan. 1, 2011, pp. 1-21.
Critchley, H, “Electrodermal Responses: What Happens in the Brain,” The Neuroscientist, vol. 8, No. 2, Jan. 1, 2002, pp. 132-142.
Lang, P., et al., “Looking at pictures: Affective, facial, visceral, and behavioral reactions,” Psychophysiology, vol. 30, No. 3, Apr. 22, 1992, pp. 261-273.
Soleymani, M., et al., “Affective Ranking of Movie Scenes Using Physiological Signals and Content Analysis,” Proc. 2nd ACM Work. Multimed. Semant., Jan. 1, 2008, pp. 1-8.
Appelhans, B., et al., “Heart Rate Variability as an Index of Regulated Emotional Responding,” Review of General Psychology, vol. 10, No. 3, Sep. 15, 2005, pp. 229-240.
Postma, D.S., et al., “The natural history of chronic obstructive pulmonary disease,” European Respiratory Monograph, vol. 38, Jan. 1, 2006, pp. 71-83.
Bidargaddi, N., et al., “Ambulatory monitor derived clinical measures for continuous assessment of cardiac rehabilitation patients in a community care model,” Pervasive Computing Technologies for Healthcare, 2008 Second International Conference on Pervasive Computing Technolovies for Healthcare, Jan. 30, 2008, pp. 1-5.
Hertzman, A., “The Blood Supply of Various Areas as Estimated by the Photoelectric Plethysmograph,” Am J. Physiol, vol. 124, Issue 2, Jul. 18, 1938, pp. 328-340.
Hayes, M., et al., “Artifact reduction in photoplethysmography,” Applied Optics, vol. 37, No. 31, Nov. 1, 1998, pp. 7437-7446.
Page, E., et al., “Physiological approach to monitor patients in congestive heart failure: application of a new implantable device-based system to monitor daily life activity and ventilation,” Eurospace, vol. 9, May 3, 2007, pp. 687-693.
Moy, M., et al., “Free-living physical activity in COPD: Assessment with accelerometer and activity checklist,” Journal of Rehabilitation Research & Development, vol. 46, No. 2, Nov. 2, 2009, pp. 277-286.
Bennett, T., et al., “Development of Implantable Devices for Continuous Ambulatory Monitoring of Central Hemodynamic Values in Heart Failure Patients,” Pacing Clin Electrophysiol. Jun. 2005; vol. 28, No. 6, Jun. 1, 2005, pp. 573-584.
Allen, J., “Photoplethysmography and its application in clinical physiological measurement,” Physiological Measurement, vol. 28, Feb. 20, 2007, pp. 1-39.
Webster, J.G. (ed.), “Design of Pulse Oximeters,” Institute of Physics Publishing, Philadelphia, PA, Jan. 1, 1997, pp. 1-134.
Webster, J.G. (ed.), “Design of Pulse Oximeters,” Institute of Physics Publishing, Philadelphia, PA, Jan. 1, 1997, pp. 135-267.
Shevchenko, Y, et al., “90th Anniversary of the Development by Nikolai S. Korotkoff of the Ascultatory Method of Measuring Blood Pressure,” Circulation, vol. 94, No. 2, Jul. 15, 1996, pp. 116-118.
Han, H., et al., “Development of a wearable monitoring device with motion artifact reduced algorithm,” International Conference on Control, Automation and Systems 2007, Oct. 17, 2007, Seoul, Korea, pp. 1581-1584.
Petition for Inter Partes Review of U.S. Pat. No. 8,157,730; Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01701, filed Jun. 30, 2017, pp. 1-89.
Petition for Inter Partes Review of U.S. Pat. No. 8,652,040; Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01702, filed Jun. 30, 2017, pp. 1-70.
Petition for Inter Partes Review of U.S. Pat. No. 8,652,040; Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01703, filed Jun. 30, 2017, pp. 1-79.
Petition for Inter Partes Review of U.S. Pat. No. 8,888,701; Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01704, filed Jun. 30, 2017, pp. 1-84.
Declaration of Dr. Majid Sarrafzadeh, Exhibit 1003, Petition for Inter Partes Review of U.S. Pat. No. 8,888,701; Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01704, filed Jun. 30, 2017, pp. 1-109.
Declaration of Brian W. Anthony, Ph.D. In Support of Petition for Inter Partes Review of U.S. Pat. No. 8,157,730, Exhibit 1003, Petition for Inter Partes Review of U.S. Pat. No. 8,157,730; Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01701, filed Jun. 30, 2017, pp. 1-138.
Declaration of Dr. Majid Sarrafzadeh, Exhibit 1003, Petition for Inter Partes Review of U.S. Pat. No. 8,652,040; Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01703, filed Jun. 30, 2017, pp. 1-87.
Declaration of Dr. Majid Sarrafzadeh, Exhibit 1003, Petition for Inter Partes Review of U.S. Pat. No. 8,652,040; Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01702, filed Jun. 30, 2017, pp. 1-92.
Pierpont, G. et al., “Assessing Autonomic Function by Analysis of Heart Rate Recovery from Exercise in Healthy Subjects”, The American Journal of Cardiology, vo. 94, Jul. 1, 2004, pp. 64-68, Excerpta Medica, Inc.
Coote, J., “Recovery of Heart Rate Following Intense Dynamic Exercise”, Experimental Physiology—Review Article, Exp Physical 95.3, Mar. 1, 2010, pp. 431-440, The Physiological Society.
Related Publications (1)
Number Date Country
20190029530 A1 Jan 2019 US
Provisional Applications (1)
Number Date Country
61586884 Jan 2012 US
Continuations (1)
Number Date Country
Parent 14370689 US
Child 16146362 US