1. The Field of the Invention
The present invention relates generally to photovoltaic (“PV”) modules. More particularly, embodiments of the invention relate to a redundant electrical architecture including one or more electronic devices for use in PV modules.
2. The Related Technology
There are two main types of solar collectors, including silicon and thin films, commonly used in PV modules, the solar collectors commonly composed of PV cells. Silicon is currently the predominant technology, and can generally be implemented as monocrystalline or polycrystalline cells encapsulated behind a transparent glass front plate. Thin film technology is not as wide-spread as the silicon technology due to its reduced efficiency, but it is gaining in popularity due to its lower cost.
Currently, the solar energy industry is looking for ways to decrease the cost per unit of energy generated by PV modules. One approach to reducing cost per unit energy is to increase the exposure of the PV module to solar energy over time. For example, the orientation of the PV module relative to the sun can be adjusted throughout the day and/or throughout the year. Changing the orientation of the PV module relative to the sun throughout the day and/or year can require adjustable mounting systems that are costly and/or complicated with parts prone to failure over the lifetime of the PV module.
Another approach to reducing the cost per unit energy of a PV module is to reduce the solar collector density of the PV module and concentrate solar energy incident on the PV module on the remaining solar collectors. However, conventional PV modules are typically very sensitive to and perform poorly under non-uniform illumination conditions that can be associated with reflector systems.
Additionally, conventional PV modules sometimes incorporate one or more electronic devices, such as power inverters, with the PV module. Power inverters and other electronic devices incorporated with conventional PV modules are usually sized and shaped such that the electronic device is mounted to the backside of the PV module. As a result, flying leads are required to connect the electronic device to the PV module. The power inverters and other electronic devices can also add significant cost to the PV module and are prone to failure.
Alternately or additionally, the electronic devices employed in conjunction with PV modules can have high power requirements, e.g., on the order of 1000s of watts, with leads carrying up to 600 volts which can represent a significant safety hazard for residential use. Typically, these types of high-power electronic components and devices are in relatively low demand in the world-wide electronics market compared to consumer electronics and are not mass-produced. Instead, these high-power electronic devices may comprise specialized electronic devices sold in low volumes at relatively high costs and low reliability. The high cost of the electronic devices employed with PV modules can represent a significant factor in the total cost of a PV system.
The subject matter claimed herein is not limited to embodiments that solve any disadvantages or that operate only in environments such as those described above. Rather, this background is only provided to illustrate one exemplary technology area where some embodiments described herein may be practiced.
In generally, example embodiments of the invention relate to PV modules and power conversion devices and active row-balancing devices that can be included in PV modules.
One example embodiment includes a PV module comprising a conductive backsheet, a substantially transparent front plate, a plurality of PV cells, a plurality of conductive spacers, and a power conversion device. The PV cells can be disposed between the conductive backsheet and the front plate and can be arranged in a plurality of rows. The PV cells within each row can be connected to each other in parallel and the rows can be connected in series. The PV cells can be interconnected between the conductive spacers. The power conversion device can be redundantly connected to the PV cells via a last conductive spacer connected to a last row. The power conversion device can substantially maintain a maximum peak power of the PV module and can convert a lower voltage collectively generated by the PV cells to a predetermined stepped up voltage greater than or equal to 12 volts.
Another example embodiment includes a method of calibrating a PV module. The method can include downloading a first set of computer executable instructions onto a PV module. The PV module can comprise a power conversion device that includes a plurality of power conversion circuits. The first set of computer executable instructions can be configured to control operation of the PV module during calibration. The PV module can be exposed to multiple illumination intensities and multiple ambient temperatures. Measurement data can be generated for each illumination intensity and ambient temperature. The measurement data can be representative of one or more of: an electrical resistance of each power conversion circuit, a power output of each power conversion circuit, a peak power current of each power conversion circuit, a peak power voltage of each power conversion circuit, or a local circuit phase of each power conversion circuit. A plurality of calibration curves can be generated from the measurement data. The calibration curves can be stored in a memory of the PV module and can allow a control module of the PV module to transform measurements in the field into physical data. The first set of computer executable instructions can be replaced with a second set of computer executable instructions configured to control operation of the PV module in the field.
Additional features and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of the invention. The features and advantages of the invention may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
To further clarify the above and other advantages and features of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Embodiments of the invention are generally directed to a PV module including a plurality of PV cells and a power conversion device redundantly connected to the PV cells. The power conversion device can include a plurality of redundant power conversion circuits that convert a first voltage collectively generated by the PV cells to a higher voltage suitable for transmission. The power conversion circuits can also substantially maintain maximum peak power of the PV cells.
I. Example Operating Environment
Reference will now be made to the drawings to describe various aspects of example embodiments of the invention. It is to be understood that the drawings are diagrammatic and schematic representations of such example embodiments, and are not limiting of the present invention, nor are they necessarily drawn to scale.
Turning first to
With additional reference to
The front plate 102 may comprise a substrate that is substantially transparent to solar radiation, such as glass, plastic, or the like, upon which the other layers of the PV module 100 can be grown or otherwise placed during manufacture of the PV module 100. The front plate 102 may protect the PV cells 104 from damage due to environmental factors, including moisture, wind, and the like. The substantially transparent nature of the front plate 102 with respect to solar radiation can allow light rays to penetrate through the front plate 102 and impinge upon the PV cells 104. Alternately or additionally, the front plate 102 can provide structural support to the PV cells 104.
In some embodiments, the front plate 102 can be characterized by a length l (
The adhesive layer 112 can couple the front plate 102 to the PV cells 104 and may comprise ethylene-vinyl acetate (“EVA”), or other suitable adhesive. In some embodiments, the adhesive layer 112 can be 2-4 mils thick, or more or less than 2-4 mils thick in other embodiments. The adhesive layer 112 may be substantially transparent to solar radiation to allow light rays to reach the PV cells 104. Alternately or additionally, the adhesive layer 112 can be treated to substantially prevent ultraviolet (“UV”) damage and/or yellowing of the adhesive layer 112.
The buffer layer 114 can couple the backsheet 110 to the PV cells 104 and can electrically insulate the PV cells 104 from the backsheet 110. As such, the buffer layer 114 can comprise an adhesive such as EVA, an electrically insulating material such as polyethylene terephthalate (“PET”), or the like or any combination thereof. In some embodiments, the buffer layer 114 can be about 3 mils thick, or more or less than 3 mils thick.
Generally speaking, the PV cells 104 convert solar energy into electricity by the photovoltaic effect. In some embodiments, all of the PV cells 104 in a given row 106 can be connected to each other in parallel, while the rows 106 can be connected to each other in series. Each of the PV cells 104 may comprise a monocrystalline solar cell or a polycrystalline solar cell. Alternately or additionally, strips of thin-film deposited PV material, such as CIGS or amorphous silicon, can be implemented to form each row 106 in the PV module 100 in place of individual cells 104. The PV cells 104 or other PV material implemented in PV module 100 can include silicon, copper, indium, gallium, selenide, or the like or any combination thereof.
In some embodiments, there can be fifteen rows 106 and each row 106 can include seven PV cells 104. Alternately or additionally, there can be more or less than fifteen rows 106 or more or less than seven PV cells 104 per row 106. Accordingly, the PV module 100 can include one-hundred and five PV cells 104 in some embodiments, or more or less than one-hundred and five PV cells 104. Further, each of the PV cells 104 can be configured to individually generate a voltage of approximately 0.6 volts and a current that varies with illumination intensity, but that may be anywhere between 2.5-10 amps under 1 sun of illumination. With the PV cells 104 within each row 106 connected in parallel and the rows 106 connected in series, the PV cell array 104 may generate a voltage of about 9 volts and a current that varies with illumination intensity, but that may be anywhere between 25-60 amps under 1 sun of illumination in some embodiments. Alternately or additionally, the PV cell array 104 can generate a voltage between 3-12 volts and a current less than 25 amps or more than 60 amps.
In some embodiments of the invention, the above-described configuration of the PV module 100 can allow the PV module 100 to be implemented without bypass diodes or other protective devices for the PV cells 104 in the case of a blocked row 106 or blocked cell 104. In particular, the maximum voltage across any of the PV cells 104 can be less than 10 volts in some embodiments, such as 9 volts as described above. In this case, if one of the rows 106 is blocked, e.g., due to one or more faulty PV cells 104 in the blocked row or non-uniform illumination across the blocked row, a maximum of 9 volts can be dissipated across the blocked row 106. However, the PV cells 104 implemented in PV module 100 can generally withstand 9 volts being dissipated through the PV cells 104 without being damaged.
In contrast, in conventional PV modules, the PV cells can be serially connected in a string of 20 cells or more. As a result, the maximum voltage across the PV cells in a conventional PV module can reach up to 600 volts, which can be damaging to blocked PV cells. Thus, some conventional PV modules can require bypass diodes and/or other protective devices to allow power to be routed around blocked PV cells so as to avoid damaging the blocked PV cells. Furthermore, failure of the bypass diodes to operate properly may result in a fire due to PV cell failure.
Each of the spacers 108 can comprise an electrically conductive material, such as aluminum, copper, or the like. The spacers 108 can each be approximately 2-8 mils thick, 62.5 mm wide, and 888 mm long in some embodiments, and/or can have different dimensions than those stated. In some examples, the spacers 108 can include the bottom spacer 108A disposed after a last row 106A and/or a top spacer 108B disposed before a first row 106B, the bottom spacer 108A and/or top spacer 108B being shorter in length than the other spacers 108 disposed between bottom spacer 108A and top spacer 108B.
In some embodiments, the spacers 108 can be implemented in the electrical interconnections between adjacent rows 106 of PV cells 104. For example,
As seen in
Alternately or additionally, one or more of the spacers 108 can extend beyond a side edge of the backsheet 110. For example, each of the spacers 108 except for the bottom spacer 108A and the top spacer 108B can extend beyond the side edge of the backsheet 110 in the positive x-direction, as best seen in
As already mentioned above, the backsheet 110 can be implemented as the electrical ground in the PV module 100, forming a current return path for the rows 106 of PV cells 104. More particularly, the backsheet 110 can be coupled to the top row 106B via top spacer 108B. Further, the backsheet 110 can be coupled to the bottom row 106A via power conversion device 116 and bottom spacer 108A to form a current return path for the rows 106 of PV cells 104. As such, in some embodiments, the backsheet 110 can comprise a sheet of conductive material, including one or more of aluminum, copper, sheet metal, stainless steel, or other suitable material(s). Alternately or additionally, the backsheet 110 can be approximately 2-8 mils thick and of sufficient width and length to cover all of PV cells 104. Alternately or additionally, the width and length dimensions of the backsheet 110 can allow at least some portions of one or more of the spacers 108 to extend beyond one or more of the top, bottom, or side edges of the backsheet 110.
As seen in
Some aspects of the power conversion device 116 are disclosed in
In some embodiments of the invention, the power conversion device 116, and more specifically, the power conversion circuits 126, can be powered by the power generated by the PV cell array 104. For instance, as explained above, the PV cell array 104 can generate a 3-12 volt power supply, a portion of which can power the power conversion device 116. Accordingly, the power conversion device 116 can operate without an external power supply in some configurations. Further, the power conversion device 116 can be self-starting insofar as it can automatically, without human intervention, operate whenever the power conversion device 116 receives sufficient power from the PV cell array 104.
Optionally, the PCB 124 can have a length-to-width aspect ratio between 20:1 and 40:1. The length-to-width aspect ratio of the PCB 124 can allow the PCB 124 to be mounted to an edge, such as the bottom edge, of the PV module 200, rather than on the back of the PV module 200.
Although not shown in
In some embodiments, the control modules can communicate with each other and/or the power conversion circuits 126 via digital leads 131 formed in the PCB 124. The digital leads 131 can comprise differential or single-ended digital leads. The PCB 124 can alternately or additionally include a plurality of power leads 132A, 132B formed in the PCB 124, including a supply line power lead 132A and a neutral line power lead 132B. Alternately or additionally, the supply line power lead 132A and/or neutral line power lead 132B can be used to carry communications, reducing the number of interconnects that can be implemented in the first and second connectors 128, 130. Alternately or additionally, the supply line power lead 132A and/or neutral line power lead 132B can each comprise a unitary bus or a redundant bus.
The power conversion device 116 can optionally include a cover 133 (
Alternately or additionally, one or more haunch stiffeners 134 (
In some embodiments of the invention, a plurality of fasteners 135, such as screws, bolts, or the like, can be employed to secure the power conversion device 116 to the housing 122. Alternately or additionally, the fasteners 135 can ground the PCB 124 and other electrical components of power conversion device 116 to the backsheet 110 via housing 122. In this and other embodiments, the PCB 124 can include a plurality of through holes and the housing 122 can include a plurality of tapped holes for receiving fasteners 135. After aligning the through holes of the PCB 124 with the tapped holes of the housing 122, the fasteners 135 can be inserted through the PCB 124 and received in the tapped holes of housing 122 to threadably secure and electrically ground the PCB 124 to the housing 122.
Each of first and second connectors 128, 130 can include connections to the supply line power lead 132A and the neutral line power lead 132B. In some embodiments, the first and second connectors 128, 130 can be coupled to a load or battery storage via, respectively, a complementary second and first connector included in the circuit of the load or battery storage. Alternately or additionally, the first and second connectors 128, 130 can be employed to couple together two or more PV modules 100 in a side-by-side arrangement. For instance, the first connector 128 of a first PV module 100 can be coupled into the second connector 130 of a second PV module 100 that is adjacent to the first PV module 100.
In addition to or instead of implementing first and second connectors 128, 130 that include connections to the supply line power lead 132A and the neutral line power lead 132B, the power conversion device 116 can implement an exposed positive terminal and ground terminal that are connected, respectively, to the supply line power lead 132A and the neutral line power lead 132B.
As mentioned above, one or more control modules can be disposed on the PCB 124 and/or integrated into each of power conversion circuits 126. In some embodiments of the invention, each of the one or more control modules can include an active ground fault detection device coupled to the supply line power lead 132A and the neutral line power lead 132B. The active ground fault detection device can monitor outgoing current in the supply line power lead 132A and returning current in the neutral line power lead 132B. Any imbalance between the outgoing current and returning current, or an “interrupt,” can be indicative of a cut or severed power line or other safety hazard in the downstream circuit.
In this and other embodiments, after the active ground fault detection device identifies the interrupt, the control module can switch off the corresponding power conversion circuit 126 to discontinue sending electrical power through the supply line power lead 132A. When the power conversion circuits 126 are switched off, if the PV cells 104 are still generating current, the power conversion circuits 126 can be configured to shunt the current back into the PV cells 104. Because the active ground fault detection device can be incorporated into a control module included in each power conversion circuit 126, the power conversion circuits 126 can be switched off very quickly when an interrupt is detected. Indeed, in some embodiments, the power conversion circuits 126 can be shut down quickly enough that the power conversion device 116 discharges less than 24 joules of energy after identifying the interrupt.
Alternately or additionally, the power conversion circuits 126 can comprise low-power circuits, each having a maximum power output of approximately 50 watts. In this case, each of the power conversion circuits 126 can incorporate one, or not more than two, capacitors having a capacitance between 0.1-50 μF. Due to the relatively small capacitance of the capacitors included in each power conversion circuit 126, the potential energy stored in the capacitors of power conversion circuits 126 and which can potentially be discharged on supply line power lead 132A after an interrupt is detected can be less than 24 joules in aggregate in some embodiments.
As indicated, the maximum energy discharged by power conversion device 116 after detecting an interrupt can be 24 joules. Alternately or additionally, the maximum output voltage of power conversion device 116 can be 60 volts. In some embodiments, the 24-joule and 60-volt limits per power conversion device 116 can allow up to ten PV modules 100 and power conversion devices 116 to be serially connected in a PV system that can qualify as a low voltage device according to standards established by Underwriters Laboratories Inc. (“UL”). The UL low voltage device standard defines a low voltage device as a device that discharges a maximum of 240 joules after detecting an interrupt and that has a maximum voltage of 60 volts. In this particular example, a PV system with ten serially-connected PV modules 100 and power conversion devices 116 can discharge a maximum of 240 joules in aggregate after detecting an interrupt, e.g., ten power conversion devices 116 times 24 joules per power conversion device 116=240 joules, and can have a maximum voltage of 60 volts.
More generally, the maximum output voltage of each power conversion device 116 in a PV system can be 60 volts and the maximum energy discharge of each power conversion device 116 after detecting an interrupt can be less than X/240 Joules of energy, where X is the number of serially connected PV modules 100 in the PV system. Accordingly, if the PV system includes only 5 serially connected PV modules 100, the power conversion circuits 126 for each of five power conversion devices 116 can be shut down quickly enough such that each of the five power conversion devices 116 discharges less than 48 Joules of energy after detecting the interrupt.
A. Power Conversion Circuits
The PCB 124 can include power conversion circuits 126 mounted on the PCB 124. The power conversion device 126 can include 12 power conversion circuits 126, or more or less than 12 power conversion circuits 126 depending on the desired application.
In some embodiments of the invention, each of power conversion circuits 126 can be configured to operate at powers of 100 watts or less and can comprise low-cost, mass-produced consumer electronics. In some instances, each power conversion circuit 126 can operate around a maximum of 25-50 watts.
One or more of the power conversion circuits 126 can be redundant, allowing the power conversion device 116 to operate using less than all of the power conversion circuits 126 at a time. Alternately or additionally, each of the power conversion circuits 126 can have a current capacity of at least 3 times the current generated by the PV cell array 104 under 1 sun of illumination divided by the total number of power conversion circuits 126. For instance, in the embodiment of
By implementing redundant power conversion circuits 126 having excess current capacity, the power conversion device 116 may be able to continue operating without any effect on the power output of power conversion device 116 when one or more of the power conversion circuits 126 has failed or is switched off and/or when the PV cells 104 are exposed to illumination exceeding 100%, or the like or any combination thereof
As mentioned above, the power conversion device 116 can be redundantly connected to the PV module 100. In particular, the power conversion device 116 can be redundantly connected to the PV module 100 by grounding each of the power conversion circuits 116 into the backsheet 110 and providing separate connections between each power conversion circuit 116 and the PV cells 104 via bottom spacer 108A. The separate connection between each power conversion circuit 116 and the PV cells 104 can include one or more of: traces, leads, and/or solder pads formed in the PCB 124, the fold 110A of backsheet 110, flexible solder ribbon 120 between the bottom spacer 108A and PCB 124, or the like or any combination thereof.
The redundant connection of the power conversion device 116 to the PV module 100 and the inclusion of one or more redundant power conversion circuits 126 can allow the power conversion device 116 to operate as many as all of the power conversion circuits 126 at a time at less than full power, or to operate less than all of the power conversion circuits 126 at a time at full power, or any combination thereof
For instance, in operation, and with combined reference to
Alternately or additionally, at least one power conversion circuit 126A can comprise a failed or switched off power conversion circuit 126A. In this case, the current that would have normally been received by power conversion circuit 126A can flow through the bottom spacer 108A to be received by power conversion circuit 126B, 126C, or other power conversion circuit 126. Depending on the number of power conversion circuits 126 that are failed or switched off and the power output of PV cell array 104, all of the remaining power conversion circuits 126 can be operated at full power, or some of the remaining power conversion circuits 126 can be operated at full power while others are operated at less than full power or not at all.
As mentioned above, the power conversion circuits 126 can be configured to provide power conditioning of the electrical power generated by the PV cells 104. As used herein, “power conditioning” can include stepping up the voltage, substantially maintaining maximum peak power of the power supply collectively generated by the PV cells 104, reducing current ripple at the input and output of the power conversion device 116, and/or detecting, monitoring, and maintaining a programmed charge profile for one or more batteries directly connected to the output of power conversion device 116.
The power conversion circuits 126 can provide voltage conversion of the power supply generated by the PV module 100 in order to output a conditioned power supply having a stepped up voltage and stepped down current suitable for long-distance transmission. For instance, the PV cell array 104 may generate 200 watts of direct current (“DC”) electrical power at 8 volts and 25 amps. In the absence of power conversion circuits 126, long-distance transmission of such a power supply can be cost-prohibitive as it may require a relatively large, and therefore expensive, conductor.
However, the 200-watt output of PV cell array 104 can be divided among, for instance, five of power conversion circuits 126, such that each of the five power conversion circuits 126 can receive 40 watts of DC electrical power at 8 volts and 5 amps. Further, each of the power conversion circuits 126 can be configured to convert the voltage and current of the DC power supply to a stepped up voltage and a stepped down current. For instance, each of the five power conversion circuits 126 in this example may be able to convert the voltage and current of the individual 40-watt power supply to 54 volts and 0.74 amps. The 54-volt 0.74-amp output of each of the five power conversion circuits 126 can then be output onto the supply line power lead 132A where they combine into a 200-watt power supply at about 54 volts and 3.7 amps, allowing the 200-watt DC power supply to be transmitted long-distance via a relatively smaller and less expensive conductor than would otherwise be required for a 200-watt DC power supply at 8 volts and 25 amps.
In other embodiments of the invention, the power conversion circuits 126 can step up the voltage to as little as 12 volts or as much as 60 volts. Alternately or additionally, each of the power conversion circuits 126 can be configured to release less than 2 joules of energy after an interrupt is detected and the power conversion circuits 126 are switched off
Each one of the power conversion circuits 126 can comprise a step-up DC-DC converter with an output DC voltage that is greater than its input DC voltage. Examples of step-up DC-DC converters include boost converters, buck-boost converters, SEPIC converters, and Ćuk converters.
For instance,
With additional reference to
As shown in
With combined reference to
The switch 216 can comprise a field-effect transistor (“FET”), a metal-oxide-semiconductor FET (“MOSFET”), an insulated-gate bipolar transistor (“IGBT”), a bipolar junction transistor (“BJT”), or other suitable switch. The diode 218 can comprise a Schottky rectifier, or other suitable diode.
The measurement circuit 224 can include one or more resistors and can be employed to measure certain operating parameters of the power conversion circuit 202A. For instance, the measurement circuit 224 can measure the maximum current buildup per switching cycle in inductor 214 in order to maintain maximum peak power. Alternately or additionally, the measurement circuit 224 can measure the charging rate of the inductor 214, the input voltage of power conversion circuit 202A, the output voltage of power conversion circuit 202A, or the like or any combination thereof. Aspects of measurement circuit 224 will be described in greater detail below.
In operation, the power conversion circuit 202A can receive unconditioned power generated by PV cells at input 208 and step up the voltage by switching itself on and off via switch 216. In the on-state, the switch 216 is closed such that the current flowing through inductor 214 can increase and returns to ground 212 through the switch 216 and measurement circuit 224. In the off-state, the switch 216 is open such that the current flowing through the inductor 214 can decrease, flowing through the diode 218 and output 220 to power supply bus 226.
In the on-state of power conversion circuit 202A, the voltage at output 220 can be about 0 volts. In the off-state, the voltage at output 220 can depend on the rate of change of current through inductor 214, rather than on the input voltage at input 208. In turn, the rate of change of current through inductor 214 can depend on the inductance of the inductor 214. Accordingly, the step-up voltage at output 220 can depend on the inductance of inductor 214. Alternately or additionally, the step-up voltage at output 220 can depend on the switching frequency of switch 216 and/or the duty cycle of switch 216.
By cycling the power conversion circuit 202A on and off in continuous mode, e.g., the current through the inductor never reaches 0 amps, the power conversion circuit 202A can produce conditioned power, e.g., power having a stepped up voltage, at output 220.
In this and other embodiments, the switch 216 can be operated via control line 222. In particular, a control module can send signals, directly or indirectly via a gate driver, over control line 222 to open and close the switch 216 at a desired frequency and duty cycle. Because each of the step-up voltage and the impedance of the power conversion circuit 202A can depend on the frequency and duty cycle of the switching process, the control module that controls the switch 216 can set the frequency and/or duty cycle at a predetermined frequency and/or duty cycle to optimize the step-up voltage and the impedance of the power conversion circuit 202A.
In some cases, the opening and closing of switch 216 can generate electromagnetic interference (“EMI”). The frequency of the EMI can depend on the switching frequency of switch 216. The Federal Communications Commission (“FCC”) and/or other bodies may define limits on allowable EMI peak energies at any specific EMI frequency. To avoid exceeding such limits, the power conversion circuit 202A, and more particularly, the switch 216, can be operated with a spread spectrum switching frequency, such that the energy generated by EMI is spread across a spectrum of frequencies rather than being concentrated at any specific frequency.
With combined reference now to
However, current ripple can be substantially reduced at the input and output of power conversion device 200 as a whole by operating the power conversion circuits 202A-202D out of phase with each other. When the power conversion circuits 202A-202D are operating out of phase with each other, the amplitude of current ripple in one of power conversion circuits 202A-202D can be increasing while the amplitude of current ripple in another of power conversion circuits 202A-202D can be decreasing. The cumulative effect of the out-of-phase operation of power conversion circuits 202A-202D can average out the current ripple at the input and output of the power conversion device 200 as a whole.
As mentioned above, measurement circuit 224 can measure one or more operating parameters of power conversion circuit 202A. One embodiment of a power conversion circuit 202E disclosing additional details of a plurality of measurement circuits is disclosed in
Similar to power conversion circuits 202A-202D, power conversion circuit 202E can include an input 208A, a capacitor 210A coupled to the input 208A and to ground 212A, an inductor 214A coupled to the input 208A and to capacitor 210A, a switch 216A coupled to the inductor 214A, a diode 218A coupled to the inductor 214A and to switch 216A, an output 220A coupled to diode 218A, a control line 222A coupled to the switch 216A, and one or more measurement circuits 224A-224C coupled to power conversion circuit 202E.
In more detail, a first measurement circuit 224A can include a plurality of resistors R1 and R2 coupled between the input of capacitor 210A and ground 212A. A first analog to digital converter (“ADC”) 228 can be coupled to the first measurement circuit 224A between resistors R1 and R2 to measure the input voltage of the power conversion circuit 202E received from a plurality of PV cells.
A second measurement circuit 224B can include a resistor R3 coupled between an input of the switch 216A and a second ADC 230. The second ADC 230 can measure the current flowing through inductor 214A to determine, among other things, the maximum current buildup per switching cycle in inductor 214A and/or the charging rate of the inductor 214A.
A third measurement circuit 224C can include a plurality of resistors R4 and R5 coupled between the output of diode 218A and ground 212A. A third ADC 232 can be coupled to the third measurement circuit 224C between resistors R4 and R5 to measure the stepped up output voltage of power conversion circuit 202E.
With combined reference to
For instance, 12-volt batteries commonly used in conjunction with PV modules can be located a relatively short distance from the PV modules, such that a 12-volt output for charging the batteries is suitable for the short-distance transmission. Alternately or additionally, the batteries can comprise 24- or 48-volt batteries and/or the distance to the batteries can be relatively farther away such that a 24- or 48-volt output can be more suitable. Alternately or additionally, a 60-volt output can be suitable for even longer transmission distances. Alternately or additionally, the power conversion circuits 202A-202E can output a stepped up voltage at some other predetermined voltage.
B. Two-Stage Power Conversion
In more detail,
An input of each of the power conversion circuits 314A in the first voltage gain stage 310A can be connected to the PV cells of a corresponding PV module via input bus 320A. An output of each of the power conversion circuits 314A in the first voltage gain stage 310A can be connected to intermediate bus 322A
An input of each of the power conversion circuits 316A in the second voltage gain stage 312A can be connected to the output of power conversion circuits 314A in the first voltage gain stage 310A via intermediate bus 322A. An output of each of the power conversion circuits 316A in the second voltage gain stage 312A can be connected to power supply bus 324A.
In operation, unconditioned power output having a first voltage that is received from the PV cells of a corresponding PV module can be provided to the first voltage gain stage 310A via input bus 320A. The unconditioned power output can be divided amongst one or more of the power conversion circuits 314A and stepped up to a second voltage that the power conversion circuits 314A can output onto intermediate bus 322A.
The second voltage gain stage 312A is connected to the intermediate bus 322A such that the power output of the first gain stage 310A on intermediate bus 322A can be divided amongst one or more of the power conversion circuits 316A of the second gain stage 312A. The power conversion circuits 316A step up the voltage to a third voltage that is output onto power supply bus 324A.
Accordingly, in this and other embodiments, the first and second voltage gain stages 310A, 312A can cooperate to step up the output voltage beyond that efficiently reachable by a single voltage gain stage.
In some embodiments of the invention, each of power conversion circuits 314A, 316A can include an integrated control module. Although not shown, each of the control modules can be connected to digital leads 308A to communicate.
In contrast to the power conversion device 300A of
C. Maintaining Maximum Peak Power
With combined reference to
As an aid in understanding peak power tracking,
With reference first to IV curve 402 the current is at a maximum of 1 when the voltage is 0, e.g., when the PV cell or PV cell array is shorted into itself. As the voltage is increased from 0 to about 0.7, the current gradually decreases to more than 0.9. As the voltage increases beyond about 0.7, the PV cell or PV cell array can become biased beyond its capabilities and the current begins to drop off rapidly until it reaches 0 at a voltage of 1.
With reference next to PV curve 404, power is the product of voltage and current. In this case, each of the data points of PV curve 404 may be equal to the product of the voltage and current of the IV curve 402 data points. As seen in
The PV curve 404 can be referred to as a maximum peak power curve and can be used to identify a peak power point 406, i.e., a predetermined voltage, at which power produced by a PV cell or PV cell array can be maximized. In particular, in this example, the power generated by the PV cell or PV cell array can be maximized at a peak power point 406 of about 0.7.
The peak power point 406 for a PV cell or PV cell array can vary as a function of, among other things, illumination intensity. For example, the peak power point 406 of a PV cell or PV cell array exposed to direct sunlight can change when the PV cell or PV cell array is overshadowed by a cloud or other object.
Further, the PV cell or PV cell array can be used to drive a load or loads that can have an impedance that is not matched to the impedance of the PV cell or PV cell array. When the PV cell or PV cell array is not impedance matched to the load, the PV cell or PV cell array may have to operate at a voltage that is above or below the peak power point 406 to drive the load. As can be seen with respect to the PV curve 404 of
Returning to
In some embodiments, the impedance of the power conversion circuits 202A-202E can be set such that the voltage across the PV cell array 104 is within 10% of the available peak power point. Alternately or additionally, the impedance of the power conversion circuits 202A-202E can be set such that the voltage across the PV cell array 104 is within 2% of the available peak power point averaged over time.
Power conversion devices 116, 200 can implement any method now known or later developed for maintaining maximum peak power for PV cell array 104. For example, power conversion devices 116, 200 can implement a circuit switching method, a perturb and observe method, an AC ripple control method, a fixed Voc offset method, or the like or any combination thereof. In some embodiments, the power conversion device 116, 200 can implement a circuit switching method in combination with one or more other methods.
One embodiment of a circuit switching method for maintaining maximum peak power will now be disclosed with respect to the power conversion device 116 of
In
In
Each of power conversion circuits 126 can be a current bottleneck. For instance, in
Whereas power is equal to the product of voltage and current, identifying the maximum peak power point of the PV module 100 can require allowing all of the current of the PV cells 104 of PV module 100 to flow into the power conversion device 116. In this example, all of the current of PV cells 104 cannot flow into the power conversion device 116 when one, two, three, four, or five power conversion circuits 126 are operational, as indicated by curves 502-510. In particular, in each of IV curves 502-510, the current remains constant from 0 volts until after 6 volts where the current gradually decreases before rolling off sharply. In contrast, in an IV curve where the maximum amount of current is allowed to flow, such as in the IV curve 402 of
After the sixth power conversion circuit 126 is switched on, however, the maximum current from the PV cells 104 can flow into the power conversion device 116, as indicated by IV curve 512. In particular, in IV curve 512, the current gradually decreases beginning at 0 volts up to the peak power point where the current rolls off sharply.
The inability of maximum current to flow into power conversion device 116 prior to switching on the sixth power conversion circuit 126 manifests itself as a maximum power plateau in the PV curves 514-522 of
In contrast, in a PV curve where the maximum amount of current is allowed to flow, such as in the PV curve 404 of
In more general terms, the total number of power conversion circuits 126 that may be required to allow all the current from PV module 100 to flow into power conversion device 116 can be denoted “N”. Comparison of power conversion device's 116 PV curves 522, 524 for N−1 and N operational power conversion circuits 126 can facilitate identification of the peak power point. In particular,
As seen in
Once the peak power point 530 has been identified using a circuit switching method such as described with respect to
For example, using a perturb and observe method in combination with the circuit switching method of
Accordingly, using a circuit switching method in combination with one or more other methods, N power conversion circuits 126 can be switched on, with N−1 of the N power conversion circuits 126 operating at 100% capacity. In this example, only the Nth power conversion circuit 126 operates at less than 100%. In this and other embodiments, operating the N−1 power conversion circuits 126 at 100% capacity and the Nth power conversion circuit 126 at less than 100% capacity can be more efficient than operating more than N power conversion circuits 126, each at less than 100% capacity.
Further, in this and other embodiments, the Nth power conversion circuit 126 may be the only one of the N power conversion circuits 126 maintaining maximum peak power since the N−1 power conversion circuits 126 can be operating at 100% capacity. In some instances, maintaining maximum peak power using a single power conversion circuit 126 at a time can be simpler than maintaining maximum peak power using multiple power conversion circuits 126 each operating at less than 100% capacity.
Further, in some embodiments of the invention, the Nth power conversion circuit 126 operating at less than 100% and maintaining maximum peak power can rotate from one power conversion circuit 126 to another. Alternately or additionally, one or more of the N power conversion circuits 126 can be switched off while one or more redundant power conversion circuits 126 that weren't previously operating can be switched on to replace the ones that were switched off.
When N is less than the total number of available power conversion circuits 126, the power conversion circuits 126 can be on/off cycled, e.g., intermittently switched on or off, by one or more control modules such that the power conversion circuits 126 take turns operating with no more than N operating at a time. The determination of which power conversion circuits 126 to operate at a time can depend on one or more factors. For example, the one or more factors can include the amount of time each power conversion circuit 126 has been operated, the operating temperature of each power conversion circuit 126, or the like or any combination thereof
In this and other embodiments, control modules included in power conversion circuits 126 or control modules shared by power conversion circuits 126 can monitor and track the one or more factors considered in on/off cycling the power conversion circuits 126. Alternately or additionally, a master control module can be included in the power conversion device 116 to coordinate the on/off cycling of power conversion circuits 126. In either case, coordination of the on/off cycling of power conversion circuits 126 can include the control modules communicating with each other and/or with a master control module via digital leads 131 to coordinate the on/off cycling of the power conversion circuits 126. The control modules can implement a predetermined protocol to communicate with each other, including one or more of the 1-wire protocol, the I2C protocol, a wireless communication protocol, or the like or any combination thereof.
Further, the one or more factors considered in on/off cycling of the power conversion circuits 126 can be used to remove one or more power conversion circuits 126 from operation. For instance, if a control module determines that an operating temperature of a power conversion circuit 126 is above a predetermined limit, indicating that the power conversion circuit 126 has failed, the control module can switch the power conversion circuit 126 off and/or can communicate with the other control modules via digital leads 131 to let the other control modules know that the power conversion circuit 126 has been removed from operation.
Alternately or additionally, each power conversion circuit 126 can include a fuse to protect the power conversion circuit 126 from switches that can short closed, such as the switches 216, 216A of
As mentioned above, the power conversion circuits 126 can be redundant. Further, the power conversion circuits 126 can be connected in parallel with the rows 106 of PV cells 104. Accordingly, when one or more of the power conversion circuits 126 has failed, the failed power conversion circuit 126 can be removed from operation without affecting operation of the PV module 100. For instance, as explained above, when the power conversion circuit 126A is failed or otherwise not switched on, current from the PV cells 104 can flow through the bottom spacer 108A to one or more of power conversion circuits 126B, 126C.
II. Passive Row-Balancing
Embodiments of the invention can include PV modules that passively row-balance current across PV cells in each row and/or across rows in the PV module. As used herein, “passive row-balancing of current” refers to passively channeling current around one or more blocked PV cells or rows. As used herein, a PV cell is “blocked” if the current generated by the PV cell is substantially lower than the current generated by other PV cells in the same row. Similarly, a row is “blocked” if the current generated by the row is substantially lower than the current generated by other rows in the PV module.
The PV module 100 of
As another example,
Although not shown in
As shown, the PV module 600 can implement passive row-balancing of current across the PV cells 604 of each row 606 by coupling the PV cells 604 of each row in parallel with each other. In addition, the PV module 600 can implement passive row-balancing of current across the rows 606 by incorporating a plurality of bypass diodes 618.
In some embodiments, the bypass diodes 618 can allow current to flow around rows 506 that are blocked. For instance, row 606A can be a blocked row due to non-uniform illumination conditions of the PV cells 604 of row 606A and/or due to one or more failed or underperforming PV cells 604 in the row 606A.
When a row 606A is blocked, the current produced by the row 606A can be lower than the current produced by the other rows 606 such that the row 606A becomes a current bottleneck, limiting the current of every other row 606 to the current of row 606A. As a result, the row 606A, in the absence of bypass diodes 618, can effectively contribute a voltage loss—and consequently a power loss—to the power output collectively generated by the PV cells 604 that reaches the bottom spacer 610A and the power conversion device redundantly coupled to the bottom spacer 610A.
In operation, however, because each bypass diode 618 is connected in antiparallel with a corresponding row 606, when the voltage imbalance across a blocked row 606A becomes sufficiently large, the corresponding bypass diode 618 can open up and allow current to flow around the blocked row 606A. Thus, in the example of
III. Active Row-Balancing
Embodiments of the invention can alternately or additionally include PV modules that actively row-balance current across rows in the PV module. As used herein, “active row-balancing of current” refers to inputting module power or channeling current around one or more blocked rows using one or more active electronic devices.
For instance,
Although not shown in
The power conversion device 708 can include a plurality of power conversion circuits 710 individually connected to the PV cells of PV module 700 via bottom spacer 704A. The power conversion circuits 710 and PV cells of PV module 700 can be commonly grounded to the backsheet 706. For instance, power conversion circuits 710 can be grounded to the backsheet 706 via a ground connection 712 than can include solder, or the like, interconnecting the power conversion circuits 710 to the backsheet 706. Similarly, the PV cells of PV module 700 can be grounded to the backsheet 706 via a ground connection 714 that can include solder, or the like, interconnecting the backsheet 706 to the PV cells of PV module 700 via top spacer 704B.
Additionally, the power conversion circuits 710 can be individually connected to a supply line 716, a neutral line 718, and a digital control line 720. The digital control line 720 can couple a control module 722 to each of power conversion circuits 710. Alternately or additionally, each of power conversion circuits 710 can include corresponding control modules, with the control module 722 comprising a master control module.
In addition, the PV module 700 can include an active row-balancing device 724 providing active row-balancing of current through the rows of PV cells of PV module 700. The active row-balancing device 724 can include a plurality of active electronic devices 726 interconnected between the rows of PV cells of PV module 700. Each active electronic device 726 can comprise a field effect transistor (“FET”), a gate driver, an inductor, a capacitor, a bypass diode, a microcontroller, or the like or any combination thereof. Alternately or additionally, the active electronic devices 726 can comprise consumer electronics.
In some embodiments, the active electronic devices 726 can be coupled to corresponding spacers 704 between adjacent rows of PV cells such that there is a 1:1 correspondence between active electronic devices 726 and rows of PV cells, allowing each active electronic device 726 to actively row-balance a single corresponding row of PV cells.
Alternately,
Returning to
In operation, the active electronic devices 726 can generally feed current into blocked rows of PV cells via spacers 704 in order to balance current in the PV module 700 and maximize the power output of the PV module 700 under varying non-uniform illumination conditions. In some embodiments, the active row-balancing device 724 can include sensors or other devices to detect if a row is blocked. When a blocked row is detected, the active row-balancing device can instruct a corresponding active electronic device 726 to feed current into the blocked row.
Alternately or additionally, active row-balancing device 724 and power conversion device 708 can implement a row-balancing method, such as the example row-balancing method 800 of
Each time current is fed 802 into a row of PV cells, the conditioned power output of power conversion device 708 can be measured and recorded 804. For instance, the control module 722 can measure the power output on the supply line 716 each time a row is fed 802 current and can record 804 the measured power output in volatile or non-volatile memory of the control module 722. The power output measurements can be stored in a table or other data structure that correlates the measured power output with a particular row of PV cells that was being fed current by an active electronic device 726 at the time the measurement was made.
After measuring and recording 804 power output each time a different row is fed current, the weakest row can be identified 806. In this case, the largest power output measurement can correspond to the weakest row, as the power output of power conversion device 708 can increase the most when current is fed into the weakest row. In some embodiments, the control module 722 can identify 806 the weakest row by comparing the power output measurements stored in memory.
The method 800 can continue by increasing and maintaining 808 the current feed in the weakest row. For example, the control module 722 can instruct the active electronic device 726 corresponding to the weakest row to increase the current feed into the weakest row beyond what was fed into the weakest row at step 802.
After increasing and maintaining 808 the current feed in the weakest row, the control module 722 can determine 810 whether the power output of power conversion device 708 has increased beyond a predetermined threshold. This can include measuring the power output after performing step 808 and comparing the power output to an initial power output measured before feeding current into any of the rows.
If the control module 722 determines 810 that the power output has increased beyond a predetermined threshold, steps 802-810 can be repeated 812 on every row except the weakest rows to identify one or more additional other weakest rows. However, if the control module 722 determines 810 that the power output has not increased beyond a predetermined threshold, steps 802-810 can be repeated 814 on the previously identified weakest rows to optimize the current feed in the identified weakest rows.
The method 800 can then alternate back and forth between steps 812 and 814 to identify additional weak rows and optimize the current feed in the identified weakest rows. Alternating back and forth between steps 812 and 814 can allow the conditioned power output of PV module 700 to be optimized when the weakest rows are changing from one moment to the next due to, e.g., changing illumination conditions or the like. Alternately or additionally, measuring the conditioned power output of PV module 700, rather than measuring current and/or other parameters at each of the rows of PV module 700 can avoid the cost of added components in the active row-balancing device 724 to measure each row and/or can avoid power loss associated with measuring current or other parameters at each of the rows of PV module 700.
As mentioned above, the active row-balancing device 724 can be powered by the conditioned power output of the PV module 700. The powering of the active row-balancing device 724 using the conditioned power output of PV module 700 can reduce the conditioned power output of the PV module 700. However, the gain in conditioned power output of the PV module 700 when the rows of PV cells are actively balanced can be greater than the loss of conditioned power output required to power the active row-balancing device 724. Thus, active row-balancing using an active row-balancing device 724 that is powered by the PV module 700 can result in a net gain in conditioned power output of the PV module 700 compared to operating the PV module 700 with unbalanced rows.
IV. Example Control Algorithm
Embodiments of the invention can include PV modules that implement one or more control algorithms to maximize power output of the PV Module. The control algorithms can be implemented by one or more control modules included in a power conversion device or active row-balancing device of the PV module. One embodiment of an example nested loop control algorithm 900 is disclosed in
The control algorithm 900 can include a plurality of control loops 902, 904, 906 and 908. In the present example, each of control loops 902-908 can include a method for controlling, respectively, maximum peak power, voltage gain, power conversion circuit efficiency, and row-balancing. In some instances, the control loops 902 and 904 can be implemented within each power conversion circuit 710, while the control loops 906 and 908 can be implemented across power conversion circuits 710 and/or across active electronic devices 726.
For example, the control loop 902 can include a method for controlling maximum peak power of the PV module 700 and can be implemented by a control module within each power conversion circuit 710, or by a shared control module for each of the power conversion circuits 710 controlled by the shared control module. As explained above, controlling and maintaining maximum peak power of a PV module can depend on the charge rate of the inductors in the power conversion circuits of the PV module.
The control loop 902 can include a step of continuously monitoring the charge rate of the inductors in power conversion circuit 710. Power conversion circuit 710 can include a threshold detect such that when the charge rate of the inductor crosses a predetermined threshold, the charge rate is compared to a previous charge rate and/or fed into a lookup table of charge rates. Based on data in the lookup table, the power conversion circuit 710 can adjust up or down the switching frequency, e.g., the frequency of the PWM control signal, of the switch of power conversion circuit 710. Changes to the switching frequency of the PWM control signal can affect changes in the charge rate of the inductor which the power conversion circuit 710 can continue to monitor and maximize.
The control loop 904 can include a method for regulating the stepped up voltage of each power conversion circuit 710 to a predetermined voltage. As explained above, the voltage gain of a power conversion circuit can depend on the duty cycle and/or switching frequency of the PWM control signal switching the switch of the power conversion circuit on and off. The control loop 904 can include the power conversion circuit 710 measuring the output voltage of the power conversion circuit 710 and comparing it to one or more previous measurements. Alternately or additionally, the measured output voltage can be fed into a lookup table of output voltages. Based on data in the lookup table, the power conversion circuit 710 can adjust the duty cycle of the PWM control signal up or down to adjust the output voltage towards a predetermined voltage.
The control loop 906 can include a method for controlling and maximizing the efficiency of power conversion circuits for power conversion device 708. In some embodiments, the control loop 906 can incorporate the circuit switching method disclosed above with respect to
The control loop 908 can include a method for controlling row-balancing in the rows of PV module 700. The control loop 908 can incorporate the method 800 of
As mentioned above, each of control loops 902-908 can be implemented, at least in part, by a control module included within each power conversion circuit 710 and/or a separate control module 722. In either or both instances, the control module can include firmware that the control module executes to, e.g., maintain the maximum peak power of the power conversion circuit 710, regulate the stepped up voltage of the power conversion circuit 710 to a predetermined voltage, maximize the efficiency of the power conversion circuits 710, or actively row-balance current in the PV module 700.
In some embodiments of the invention, implementation of the nested control loop 900 in the PV module 700 can maximize the power output of the PV module 700 under varying illumination and operating conditions.
V. Example Photovoltaic Module Calibration
Embodiments of the invention can include PV Modules configured to communicate, either wirelessly or via a hardwired connection, with one or more external devices. For instance, although not shown, the PV module 700 can include a communication interface 732 that allows the PV module 700 to digitally communicate bi-directionally with an external communication device, such as a computer, cell-phone, or other external device, over a hardwired or wireless connection established via the communication interface 732.
In some embodiments of the invention, the communication interface 732 can allow the PV Module 700 to communicate using one or more defined communication protocols now known or later developed. For instance, the PV module 700 can communicate using one or more of 1-wire protocol, Internet Protocol (“IP”), Ethernet, Fibre Channel, Transmission Control Protocol (“TCP”), TCP/IP, Sonet, code division multiple access (“CDMA”), cellular protocols, Wireless Ethernet, 802.xx protocols, or the like or any combination thereof. Whereas some communication protocols can require that communicating devices include an identifier, the PV module 700 can include an identifier, such as a unique serial identifier, an IP address, a cellular address, or other identifier, that the communication interface 732 can use when establishing communication with an external device.
In some embodiments of the invention, inclusion of a communication interface 732 can facilitate calibration of the PV module 700. For instance, the communication interface 732 can allow the PV module 700 to download different sets of computer executable instructions, comprising software or firmware, that enable the PV module 700 to self-calibrate.
One example of a method 1000 for self-calibrating PV module 700 is disclosed in
At step 1004, the PV module 700 can be exposed to multiple illumination intensities. At step 1006, the PV module 700 can be exposed to multiple ambient temperatures. For instance, the PV module 700 can be exposed to one illumination intensity while being exposed to multiple ambient temperatures, then exposed to another illumination intensity while repeating the exposure to the multiple ambient temperatures, and so on.
The method 1000 can continue by generating 1008 measurement data for each illumination intensity and ambient temperature the PV module 700 is exposed to. The measurement data can be generated internally to the PV module by the control module 722 and/or control modules included in each of power conversion circuits 710, for example. Further, the measurement data can be generated by the control module 722 or other control modules in response to executing the first set of computer executable instructions.
The measurement data generated at step 1008 can be representative of, for each illumination intensity and ambient temperature, an electrical resistance of each power conversion circuit 710 and/or for the PV module 700, a power output of each power conversion circuit 710 and/or for the PV module 700, a peak power current for each power conversion circuit 710 and/or for the PV module 700, a peak power voltage for each power conversion circuit 710 and/or for the PV module 700, a local circuit phase of each power conversion circuit 710 and of the PV module 700, or the like or any combination thereof. Alternately or additionally, the measurement data can be representative of current and voltage characteristics of the PV module 700, uniformity of current and voltage across the PV module 700, row-balancing of the PV module 700 at different illumination intensities, or the like.
At step 1010, execution of the first set of computer executable instructions by control module 722 can further cause the control module 722 to generate a plurality of calibrations curves from the measurement data that allow for predicting expected changes of operating parameters of the PV module 700 over time and changing environmental conditions. For instance, one type of calibration curve may indicate how the power output of a power conversion circuit 710 varies as a function of ambient temperature. Such a calibration curve might be used by control module 722 to predict how the power output of the power conversion circuit 710 will change in the field when the power conversion circuit 710 is exposed to ambient temperatures above or below the ambient temperatures of step 1006.
Alternately or additionally, another type of calibration curve may indicate the maximum current draw from each power conversion circuit 710 at peak operation. The maximum current draw per power conversion circuit 710 can depend on inherent characteristics of each power conversion circuit 710, illumination intensity and/or uniformity, location of each power conversion circuit 710, and the like. Such a calibration curve might be used by control module 722 in maintaining maximum peak power of the PV module 700. Alternately or additionally, other types of calibration curves can include IV curves or PV curves for each power conversion circuit 710 at different illumination intensities and/or ambient temperatures.
Each calibration curve can be stored 1012 in memory module 734 as a table or other data structure and can later be used by control module 722 in the field to transform field measurements into physical data, or for operational control, diagnostics, or other uses. In this case, the control module 722 can calculate future performance of the photovoltaic module 700 based on the information, such as calibration curves, stored in the memory module 734 and/or on information that can be stored externally and accessed via communication interface 732.
At step 1014, the first set of computer executable instructions can be replaced with a second set of computer executable instructions by erasing the first set of computer executable instructions from memory module 734 and downloading the second set of computer executable instructions via communication interface 732. Generally speaking, the second set of computer executable instructions can control operation of the PV module 700 in the field. For instance, the second set of computer executable instructions can cause the control module 722 and/or other control modules included in power conversion device 708 to implement the nested control loop 900 of
Alternately or additionally, the method 1000 can include generating 1016 additional measurement data in the factory and/or in the field. The additional measurement data can be representative of one or more of the following parameters for the PV cells of PV module 700 in aggregate: normalized maximum power output, short circuit current, open circuit voltage, maximum peak power current, maximum peak power voltage, parasitic resistance, shunt resistance, reverse current bias, reverse voltage bias, and the like or any combination thereof. Alternately or additionally, the additional measurement data can be representative of one or more of the following parameters for each the power conversion circuits 710: frequency response, capacitance, inductance, circuit tuning parameters, switching times, or phasing.
Optionally, the method 1000 can include the control module 722 collecting and storing 1018 trend analysis data from one or more devices external to the control module 722. For instance, the control module 722 can collect trend analysis data from the power conversion circuits 710, the active row-balancing device 724, and/or a clock, thermometer, light sensor, voltage sensor, or other device that can be included in the power conversion device 708, elsewhere on the PV module 700, or can be provided as external devices. The trend analysis data can be representative of the time and date, the ambient temperature of the PV module 700 and/or the operating temperature of individual power conversion circuits 710, the output voltage of power conversion device 708, the amount of current imbalance in the supply line 716 and neutral line 718, the amount of power drawn by active row-balancing device 724 to balance current in the rows of PV module 700, the failure rate of power conversion circuits 710, or the like or any combination thereof.
In some embodiments of the invention, the measurement data and/or trend analysis data generated and collected at steps 1008, 1016 and 1018 that is used in calibrating the PV module 700 can be generated internally by one or more components within the PV module 700. Alternately or additionally, at least some of the measurement data and/or trend analysis data generated and collected at steps 1008, 1016 and 1018 can be collected from a loopback device that is external to the PV module 700. For instance,
The loopback device 1102 can generate data and transmit the data to power conversion device 1104 via communication interface 1106. The loopback device 1102 can comprise a global positioning system (“GPS”) device, a voltage calibration device, a current calibration device, an Ethernet port or wireless communication port, an illumination calibration device such as a photodiode, a tilt sensor, an alignment sensor, or the like or any combination thereof.
Some of the loopback devices 1102 can be used to provide operating conditions to the PV module 1100 at an installation site. For instance, a GPS device can provide GPS coordinates to the PV module 1100 so that the PV module 1100 knows where it is and what illumination conditions to expect. Alternately or additionally, a tilt or alignment sensor can provide the PV module 1100 with tilt or alignment angle of the PV module after installation.
In some instances, the measurement data provided by loopback device 1102 can comprise data that may not change after installation of the PV module 1100 at an installation site. Further, one or more of the loopback devices 1102 described herein may comprise relatively costly devices. Accordingly, using an external loopback devices 1102 after installation of PV module 1100 to provide PV module 1100 with measurement data that is unlikely to change over time can reduce the cost of PV module 1100 without reducing the functionality of PV module 1100.
Alternately or additionally, the loopback device 1102 can provide an operating code to the PV module 1100 that enables operation of the PV module 1100. For instance, firmware implemented by a control module in the PV module 1100 can require the operating code to activate the PV module 1100. The PV module 1100 can be sent to an installation site without the operating code. After installing the PV module 1100, the operating code can be downloaded to the PV module 1100 to activate the PV module 1100 for operation. If, however, the PV module 1100 is stolen from the installation site or elsewhere without receiving the operating code, the lack of the operating code can render the PV module 1100 non-operational, which may provide some measure of theft-deterrence.
Turning next to
The first column 1202A, 1202B in each of
In addition, each of
Similarly, in
As can be seen from a comparison of the second measures of cumulative reliability 1218A and 1218B, the PV system comprising redundant electronics has a reliability of 98.75%, which is significantly higher than the 85.89% reliability of the conventional PV system. Accordingly, the inclusion of redundant electronics and a redundant panel and interconnection structure can significantly improve the reliability of a PV system.
The embodiments described herein may include the use of a special purpose or general-purpose computer including various computer hardware or software modules, as discussed in greater detail below.
Embodiments within the scope of the present invention also include computer-readable media for carrying or having computer-executable instructions or data structures stored thereon. Such computer-readable media can be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, solid state NAND- or NOR-based flash media, or any other medium which can be used to carry or store desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a computer, the computer properly views the connection as a computer-readable medium. Thus, any such connection is properly termed a computer-readable medium. Combinations of the above should also be included within the scope of computer-readable media.
Computer-executable instructions comprise, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
As used herein, the term “module” or “component” can refer to software objects or routines that execute on the computing system. The different components, modules, engines, and services described herein may be implemented as objects or processes that execute on the computing system (e.g., as separate threads). While the system and methods described herein are preferably implemented in software, implementations in hardware or a combination of software and hardware are also possible and contemplated. In this description, a “computing entity” may be any computing system as previously defined herein, or any module or combination of modulates running on a computing system.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This patent application is a divisional of U.S. patent application Ser. No. 12/357,260, filed Jan. 21, 2009, which: (i) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/022,232, filed Jan. 18, 2008 by Dallas W. Meyer for POLISHED AND TEXTURED BACK CONTACTS FOR A THIN-FILM PHOTOVOLTAIC SYSTEM; (ii) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/022,264, filed Jan. 18, 2008 by Dallas W. Meyer for A THIN PROTECTIVE FILM FOR PHOTOVOLTAIC SYSTEMS; (iii) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/022,253, filed Jan. 18, 2008 by Dallas W. Meyer for A FILM LEVEL ENCAPSULATION PHOTOVOLTAIC SYSTEM; (iv) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/022,267, filed Jan. 18, 2008 by Dallas W. Meyer for A PHOTOVOLTAIC SYSTEM WITH EMBEDDED ELECTRONICS; (v) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/022,228, filed Jan. 18, 2008 by Dallas W. Meyer for A SINGLE USE DIODE FOR A PHOTOVOLTAIC SYSTEM; (vi) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/022,234, filed Jan. 18, 2008 by Dallas W. Meyer for A HIGHLY COMPLIANT INTERCONNECT FOR A PHOTOVOLTAIC SYSTEM; (vii) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/022,236, filed Jan. 18, 2008 by Dallas W. Meyer for A FAULT TOLERANT PHOTOVOLTAIC SYSTEM; (viii) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/022,240, filed Jan. 18, 2008 by Dallas W. Meyer for INTEGRATED DEFECT MANAGEMENT FOR THIN-FILM PHOTOVOLTAIC SYSTEMS; (ix) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/022,242, filed Jan. 18, 2008 by Dallas W. Meyer for OPERATING FEATURES FOR INTEGRATED PHOTOVOLTAIC SYSTEMS; (x) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/022,277, filed Jan. 18, 2008 by Dallas W. Meyer for A PHOTOVOLTAIC SYSTEM USING NON-UNIFORM ILLUMINATION; (xi) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/022,278, filed Jan. 18, 2008 by Dallas W. Meyer for LOW MAGNIFICATION CONCENTRATED PHOTOVOLTAIC SYSTEM; (xii) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/025,570, filed Feb. 1, 2008 by Dallas W. Meyer for A SELF-DE-ICING PHOTOVOLTAIC SYSTEM; (xiii) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/022,245, filed Jan. 18, 2008 by Dallas W. Meyer for A VERY HIGH ASPECT RATIO THIN-FILM PHOTOVOLTAIC SYSTEM; (xiv) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/025,575, filed Feb. 1, 2008 by Dallas W. Meyer for PRODUCTION TESTING OF LARGE AREA PHOTOVOLTAIC MODULES; (xv) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/022,246, filed Jan. 18, 2008 by Dallas W. Meyer for A LONGITUDINALLY CONTINUOUS PHOTOVOLTAIC MODULE; (xvi) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/022,258, filed Jan. 18, 2008 by Dallas W. Meyer for A CONTINUOUS LARGE AREA PHOTOVOLTAIC SYSTEM; (xvii) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/022,263, filed Jan. 18, 2008 by Dallas W. Meyer for A BACK-ELECTRODE, LARGE AREA CONTINUOUS PHOTOVOLTAIC MODULE; (xviii) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/022,249, filed Jan. 18, 2008 by Dallas W. Meyer for CORRUGATED PHOTOVOLTAIC PANELS; (xix) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/022,280, filed Jan. 18, 2008 by Dallas W. Meyer for A VERY HIGH EFFICIENCY THIN-FILM PHOTOVOLTAIC SYSTEM; (xx) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/022,252, filed Jan. 18, 2008 by Dallas W. Meyer for A MULTI-USE GROUND BASED PHOTOVOLTAIC SYSTEM; (xxi) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/025,578, filed Feb. 1, 2008 by Dallas W. Meyer for A PREDICTIVE SYSTEM FOR DISTRIBUTED POWER SOURCE MANAGEMENT; (xxii) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/025,581, filed Feb. 1, 2008 by Dallas W. Meyer for A WEATHERPROOF CORRUGATED PHOTOVOLTAIC PANEL SYSTEM; (xxiii) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/033,200, filed Mar. 3, 2008 by Dallas W. Meyer for AN ELECTRONICALLY CURRENT BALANCED PHOTOVOLTAIC SYSTEM; (xxiv) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/058,485, filed Jun. 3, 2008 by Dallas W. Meyer for A HOME OWNER INSTALLED GROUND OR ROOF MOUNTED SOLAR SYSTEM; (xxv) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/080,628, filed Jul. 14, 2008 by Dallas W. Meyer for A LOW COST SOLAR MODULE; (xxvi) claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/091,642, filed Aug. 25, 2008 by Dallas W. Meyer for A LOW COST, HIGH RELIABILITY SOLAR PANEL; The twenty-seven (27) above-identified patent applications are hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2554225 | Taylor | May 1951 | A |
3094439 | Mann et al. | Jun 1963 | A |
3350234 | Ule | Oct 1967 | A |
3419434 | Colehower | Dec 1968 | A |
3582777 | Wunderman | Jun 1971 | A |
3833426 | Mesch | Sep 1974 | A |
4002160 | Mather | Jan 1977 | A |
4020827 | Broberg | May 1977 | A |
4033327 | Pei | Jul 1977 | A |
4120282 | Espy | Oct 1978 | A |
4154998 | Luft et al. | May 1979 | A |
4158768 | Lavelli | Jun 1979 | A |
4212293 | Nugent | Jul 1980 | A |
4227298 | Keeling | Oct 1980 | A |
4309334 | Valitsky | Jan 1982 | A |
4316448 | Dodge | Feb 1982 | A |
4321416 | Tennant | Mar 1982 | A |
4369498 | Schulte | Jan 1983 | A |
4410757 | Stamminger et al. | Oct 1983 | A |
4461922 | Gay et al. | Jul 1984 | A |
4481378 | Lesk | Nov 1984 | A |
4514579 | Hanak | Apr 1985 | A |
4604494 | Shepard, Jr. | Aug 1986 | A |
4611090 | Catella | Sep 1986 | A |
4617421 | Nath | Oct 1986 | A |
4695788 | Marshall | Sep 1987 | A |
4716258 | Murtha | Dec 1987 | A |
4747699 | Kobayashi et al. | May 1988 | A |
4755921 | Nelson | Jul 1988 | A |
4773944 | Nath | Sep 1988 | A |
4854974 | Carlson | Aug 1989 | A |
4933022 | Swanson | Jun 1990 | A |
4964713 | Goetzberger | Oct 1990 | A |
4966631 | Matlin | Oct 1990 | A |
5013141 | Sakata | May 1991 | A |
5021099 | Kim | Jun 1991 | A |
5048194 | McMurtry | Sep 1991 | A |
5096505 | Fraas et al. | Mar 1992 | A |
5205739 | Malo | Apr 1993 | A |
5246782 | Kennedy | Sep 1993 | A |
5268037 | Glatfelter | Dec 1993 | A |
5270636 | Lafferty | Dec 1993 | A |
5288337 | Mitchell | Feb 1994 | A |
5344497 | Fraas | Sep 1994 | A |
5374317 | Lamb | Dec 1994 | A |
5457057 | Nath | Oct 1995 | A |
5468988 | Glatfelter | Nov 1995 | A |
5478402 | Hanoka | Dec 1995 | A |
5491040 | Chaloner-Gill | Feb 1996 | A |
5493096 | Koh | Feb 1996 | A |
5505789 | Fraas | Apr 1996 | A |
5513075 | Capper | Apr 1996 | A |
5538563 | Finkl | Jul 1996 | A |
5571338 | Kadonome | Nov 1996 | A |
5593901 | Oswald | Jan 1997 | A |
5719758 | Nakata | Feb 1998 | A |
5735966 | Luch | Apr 1998 | A |
5745355 | Tracy et al. | Apr 1998 | A |
5801519 | Midya | Sep 1998 | A |
5896281 | Bingley | Apr 1999 | A |
5910738 | Shinohe | Jun 1999 | A |
5982157 | Wattenhofer | Nov 1999 | A |
5990413 | Ortabasi | Nov 1999 | A |
5994641 | Kardauskas | Nov 1999 | A |
6011215 | Glatfelter | Jan 2000 | A |
6017002 | Burke et al. | Jan 2000 | A |
6043425 | Assad | Mar 2000 | A |
6077722 | Jansen | Jun 2000 | A |
6111189 | Garvison | Aug 2000 | A |
6111454 | Shinohe | Aug 2000 | A |
6111767 | Handleman | Aug 2000 | A |
6134784 | Carrie | Oct 2000 | A |
6177627 | Murphy | Jan 2001 | B1 |
6188012 | Ralph | Feb 2001 | B1 |
6201180 | Meyer | Mar 2001 | B1 |
6281485 | Siri | Aug 2001 | B1 |
6288325 | Jansen | Sep 2001 | B1 |
6294723 | Uematsu | Sep 2001 | B2 |
6331208 | Nishida | Dec 2001 | B1 |
6337436 | Ganz | Jan 2002 | B1 |
6339538 | Handleman | Jan 2002 | B1 |
6351130 | Preiser et al. | Feb 2002 | B1 |
6462265 | Sasaoka et al. | Oct 2002 | B1 |
6465724 | Garvison | Oct 2002 | B1 |
6479744 | Tsuzuki et al. | Nov 2002 | B1 |
6515215 | Mimura | Feb 2003 | B1 |
6528716 | Collette | Mar 2003 | B2 |
6706963 | Gaudiana | Mar 2004 | B2 |
6739692 | Unosawa | May 2004 | B2 |
6750391 | Bower | Jun 2004 | B2 |
6753692 | Toyomura | Jun 2004 | B2 |
6803513 | Beernink | Oct 2004 | B2 |
6858461 | Oswald | Feb 2005 | B2 |
6870087 | Gallagher | Mar 2005 | B1 |
6882063 | Droppo | Apr 2005 | B2 |
6903261 | Habraken | Jun 2005 | B2 |
6966184 | Toyomura | Nov 2005 | B2 |
6992256 | Wiley | Jan 2006 | B1 |
7009412 | Chong | Mar 2006 | B2 |
7094441 | Chittibabu | Aug 2006 | B2 |
7099169 | West et al. | Aug 2006 | B2 |
7138730 | Lai | Nov 2006 | B2 |
7205626 | Nakata | Apr 2007 | B1 |
7259322 | Gronet | Aug 2007 | B2 |
7276724 | Sheats | Oct 2007 | B2 |
7297865 | Terao | Nov 2007 | B2 |
7301095 | Murphy | Nov 2007 | B2 |
7336004 | Lai | Feb 2008 | B2 |
7339108 | Tur | Mar 2008 | B2 |
7342171 | Khouri | Mar 2008 | B2 |
7388146 | Fraas | Jun 2008 | B2 |
7432438 | Rubin et al. | Oct 2008 | B2 |
7498508 | Rubin et al. | Mar 2009 | B2 |
7997938 | Costello et al. | Aug 2011 | B2 |
8013239 | Rubin et al. | Sep 2011 | B2 |
8138631 | Allen et al. | Mar 2012 | B2 |
8212139 | Meyer | Jul 2012 | B2 |
8563847 | Meyer | Oct 2013 | B2 |
8748727 | Meyer | Jun 2014 | B2 |
8828778 | Meyer | Sep 2014 | B2 |
8829330 | Meyer | Sep 2014 | B2 |
8933320 | Meyer | Jan 2015 | B2 |
20010008144 | Uematsu | Jul 2001 | A1 |
20020179140 | Toyomura | Dec 2002 | A1 |
20030047208 | Glenn et al. | Mar 2003 | A1 |
20030121228 | Stoehr | Jul 2003 | A1 |
20030121542 | Harneit et al. | Jul 2003 | A1 |
20030201007 | Fraas | Oct 2003 | A1 |
20040016454 | Murphy et al. | Jan 2004 | A1 |
20040055594 | Hochberg | Mar 2004 | A1 |
20040089337 | Chou | May 2004 | A1 |
20040261834 | Basore | Dec 2004 | A1 |
20040261955 | Shingleton et al. | Dec 2004 | A1 |
20050000562 | Kataoka et al. | Jan 2005 | A1 |
20050022857 | Daroczi | Feb 2005 | A1 |
20050034751 | Gross | Feb 2005 | A1 |
20050052172 | Schripsema | Mar 2005 | A1 |
20050061360 | Horioka et al. | Mar 2005 | A1 |
20050081909 | Paull | Apr 2005 | A1 |
20050115176 | Russell | Jun 2005 | A1 |
20050121067 | Toyomura et al. | Jun 2005 | A1 |
20050133081 | Amato | Jun 2005 | A1 |
20050158891 | Barth | Jul 2005 | A1 |
20050172995 | Rohrig | Aug 2005 | A1 |
20050194939 | Duff, Jr. | Sep 2005 | A1 |
20050263179 | Gaudiana | Dec 2005 | A1 |
20050268959 | Aschenbrenner | Dec 2005 | A1 |
20050278076 | Barbir | Dec 2005 | A1 |
20060001406 | Matan | Jan 2006 | A1 |
20060042681 | Korman | Mar 2006 | A1 |
20060054212 | Fraas | Mar 2006 | A1 |
20060086384 | Nakata | Apr 2006 | A1 |
20060092588 | Realmuto et al. | May 2006 | A1 |
20060162772 | Presher, Jr. | Jul 2006 | A1 |
20060174931 | Mapes et al. | Aug 2006 | A1 |
20060174939 | Matan | Aug 2006 | A1 |
20060180197 | Gui | Aug 2006 | A1 |
20060185716 | Murozono | Aug 2006 | A1 |
20060185727 | Matan | Aug 2006 | A1 |
20060213548 | Bachrach | Sep 2006 | A1 |
20060225777 | Buechel | Oct 2006 | A1 |
20060235717 | Sharma | Oct 2006 | A1 |
20060261830 | Taylor | Nov 2006 | A1 |
20060266407 | Lichey | Nov 2006 | A1 |
20060290344 | Shimotomai | Dec 2006 | A1 |
20070035864 | Vasylyev | Feb 2007 | A1 |
20070056626 | Funcell | Mar 2007 | A1 |
20070068567 | Rubin et al. | Mar 2007 | A1 |
20070079861 | Morali | Apr 2007 | A1 |
20070095384 | Farquhar | May 2007 | A1 |
20070103108 | Capp | May 2007 | A1 |
20070113885 | Chan | May 2007 | A1 |
20070124619 | Mizukami | May 2007 | A1 |
20070125415 | Sachs | Jun 2007 | A1 |
20070144577 | Rubin et al. | Jun 2007 | A1 |
20070151594 | Mascolo et al. | Jul 2007 | A1 |
20070157964 | Gronet | Jul 2007 | A1 |
20070179720 | Becker et al. | Aug 2007 | A1 |
20070186971 | Lochun | Aug 2007 | A1 |
20070193620 | Hines | Aug 2007 | A1 |
20070199588 | Rubin et al. | Aug 2007 | A1 |
20070215195 | Buller | Sep 2007 | A1 |
20070235077 | Nagata | Oct 2007 | A1 |
20070240755 | Lichy | Oct 2007 | A1 |
20070251569 | Shan | Nov 2007 | A1 |
20070261731 | Abe | Nov 2007 | A1 |
20070266672 | Bateman | Nov 2007 | A1 |
20070272295 | Rubin et al. | Nov 2007 | A1 |
20070273338 | West | Nov 2007 | A1 |
20070295381 | Fujii | Dec 2007 | A1 |
20080000516 | Shifman | Jan 2008 | A1 |
20080029149 | Simon | Feb 2008 | A1 |
20080029152 | Milshtein | Feb 2008 | A1 |
20080037141 | Tom | Feb 2008 | A1 |
20080047003 | Wong et al. | Feb 2008 | A1 |
20080092944 | Rubin et al. | Apr 2008 | A1 |
20080122518 | Besser et al. | May 2008 | A1 |
20080142071 | Dorn et al. | Jun 2008 | A1 |
20080163922 | Horne et al. | Jul 2008 | A1 |
20080164766 | Adest et al. | Jul 2008 | A1 |
20080210286 | Ball | Sep 2008 | A1 |
20080236648 | Klein et al. | Oct 2008 | A1 |
20080290368 | Rubin | Nov 2008 | A1 |
20080298051 | Chu | Dec 2008 | A1 |
20090025778 | Rubin et al. | Jan 2009 | A1 |
20090121968 | Okamoto | May 2009 | A1 |
20090151775 | Pietrzak | Jun 2009 | A1 |
20090183760 | Meyer | Jul 2009 | A1 |
20090183763 | Meyer | Jul 2009 | A1 |
20090183764 | Meyer | Jul 2009 | A1 |
20090206287 | Trupke | Aug 2009 | A1 |
20090217965 | Dougal et al. | Sep 2009 | A1 |
20090242021 | Petkie et al. | Oct 2009 | A1 |
20090250093 | Chen | Oct 2009 | A1 |
20100000165 | Koller | Jan 2010 | A1 |
20100014738 | Birnholz et al. | Jan 2010 | A1 |
20100089390 | Miros et al. | Apr 2010 | A1 |
20100131108 | Meyer | May 2010 | A1 |
20100175337 | Mascolo et al. | Jul 2010 | A1 |
20100212720 | Meyer et al. | Aug 2010 | A1 |
20100219688 | Shyu et al. | Sep 2010 | A1 |
20100253151 | Gerhardinger et al. | Oct 2010 | A1 |
20100282293 | Meyer et al. | Nov 2010 | A1 |
20100313499 | Gangemi | Dec 2010 | A1 |
20100313933 | Xu | Dec 2010 | A1 |
20110018353 | Yu | Jan 2011 | A1 |
20110039992 | Irie | Feb 2011 | A1 |
20110067748 | Pfeiffer | Mar 2011 | A1 |
20110241431 | Chen et al. | Oct 2011 | A1 |
20110301772 | Zuercher et al. | Dec 2011 | A1 |
20120042588 | Erickson, Jr. | Feb 2012 | A1 |
20120204935 | Meyer et al. | Aug 2012 | A1 |
20120234374 | Meyer | Sep 2012 | A1 |
20120319494 | Ecrabey et al. | Dec 2012 | A1 |
20130062956 | Meyer | Mar 2013 | A1 |
20130312812 | Meyer | Nov 2013 | A1 |
20140035373 | Meyer | Feb 2014 | A1 |
20140174535 | Meyer | Jun 2014 | A1 |
20140360561 | Meyer | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
WO 2007128060 | Nov 2007 | AU |
1388636 | Jan 2003 | CN |
1628390 | Jun 2005 | CN |
101336476 | Dec 2008 | CN |
3708548 | Sep 1988 | DE |
4027325 | Apr 1992 | DE |
20314372 | Dec 2003 | DE |
102004001248 | Jan 2005 | DE |
202006020180 | Dec 2007 | DE |
1724842 | Nov 2006 | EP |
1744372 | Jan 2007 | EP |
2172980 | Apr 2010 | EP |
2251941 | Nov 2010 | EP |
2331530 | May 1999 | GB |
60-141152 | Sep 1985 | JP |
02-025079 | Jan 1990 | JP |
09-045946 | Feb 1997 | JP |
10-69321 | Mar 1998 | JP |
10-245935 | Sep 1998 | JP |
10-281562 | Oct 1998 | JP |
11-041832 | Feb 1999 | JP |
11-103538 | Apr 1999 | JP |
2000-114571 | Apr 2000 | JP |
2000-213255 | Aug 2000 | JP |
2000-357812 | Dec 2000 | JP |
2001-268891 | Sep 2001 | JP |
2002-073184 | Mar 2002 | JP |
2002-305318 | Oct 2002 | JP |
2002-314112 | Oct 2002 | JP |
2003-026455 | Jan 2003 | JP |
2003-282918 | Oct 2003 | JP |
2006-040931 | Feb 2006 | JP |
2006-302147 | Nov 2006 | JP |
2007-234795 | Sep 2007 | JP |
2007-294630 | Nov 2007 | JP |
2009-503870 | Jan 2009 | JP |
2009-032945 | Feb 2009 | JP |
2009-545877 | Dec 2009 | JP |
2011-2991 | Jan 2011 | JP |
2011-129626 | Jun 2011 | JP |
10-1998-0087002 | Dec 1998 | KR |
10-2007-0104300 | Oct 2007 | KR |
10-2007-0107318 | Nov 2007 | KR |
10-2010-0129721 | Dec 2010 | KR |
201042770 | Dec 2010 | TW |
201106490 | Dec 2011 | TW |
WO 0235613 | Feb 2002 | WO |
WO 2004021455 | Mar 2004 | WO |
WO 2007071064 | Jun 2007 | WO |
WO 2007095757 | Aug 2007 | WO |
WO 2007137407 | Dec 2007 | WO |
WO 2008016453 | Feb 2008 | WO |
WO 2008028677 | Mar 2008 | WO |
WO 2008042828 | Apr 2008 | WO |
WO 2008046201 | Apr 2008 | WO |
WO 2008141415 | Nov 2008 | WO |
WO 2009012567 | Jan 2009 | WO |
WO 2009076740 | Jun 2009 | WO |
WO 2009092110 | Jul 2009 | WO |
WO 2009092111 | Jul 2009 | WO |
WO 2010012062 | Feb 2010 | WO |
WO 2010037393 | Apr 2010 | WO |
WO 2010068226 | Jun 2010 | WO |
WO 2010096833 | Aug 2010 | WO |
WO 2010148009 | Dec 2010 | WO |
WO 2011011855 | Feb 2011 | WO |
WO 2011109741 | Sep 2011 | WO |
Entry |
---|
PV Lighthouse resource, available online at https://www2.pvlighthouse.com.au/resources/courses/altermatt/The%20Solar%20Spectrum/Intensity%20or%20photon%20flux.aspx, accessed Jan. 5, 2017. |
Chinese Office Action in Chinese Application No. 201180048973.7, dated Jan. 30, 2015, 10 pgs. |
Japanese Office Action in Japanese Application No. 2014-540038, dated Mar. 17, 2015, 11 pgs. |
Chinese Office Action in Chinese Application No. 201080017252.5, dated May 26, 2015, 7 pgs. |
Chinese Office Action in Chinese Application No. 201180048973.7, dated Aug. 12, 2015, 8 pgs. |
European Office Action in European Application No. 15158419.0, dated Jun. 9, 2015, 7 pgs. |
Korean Office Action in Korean Application No. 10-2014-7014579, dated Jun. 19, 2015, 13 pgs. |
Chen, Yaow-Ming, Multiinput Converter With Power Factor Correction, Maximum Power Point Tracking, and Ripple-Free Input Currents, IEEE Transactions on Power Electronics, vol. 19, No. 3, May 204, pp. 631-639. |
Sefa, Ibrahim et al., Experimental Study of Interleaved MPPT Converter for PV Systems, IECON 2009, 35th Annual Conference of IEEE Industrial Electronics, Nov. 3-5, 2009, pp. 456-461. |
US Office Action in U.S. Appl. No. 12/711,040, dated Jun. 18, 2015, 37 pgs. |
US Restriction Requirement in U.S. Appl. No. 13/664,885, dated Jul. 10, 2015, 5 pgs. |
US Restriction Requirement in U.S. Appl. No. 13/957,227, dated Jun. 3, 2015, 7 pgs. |
European Office Action in European Application No. 12846494.8, dated Oct. 16, 2015, 4 pgs. |
Japanese Office Action in Japanese Application No. 2014-540038, dated Aug. 18, 2015, 19 pgs. |
Japanese Office Action in Japanese Application No. 2015-026500, dated Oct. 20, 2015, 12 pgs. |
US Office Action in U.S. Appl. No. 12/711,040, dated Sep. 25, 2015, 37 pgs. |
US Office Action in U.S. Appl. No. 13/957,227, dated Sep. 11, 2015, 20 pgs. |
US Restriction Requirement in U.S. Appl. No. 14/053,482, dated Oct. 27, 2015, 20 pgs. |
Chinese Office Action in Chinese Application No. 200980109824.X, dated Aug. 24, 2011, 10 pgs. |
Chinese Office Action in Chinese Application No. 201080017252.5, dated Aug. 13, 2013, 19 pgs. |
Chinese Office Action in Chinese Application No. 201080017252.5, dated Apr. 28, 2014, 12 pgs. |
Chinese Office Action in Chinese Application No. 201080017252.5, dated Nov. 14, 2014, 10 pgs. |
Chinese Office Action in Chinese Application No. 201080036349.0, dated Jan. 6, 2014, 15 pgs. |
Chinese Office Action in Chinese Application No. 201080036349.0, dated Jun. 6, 2014, 9 pgs. |
European Search Report in European Application No. 09702762.7, dated Jun. 13, 2013, 2 pgs. |
European Search Report in European Application No. 10744485.3, dated Jan. 17, 2014, 4 pgs. |
European Search Report in European Application No. 10790069.8, dated May 2, 2013, 10 pgs. |
European Office Action in European Application No. 10790069.8, dated Sep. 9, 2014, 5 pgs. |
European Search Report in European Application No. 12846494.8, dated Dec. 18, 2014, 7 pgs. |
Japanese Office Action in Japanese Application No. 2011-551303, dated Feb. 19, 2013, 3 pgs. |
Japanese Office Action in Japanese Application No. 2012-516209, dated Apr. 30, 2013, 3 pgs. |
Japanese Office Action in Japanese Application No. 2012-516209, dated Dec. 17, 2013, 5 pgs. |
Japanese Office Action in Japanese Application No. 2012-516209, dated Jun. 24, 2014, 12 pgs. |
Japanese Office Action in Japanese Application No. 2012-516209, dated Oct. 28, 2014, 8 pgs. |
International Search Report and Written Opinion, as issued in connection with International Patent Application No. PCT/US2009/031594, mailed Jun. 25, 2009, 7 pgs. |
International Search Report and Written Opinion, as issued in connection with International Patent Application No. PCT/US2009/031596, mailed Sep. 8, 2009, 8 pgs. |
International Search Report and Written Opinion, as issued in connection with International Patent Application No. PCT/US2009/031597, mailed Sep. 29, 2009, 7 pgs. |
International Search Report and Written Opinion, as issued in connection with International Patent Application No. PCT/US2010/025108, mailed Sep. 27, 2010, 9 pgs. |
International Search Report and Written Opinion, as issued in connection with International Patent Application No. PCT/US2010/038702, mailed Jan. 5, 2011, 7 pgs. |
International Preliminary Report, as issued in connection with International Patent Application No. PCT/US2010/038702, mailed Dec. 29, 2011, 2 pgs. |
International Search Report and Written Opinion, as issued in connection with International Patent Application No. PCT/US2010/061864, mailed Aug. 31, 2011, 7 pgs. |
International Search Report and Written Opinion, as issued in connection with International Patent Application No. PCT/US2011/047291, mailed Mar. 19, 2012, 9 pgs. |
International Search Report and Written Opinion, as issued in connection with International Patent Application No. PCT/US2012/062784, mailed Mar. 19, 2013, 13 pgs. |
International Search Report and Written Opinion, as issued in connection with International Patent Application No. PCT/US2013/062747, mailed Jan. 28, 2014, 14 pgs. |
International Search Report and Written Opinion, as issued in connection with International Patent Application No. PCT/US2014/052166, mailed Nov. 26, 2014, 12 pgs. |
Solatron Techonologies, Wiring Solar Modules and Batteries, <http://web.archive.org/web/20030206212224/http://partsonsale.com/learnwiring.htm>, web archived May 9, 2008, 6 pgs. |
Zeghbroeck, Bart V., Ellipsometer Data Table, http://ece-www.colorado.edu/˜bart/book/ellipstb.htm, 1997, 2 pgs. |
US Restriction Requirement in U.S. Appl. No. 12/357,268, dated Nov. 29, 2011, 9 pgs. |
US Restriction Requirement in U.S. Appl. No. 12/357,268, dated Feb. 3, 2012, 7 pgs. |
US Office Action in U.S. Appl. No. 12/357,268, dated Aug. 2, 2012, 27 pgs. |
US Office Action in U.S. Appl. No. 12/357,268, dated Nov. 21, 2012, 22 pgs. |
US Notice of Allowance in U.S. Appl. No. 12/357,268, dated Mar. 11, 2014, 12 pgs. |
US Restriction Requirement in U.S. Appl. No. 12/684,595, dated Jan. 9, 2012, 11 pgs. |
US Notice of Allowance in U.S. Appl. No. 12/684,595, dated Mar. 16, 2012, 12 pgs. |
US Restriction Requirement in U.S. Appl. No. 13/485,210, dated Jan. 15, 2014, 5 pgs. |
US Notice of Allowance in U.S. Appl. No. 13/485,210, dated May 29, 2014, 13 pgs. |
US Restriction Requirement in U.S. Appl. No. 12/357,260, dated Aug. 2, 2012, 5 pgs. |
US Office Action in U.S. Appl. No. 12/357,260, dated Feb. 5, 2013, 17 pgs. |
US Office Action in U.S. Appl. No. 12/357,260, dated May 23, 2013, 23 pgs. |
US Office Action in U.S. Appl. No. 12/357,260, dated Apr. 22, 2014, 26 pgs. |
US Notice of Allowance in U.S. Appl. No. 12/357,260, dated Sep. 4, 2014, 8 pgs. |
US Restriction Requirement in U.S. Appl. No. 12/357,277, dated Nov. 10, 2011, 7 pgs. |
US Office Action in U.S. Appl. No. 12/357,277, dated Jan. 26, 2012, 11 pgs. |
US Office Action in U.S. Appl. No. 12/357,277, dated Jul. 19, 2012, 12 pgs. |
US Restriction Requirement in U.S. Appl. No. 12/711,040, dated Jun. 18, 2012, 7 pgs. |
US Office Action in U.S. Appl. No. 12/711,040, dated Nov. 26, 2012, 29 pgs. |
US Office Action in U.S. Appl. No. 12/711,040, dated Jul. 5, 2013, 35 pgs. |
US Restriction Requirement in U.S. Appl. No. 12/815,913, dated May 29, 2012, 6 pgs. |
US Office Action in U.S. Appl. No. 12/815,913, dated Oct. 5, 2012, 19 pgs. |
US Notice of Allowance in U.S. Appl. No. 12/815,913, dated Sep. 3, 2013, 11 pgs. |
US Restriction Requirement in U.S. Appl. No. 13/207,164, dated Sep. 28, 2012, 7 pgs. |
US Office Action in U.S. Appl. No. 13/207,164, dated Feb. 14, 2013, 20 pgs. |
US Office Action in U.S. Appl. No. 13/207,164, dated Aug. 29, 2013, 34 pgs. |
US Notice of Allowance in U.S. Appl. No. 13/207,164, dated Nov. 27, 2013, 12 pgs. |
Number | Date | Country | |
---|---|---|---|
20150047689 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
61022232 | Jan 2008 | US | |
61022264 | Jan 2008 | US | |
61022253 | Jan 2008 | US | |
61022267 | Jan 2008 | US | |
61022228 | Jan 2008 | US | |
61022234 | Jan 2008 | US | |
61022236 | Jan 2008 | US | |
61022240 | Jan 2008 | US | |
61022242 | Jan 2008 | US | |
61022277 | Jan 2008 | US | |
61022278 | Jan 2008 | US | |
61025570 | Feb 2008 | US | |
61022245 | Jan 2008 | US | |
61025575 | Feb 2008 | US | |
61022246 | Jan 2008 | US | |
61022258 | Jan 2008 | US | |
61022263 | Jan 2008 | US | |
61022249 | Jan 2008 | US | |
61022280 | Jan 2008 | US | |
61022252 | Jan 2008 | US | |
61025578 | Feb 2008 | US | |
61025581 | Feb 2008 | US | |
61058485 | Jun 2008 | US | |
61080628 | Jul 2008 | US | |
61091642 | Aug 2008 | US | |
61033200 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12357260 | Jan 2009 | US |
Child | 14532305 | US |