Embodiments disclosed herein relate to an aircraft tail rotor system, and more particularly, to a pitch change shaft bearing assembly for use with an aircraft tail rotor system.
In a typical rotary wing aircraft, such as a helicopter for example, a tail rotor system converts tail driveshaft rotary power into the aerodynamic forces necessary to control the direction of flight and to counteract main rotor torque.
A tail rotor head system provides a mounting point for connecting a plurality of tail rotor blades to a blade pitch change mechanism. The pitch of the tail rotor blades is controlled by a position of a tail rotor pitch change shaft. The position of the pitch change shall is controlled by a tail rotor servo. When the tail rotor servo pulls the pitch change shaft inboard, the pitch beam and the blade pitch links twist the tail rotor blades about internal elastomeric bearings to increase the blade pitch. Conversely, when the pitch change servo permits the pitch change shaft to move outboard, the pitch change shaft bearing and the blade pitch links twist the tail rotor blades about internal elastomeric bearings to decrease blade pitch. This adjustment in the blade pitch is used to control a turning direction of the aircraft.
The pitch change shaft rotates with and moves linearly within a rotating tail rotor shaft. A pitch change bearing supports the pitch change shaft within the tail rotor shaft and allows the pitch change shaft and tail rotor shaft to rotate independently of the non-rotating pitch change servo rod. The pitch change shaft bearing outer raceway rotates with the pitch change shaft and the tail rotor shaft, while the inner raceway is non-rotating but moves linearly with the tail rotor servo piston rod.
According to an embodiment, an aircraft rotor system includes a rotating pitch change shaft which rotates about an axis, a translating element disposed within the rotating pitch change shaft and movable along the axis and a pitch change bearing assembly which transfers movement of the translating element to the pitch change shaft. The pitch change bearing assembly includes a primary bearing and a secondary bearing coupled to the rotating pitch change shaft via the translating element when the primary bearing is in a first mode. A thrust shoulder is coupled to the translating element. The thrust shoulder is movable into engagement with the secondary bearing in response to failure of the primary bearing such that in a second mode, movement of the translating element is primarily transferred to the pitch change shaft via the secondary bearing.
In addition to one or more of the features described above, or as an alternative, in further embodiments comprising a biasing mechanism configured to apply a preload to the secondary bearing.
In addition to one or more of the features described above, or as an alternative, in further embodiments at least one of the primary bearing and the secondary bearing includes at least one rolling element.
In addition to one or more of the features described above, or as an alternative, in further embodiments the preload applied by the biasing mechanism causes the at least one rolling element to roll during operation in the first mode.
In addition to one or more of the features described above, or as an alternative, in further embodiments each of the roller bearing elements is capable of sustaining a thrust load.
In addition to one or more of the features described above, or as an alternative, in further embodiments the primary bearing includes a first bearing and a second bearing, the secondary bearing being positioned between the first bearing and the second bearing relative to the axis of the translating element.
In addition to one or more of the features described above, or as an alternative, in further embodiments the secondary bearing includes a third bearing and a fourth bearing coupled by a biasing mechanism, and the thrust shoulder is positioned within a clearance defined between the third bearing and the fourth bearing.
In addition to one or more of the features described above, or as an alternative, in further embodiments comprising a collar disposed between the first bearing and the translational element, wherein the translational element is movable relative to the collar, an axial groove formed in an outward facing surface of the first bearing, a washer disposed within the axial groove, a flange extending radially from the translating element, the flange being arranged in contact with a surface of the washer, another collar disposed between the second bearing and the translational element, wherein the translational element is movable relative to the another collar, another axial groove formed in an outward facing surface of the second bearing, another washer disposed within the another axial groove, and a nut coupled to the translating element, the nut being selectively engaged with the another washer.
In addition to one or more of the features described above, or as an alternative, in further embodiments comprising a shoulder extending from the translating element adapted to contact a first side of the thrust shoulder and a secondary collar extending between a second side of the thrust shoulder and the nut.
In addition to one or more of the features described above, or as an alternative, in further embodiments a surface of at least one of the washer and the another washer wears in response to failure of the primary bearing in the first mode.
In addition to one or more of the features described above, or as an alternative, in further embodiments in the first mode, movement of the translating element is primarily transferred to the pitch change shaft via the primary bearing.
In addition to one or more of the features described above, or as an alternative, in further embodiments in the second mode, movement of the translating element is primarily transferred to the pitch change shaft via the second bearing.
In addition to one or more of the features described above, or as an alternative, in further embodiments the aircraft tail rotor system transforms to the second mode upon failure of the primary bearing.
In addition to one or more of the features described above, or as an alternative, in further embodiments comprising a shield disposed between the primary bearing and the secondary bearing.
According to another embodiment, a method of transmitting movement to a pitch change shaft includes transmitting movement from a translating element to a pitch change shaft via a primary bearing, detecting a failure of the primary bearing, coupling a secondary bearing to the translating element in response to the failure of the primary bearing, and transmitting movement from the translating element to the pitch change shaft via the secondary bearing.
In addition to one or more of the features described above, or as an alternative, in further embodiments coupling the secondary bearing to the translating element further comprises moving a thrust shoulder coupled to the translating element into contact with the secondary bearing.
In addition to one or more of the features described above, or as an alternative, in further embodiments the thrust shoulder is movable in a first direction to couple the translating element to the secondary bearing.
In addition to one or more of the features described above, or as an alternative, in further embodiments the thrust shoulder is movable in a second direction to couple the translating element to the secondary bearing.
In addition to one or more of the features described above, or as an alternative, in further embodiments the thrust shoulder does not translate relative to the primary bearing while movement is transmitted from the translating element to the pitch change shaft via the primary bearing.
In addition to one or more of the features described above, or as an alternative, in further embodiments coupling the secondary bearing to the translating element further comprises decoupling the primary bearing from the translating element.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
With reference now to
Referring now to
The pitch change shaft 36 rotates with and moves linearly within the rotating tail rotor drive shaft 34. As shown, the bearing assembly 40 may include a spherical bearing 50 that supports the pitch change shaft 36 in a manner that allows that pitch change shaft 36 to rotate independently of the pushrod 42P coupled to the servo 42. However, in other embodiments, the bearing assembly 40 may include one or more roller bearings, including but not limited to cylindrical, tapered, spherical, or ball bearings, or any other bi-directional (push-pull) bearing arrangement. An outer surface or race of the bearing 50 rotates with the pitch change shaft 36 while an inner surface or race of the bearing 50 is non-rotating and is coupled to the pushrod 42P for linear movement via the servo 42. Through this engagement with the bearing 50, the tail rotor pitch change shaft 36 slides along the axis of rotation C in response to actuation of the servo 42 to change the pitch of the tail blade cuff assembly 32 and the tail rotor blades attached thereto (not shown) and thus reduces or increases the thrust of the anti-torque system 18.
With reference to
With reference now to
The first and second bearing 54, 56 of the primary bearing 50 may be arranged in a back to back configuration and the first and second bearing 58, 60 of the secondary bearing 52 may be arranged in a face-to face configuration. Accordingly, the first and second bearing 54, 56 of the primary bearing 50 are rotated 180° relative to one another with the same surface of each bearing 54, 56 facing outwards, and the first and second bearing 58, 60 of the secondary bearing 52 are rotated 180° relative to one another with the same surface of each bearing 58, 60 facing toward one another. However, it should be understood that in other embodiments, a secondary bearing 52 including a single bearing, or alternatively, more than two bearings are also contemplated herein, particularly in the case of single direction axial loading arrangements.
Although the rolling elements 62 of each of the bearings 54, 56, 58, and 60 are illustrated as ball bearings, it should be understood that any suitable rolling element is within the scope of the disclosure. The first and second bearings 58, 60 of the secondary bearing 52 may be roller bearings similar to, or different from the roller bearings 54, 56 of the primary bearing 50. In an embodiment, the number of roller bearing elements 62 associated with each of the primary bearing 50 and the secondary bearing 52 may different to produce a different acoustic or vibration frequency, for purposes of fault-diagnostic capability.
Typically, the use of two bearings 58, 60 in close proximity, as shown, would raise concerns regarding failure of the secondary bearing due to overheating and “running tight.” Accordingly, a biasing mechanism 64, such as an axial compression spring for example, is positioned between the first and second bearings 58, 60 of the secondary bearing 52 to preload the balls 62 slightly and make them roll instead of slide during operation. The biasing mechanism 64 allows for thermal growth of the secondary bearing 52 without imparting large forces on the rolling elements 62 thereof.
In the illustrated, non-limiting embodiment, each of the first and second bearings 54, 56 of the primary bearing 50 has an axial groove 66 formed in an outwardly facing side of the bearing 54, 56. As shown, the grooves 66 extend through only a portion of the bearings 54, 56. A collar 68 is arranged concentrically with the pushrod 42P at a position between the pushrod 42P and the inner race of the first and second bearings 54, 56 of the primary bearing 50. In the illustrated, non-limiting embodiment, a diameter of the collar is greater than the diameter of the pushrod 42P such that motion of the pushrod 42P is not directly transmitted to the collar via contact therewith.
A washer 70 is disposed within each of the axial grooves 66 and is adapted to receive a portion, such as an end fir example, of the collar 68. The collar 68 and washer 70 are fastened, such as by threading for example, to hold the inner rings of adjacent bearings concentrically and axially clamped together. In an embodiment, an exposed surface 72 of the washer 70 has a generally spherical surface. The pushrod 42P includes a radially extending flange 74 arranged generally adjacent the first bearing 54 of the primary bearing 50. In an embodiment, a surface of the flange 74 configured to abut the washer 70 includes a contour complementary to the spherical surface 72 of the washer 70 to facilitate engagement there between. However, this contour is intended to provide misalignment capability only, and is not required for embodiments that do not require misalignment capability. Similarly, a nut 76 may be coupled to the pushrod 42P adjacent the second bearing 56 of the primary bearing 50. The surface of the nut 76 configured to contact the surface 72 of the washer 70 may also have a spherical contour complementary to the washer 70.
Each of the first and second bearings 58, 60 of the secondary bearing 52 has a groove 78 formed in an inward facing side of the bearings 58, 60. As shown, the grooves 78 include a curvature and extend through only a portion of the bearings 58, 60. Mounted to the pushrod 42P at a position arranged within the clearance defined by the grooves 78 and the biasing mechanism 64 disposed between the first and second bearings 58, 60 is a thrust shoulder 80, such as formed from steel for example. In an embodiment, the shape of the thrust shoulder 80 is complementary to the contour of the grooves 78 formed in the first and second bearings 58, 60, respectively. Accordingly, through this configuration, the thrust shoulder 80 is movable to selectively engage and couple to at least one of the first and second bearing 58, 60 of the secondary bearing.
The pushrod 42P includes a shoulder 82 arranged adjacent a first, upstream side of the thrust shoulder 80. The diameter of the shoulder 82 is less than interior diameter of the adjacent collar 68 such that the shoulder 82 is receivable within the collar 68. In an embodiment, a secondary collar 84 extends between a downstream side of the thrust shoulder 82 and the nut 76. As shown, the secondary collar 84 may be received within the hollow interior of collar 68 and has an interior diameter larger than the diameter of the pushrod 42P. As a result, the secondary collar 84 does not directly contact the pushrod 42P.
During normal operation, shown in
Upon failure of the primary bearing 50, the path along which linear motion is transmitted from the pushrod 42P to the pitch change shaft 36 is rerouted through the secondary bearing 52, as shown by line B. With reference to
A redundant pitch change shaft bearing 40 as described herein would enable longer service life and increased inspection intervals because failure of a primary bearing 50 would result only in a need for routine maintenance, instead of a catastrophic event.
The term “about” is intended to include the degree of error associated with measurement of the particular quantity based upon the equipment available at the time of filing the application.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, element components, and/or groups thereof.
While the present disclosure has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the present disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from the essential scope thereof. Therefore, it is intended that the present disclosure not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this present disclosure, but that the present disclosure will include all embodiments falling within the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3737202 | Rosales | Jun 1973 | A |
3811742 | Rosales | May 1974 | A |
4501454 | Dennis | Feb 1985 | A |
4641978 | Kapich | Feb 1987 | A |
4668109 | Basso | May 1987 | A |
5998894 | Raad | Dec 1999 | A |
7448808 | Bouchy | Nov 2008 | B2 |
7736062 | Hagshenas | Jun 2010 | B2 |
8057184 | Sebald | Nov 2011 | B2 |
8104969 | Jimenez de Castro Fernandez | Jan 2012 | B2 |
8283825 | Maier | Oct 2012 | B2 |
8308364 | Tecza | Nov 2012 | B2 |
8630062 | Shimizu | Jan 2014 | B2 |
8646982 | Radinger | Feb 2014 | B2 |
8876393 | Snelick | Nov 2014 | B2 |
8887450 | Blackwelder | Nov 2014 | B2 |
9169011 | Hunter | Oct 2015 | B2 |
9188156 | Maier | Nov 2015 | B2 |
9287749 | Kümmlee | Mar 2016 | B2 |
9315265 | Halcom | Apr 2016 | B2 |
9359073 | Hewitt | Jun 2016 | B2 |
9382940 | Lee | Jul 2016 | B2 |
9470262 | Gallimore | Oct 2016 | B2 |
9481376 | Schmidinger | Nov 2016 | B2 |
9651092 | Gallimore | May 2017 | B2 |
9658132 | Gallimore | May 2017 | B2 |
9746027 | Anders | Aug 2017 | B2 |
9777596 | Raykowski | Oct 2017 | B2 |
9816551 | Regnier | Nov 2017 | B2 |
9840325 | Sutton | Dec 2017 | B2 |
9841053 | Siebke | Dec 2017 | B2 |
10184523 | Vermande | Jan 2019 | B2 |
10233997 | Howard | Mar 2019 | B2 |
10330148 | Buesing | Jun 2019 | B2 |
10745122 | Mullen | Aug 2020 | B2 |
20080279689 | Sebald | Nov 2008 | A1 |
20090074338 | Hagshenas | Mar 2009 | A1 |
20110052109 | Tecza | Mar 2011 | A1 |
20110085752 | Tecza | Apr 2011 | A1 |
20140072254 | Pausch | Mar 2014 | A1 |
20140321785 | Maier | Oct 2014 | A1 |
20150034760 | Hewitt | Feb 2015 | A1 |
20150097457 | Kummlee | Apr 2015 | A1 |
20150176431 | Raykowski | Jun 2015 | A1 |
20150240868 | Buesing | Aug 2015 | A1 |
20150267744 | Gallimore | Sep 2015 | A1 |
20150298803 | Halcom | Oct 2015 | A1 |
20160091020 | Siebke | Mar 2016 | A1 |
20170003196 | Gallimore | Jan 2017 | A1 |
20170030432 | Howard | Feb 2017 | A1 |
20170350454 | Vermande | Dec 2017 | A1 |
20190276144 | Mullen | Sep 2019 | A1 |
20200001992 | Wittke | Jan 2020 | A1 |
20210003173 | Calatraba | Jan 2021 | A1 |
20210332847 | Stich | Oct 2021 | A1 |
Number | Date | Country |
---|---|---|
2861291 | Jun 2015 | CA |
3587845 | Jan 2020 | EP |
S57192619 | Nov 1982 | JP |
2348566 | Mar 2009 | RU |
Entry |
---|
Extended European Search Report; International Application No. 19182757.5-1010; International Filing Date: Jun. 27, 2019; dated Nov. 8, 2019; 9 pages. |
Number | Date | Country | |
---|---|---|---|
20200001992 A1 | Jan 2020 | US |