Embodiments of the present disclosure relate to lacing or closure systems and their related components used alone or in combination with a variety of articles including footwear, closable bags, protective gear, other wearable articles, etc.
There currently exist a number of mechanisms and methods for tightening articles. Nevertheless, there remains a need for improved tightening devices and methods.
A reel for use with a lacing system is disclosed. The reel can include a housing and a spool that is rotatable about an axis relative to the housing. The spool can be configured to gather lace when the spool is rotated in a first direction and to release lace when the spool is rotated in a second direction. The reel can include a lace retaining element configured to retain the lace radially inward as the spool rotates in the second direction.
The spool can include a channel configured to receive the gathered lace and the lace retaining element can include a narrowed region of the channel. The spool can include a first disc member and a second disc member spaced apart from the first disc member such that the channel is formed between the first and second disc members, and the first disc member can include at least one detent that extends from an inside surface of the first disc member towards the second disc member to form the at least one narrow region of the channel. The at least one detent can be formed at a radially outer portion of the first disc member. In some embodiments, a portion of the spool can be displaced such that the distance between the at least one detent and the second disc member can increase to prevent the lace from being trapped in the narrow region of the channel. The first disc member can include at least one groove configured to allow a portion of the first disc member that includes the detent to flex away from the second disc member when the lace engages the detent to prevent the lace from being trapped by the narrow region.
In some embodiments, the housing includes an inner wall surface, and wherein the lace retaining element is configured to prevent the lace from contacting the inner wall surface of the housing as the spool rotates in the second direction.
The reel can include a mounting flange configured to removably attach to a mounting base, and the mounting base can be configured to be secured to an article. The mounting base can include a bore, and the mounting flange can include a hole. A fastener can be configured to pass through the hole and engage the bore to secure the mounting flange to the mounting base.
A reel for use in a lacing system is disclosed. The reel can include a housing and a spool rotatable with respect to the housing. The spool can be configured to gather lace when the spool is rotated in a first direction and to release lace when the spool is rotated in a second direction. The reel can include a plurality of teeth and at least one pawl configured to engage the plurality of teeth. The at least one pawl can include a pawl arm having an unrestrained end portion, and the at least one pawl can include a cap member configured to fit over the unrestrained end portion of the pawl arm such that the cap member of the pawl contacts the plurality of teeth.
The plurality of teeth and the at least one pawl can be configured to allow the spool to rotate in the first direction and to prevent the spool from rotating in the second direction when the at least one pawl is engaged with the teeth. The reel can include at least one drive member movable to engage the at least one pawl and displace the unrestrained end portion of the pawl arm away from the teeth to allow the spool to rotate in the second direction. The reel can be configured such that when the drive member displaces the unrestrained end portion of the pawl arm away from the teeth, the spool rotates in the second direction by an incremental amount and the pawl reengages the teeth, thereby providing an incremental release of the lace. The reel can further include a knob, and the knob can include the drive members.
The at least one pawl can be coupled to the spool, and the teeth can be coupled to the housing. The at least one pawl can be removably attachable to the spool such that in the attached position the pawl rotates with the spool. The reel can have four pawls.
In some embodiments, the pawl arm comprises a first material and the cap member comprises a second material, and the second material can be harder than the first material. The first material can be acetal polyoxymethylene (POM) plastic material, and the second material can be brass or steel.
A reel for use in a lacing system is disclosed. The reel can include a housing and a spool rotatable with respect to the housing. The spool can be configured to gather lace when the spool is rotated in a first direction and to release lace when the spool is rotated in a second direction. The reel can include an engagement member having at least one pawl, and the engagement member can be configured to be removably attachable to the spool such that in the attached configuration the engagement member rotates with the spool. The reel (e.g., the reel housing) can also include a plurality of teeth configured to engage with the at least one pawl.
The plurality of teeth and the at least one pawl can be configured to allow the spool to rotate in the first direction and to prevent the spool from rotating in the second direction when the at least one pawl is engaged with the teeth. The reel can include at least one drive member movable to engage the at least one pawl and displace an unrestrained end portion of the pawl arm away from the teeth to allow the spool to rotate in the second direction. The reel can be configured such that when the drive member displaces the unrestrained end portion of the pawl arm away from the teeth, the spool rotates in the second direction by an incremental amount and the pawl reengages the teeth, thereby providing an incremental release of the lace.
The teeth can be coupled to the housing. The spool can include a first material and the engagement member can include a second material that is different than the first material. The first material can be a glass filled nylon material, and the second material can be an acetal polyoxymethylene (POM) plastic material.
A reel for use with a lacing system is disclosed. The reel can include a housing and a spool rotatable with respect to the housing. The spool can be configured to gather lace when the spool is rotated in a first direction and to release lace when the spool is rotated in a second direction. The reel can include a plurality of teeth and at least one pawl configured to engage the plurality of teeth. The reel can include one or more depressions configured to collect debris so as to divert the debris away from an interface between the at least one pawl and the plurality of teeth.
The reel 100 can include a knob 112 that can be configured to control rotation of the spool 104. For example, manipulating the knob 112 in a first manner (e.g., rotation of the knob 112 in a first direction) can cause the spool 104 to rotate in the first direction, thereby gathering lace into the reel 100, and the engagement members 108, 110 can incrementally lock the spool 104 against rotation in the second direction. In some embodiments, manipulating the knob 112 in a second manner (e.g., rotation of the knob 112 in the second direction) can cause the engagement members 108, 110 to disengage from each other to allow the spool 104 to rotate in the second direction, thereby releasing lace 106 from the reel 100. In some embodiments, the engagement members 108, 110 can be configured to reengage after the spool 104 has rotated a predetermined amount in the second direction, thereby locking the spool 104 against further loosening until the knob 112 is again manipulated in the second manner. Thus, the reel 100 can provide for incremental release of the lace 106 from the reel 100. In some embodiments, the reel 112 can include one or more drive members 114, which can be integral to, or coupled to, the knob 112, and which can interface with the spool 104, the first engagement member 108, and/or the second engagement member 110 to control rotation of the spool 104.
In some embodiments, the repeated interfacing between the engagement members 108, 110 can cause one or both of the engagement members 108, 110 to wear down during use, particularly under high loads while moving in the loosening direction and when dirt is present in the reel 100. In some cases, the wear can shorten the useful life of the reel, or it can cause the reel 100 to fail. Unexpected failure of the reel 100 can result in undesired and even sudden loss of tension in the lacing system, which can compromise an athlete's performance. In some embodiments, a reel 100 that provides for incremental release of the lace 106 can be subject to additional wear on the engagement members 108, 110 because of the repeated disengagement and reengagement of the engagement members 108, 110 during loosening. Also, in some applications, especially during sports, debris can enter the reel 100. The debris can be abrasive to the engagement members 108, 110 and can accelerate the rate of wear. In some embodiments, a protection element 116 can be provided to increase the durability of one or both of the engagement members 108, 110. For example, the protection element 116 can be a metal (or other suitably durable) cap that is placed on the portion of a pawl that interfaces with the teeth.
In some embodiments, the reel 100 can include a debris diverter 118 that can be configured to move debris away from the interface between the engagement members 108, 110. The debris diverter 118 can be configured to move debris away from other components of the reel 100 as well, such as the interface between the lace 106 and the spool 104 or the interface between the spool 104 and the housing 102. Thus, the debris diverter 118 can reduce wear on the components of the reel 100 and can prevent the reel 100 from jamming (e.g., due to debris locking up the spool 104 or blocking the lace 106).
In some embodiments, the reel can include a lace retaining element 120 that can be configured to retain the lace 106 away from the walls of the housing 102 to prevent the lace 106 from backing up inside the reel 100. In some embodiments, if the lace 106 is loosened when no tension is placed on the lace 106, the lace 106 can tend to unwind inside the reel 100 and move radially outward away from the rotational axis of the spool 104. If the lace 106 moves radially outward and contacts the inner wall of the housing 102, friction between the housing 102 and the lace 106 can cause the lace to double back on itself inside the reel 100. In some embodiments, the lace retaining element 120 can be configured to hold the lace 106 off of the housing 102 wall as the lace 106 is loosened, thereby facilitating the exiting of the lace 106 through the hole 122 during loosening. For example, the lace retaining element can include detents forming a narrow region on the radially outer portion spool 104 so that the lace 106 engages the narrow region when it moves radially outward, thereby retaining the lace 106 away from the wall of the housing 102.
In some embodiments, the reel 100 can include a rotation limiter 124. The rotation limiter can be configured to prevent the spool 104 from being rotated too far in the first direction and/or in the second direction. If too much lace 106 is drawn into the reel 100, the lace 106 can jam the reel 100. If the spool 104 is rotated in the second direction when the lace 106 is fully loose, the reel 100 can start to start to gather lace 106 in the wrong direction. The rotation limiter can be, for example, a stop cord that is coupled to the housing 102 and to the spool 104 such that rotation of the spool 104 takes up slack in the stop cord (e.g., by winding the stop cord around a channel on the spool 104 or around a pin or other structure of the housing 102). When the stop cord becomes tight, the spool 104 is prevented from further rotation. The length of the stop cord can be selected such that the stop cord is fully tight and wound in a first direction when the lace 106 is fully tight, thereby preventing over tightening, and so that the stop cord is fully tight and wound in a second direction when the lace 106 is fully loose, to prevent the lace 106 from being gathered the wrong way on the spool 104.
The reel 100 can include a mounting member 126. In some embodiments, the mounting member 126 can a flange that is configured to be sewn, adhered, or otherwise coupled to an article (e.g., a shoe). In some embodiments, the mounting member 126 can be configured to removably attach to a base member (not shown) on the article so that the reel 100 can be removed from the article, such as for repair or replacement of the reel 100. The mounting member 126 can include a hole 128 that receives a fastener (e.g., a bolt) that secures the mounting member 126 to the base member on the article.
Although the embodiments described herein may be described as having various features integrated into a single reel (e.g., the incremental release, protection element 116, debris diverter 118, lace retaining element 120, rotation limiter 124, and removable mounting member 126 of the reel 100 of
In some embodiments, the lace 206 can be a highly lubricious cable or fiber having a high modulus of elasticity and a high tensile strength. In some embodiments, the cable can have multiple strands of material woven together. While any suitable lace can be used, some embodiments can utilize a lace formed from extended chain, high modulus polyethylene fibers. In some embodiments, SPECTRA™ fiber (manufactured by Honeywell of Morris Township, N.J.) can be used. In some embodiments, the lace can be formed from a molded monofilament polymer. The lace or cable can have a diameter of at least about 0.02 inches and/or no more than about 0.04 inches, or at least about 0.025 inches and/or nor more than about 0.035 inches, although diameters outside these ranges can also be used. The lace can be made of high modulus fibers that advantageously have a high strength to weight ratio, are cut resistant, and/or have very low elasticity. The lace can be formed of tightly woven fibers to provide added stiffness to the lace. In some embodiments, the lace can have enough column strength that the lace can be easily threaded through the lace guides, and into the reel and spool, or through the guides so as to form a loop of lace that can be easily grasped by a user. In some embodiments, the lace can have enough column strength that the lace can be pushed out of the reel without doubling back on itself, as discussed elsewhere herein.
In some embodiments, as the lace 206 is tightened, the reel 202 can incrementally lock against loosening of the lace 206 from tension on the lace 206. In some embodiments, the reel 202 can also provide for incrementally release of the lace 206, such that the lace 206 loosens by a predetermined amount when the user performs a loosening action but locks against further loosening until the user performs a subsequent loosening action. Thus, the reel 202 can allow for fine tuning of the tightness of the lacing system 200. When using a reel that provides a full release of the lace when a loosening action is performed, a user wishing to loosen the lace by a small amount (e.g., if the user accidentally tightened the lace too much) would fully release the lace and then retighten the lace, attempting this time to reach the desired tension. Because the user does not need to restart from a loosened position when using a reel with incremental release, it can be easier to reach the desired level of tension using an incremental release reel than using a full release reel. Incremental release of the lace can be particularly advantageous when the article is to be loosened during use. For example, in some sporting applications, an athlete may want an article to have a first level of tightness during a first mode of play and a lower level of tightness during a second mode of play. The incremental release can allow the athlete to reduce the tension on the lacing system during use without needing to fully release the lace.
The reel 202 can have features similar to, or the same as, the reel 100, including, but not limited to, the first and second engagement members 108, 110 and/or the drive member 114. In some embodiments, the reel 202 can include one or more pawls, and corresponding teeth to provide for incremental release of the lace 206. In the embodiment illustrated in
In the embodiment illustrated in
Because engagement member 216 can be separately formed from the spool 214, the engagement member 216 and the spool 214 can be formed of different materials. For example, the spool 214 can be made from a glass filled nylon material so as to provide high stiffness, which can allow the spool 214 to be made of a small size while also providing a low level of deflection. In some embodiments, the engagement member 216 (including the pawls 242) can be made from a highly lubricious material, such as an acetal polyoxymethylene (POM) plastic, so as to reduce friction and wear as the pawls 242 deflect over the housing teeth 240. In some embodiments, a glass filled nylon material can accelerate wear on the housing teeth 240 if used to form the pawls 242. Various other materials can be used to form the spool and the engagement member. In embodiments in which the engagement member 216 is removably attached to the spool 214, the engagement member 216 can be replaced (e.g., if the pawls become worn out). In some embodiments, the engagement member 216 can engage and/or disengage from the spool 214 by sliding axially with the interface features 246, 248 aligned, so that the engagement member 216 can be removed from the spool 214 and replaced without removing the spool 214 from the housing 212. Also, because the pawls 242 are separately formed from the spool 214, the lace 206 can be contained within a channel on the spool 214 so that the lace does not contact the pawls 242.
Multiple pawls 242 can be used to distribute the load and to reduce the amount of wear that each pawl 242 experiences. For example, the use of additional pawls 242 can reduce the amount of load born by each individual pawl 242, thereby allowing each pawl 242 to be made more flexible (e.g., thinner), which can reduce the amount of force with which the pawls 242 deflect over the teeth 240 and can reduce the contact stress and rate of wear on the pawls 242 and/or on the housing teeth 240. As discussed above, wear on the pawls 242 can be accelerated when there is debris in the reel 202 (e.g., during certain sporting uses). During testing of “dirty” uses with debris present, a reel having four pawls could operate for more than twice as many rotations as a reel having three pawls before the reel would not hold tension. Thus, a 33% increase in the number of pawls provided a more than 100% increase in the useful life of the reel. The reel 202 can be used with any suitable number of pawls 242 (e.g., 1, 2, 3, 4, 6, 10, etc.)
The spool 214 and engagement member 216 can be placed into the depression 224 of the housing 212 so that the pawls 242 engage the teeth 240 as shown in
Additional details and features relating to lacing systems having incremental release are disclosed in U.S. Patent Publication No. 2010/0139057 (the “'057 Publication”), filed on Nov. 20, 2009, published on Jun. 10, 2010, and titled “REEL BASED LACING SYSTEM,” the entirety of which is hereby incorporated by reference and made a part of this specification for all that it discloses. Many of the features and details disclosed in the '057 Publication can be incorporated into the reel 202 or any of the other embodiments disclosed herein.
In some embodiments, the repeated interfacing between the pawls 242 and the teeth 240 can cause the pawls 242 and/or the teeth 240 to wear down during use. In some cases, the wear can shorten the useful life of the reel 202, or it can cause the reel 202 to fail. Unexpected failure of the reel 200 can result in undesired and even sudden loss of tension in the lacing system, which can compromise an athlete's performance. In some embodiments, a reel 202 that provides for incremental release of the lace 206 can be subject to additional wear on the pawls 242 and/or teeth 240 because of the repeated disengagement and reengagement during both tightening and loosening. Also, in some applications, especially during sports, debris can enter the reel 202 (e.g., through the lace hole 232a). The debris can be abrasive and can accelerate the rate of wear. In some embodiments, the pawls 242 can be formed of a material that is generally rigid but flexible enough that the pawls 242 can deform away from the corresponding teeth 240, which may require the use of a material having reduced durability. Additional, the reel may include more teeth 240 than pawls 242, so that each pawl 242 experiences wear with every increment of tightening or loosening while each tooth 240 only experiences wear when it is individual engaged. For these reasons, in some embodiments, the pawls 242 can wear out faster than the teeth 240.
In some embodiments, caps 260 can be positioned on the ends of the pawls 242 to increase the durability of the pawls 242.
As can be seen in
In some embodiments, the reel 200 can include a lace retaining element that is configured to retain the lace 206 radially inward away from the inner walls of the housing 212 during loosening. One or more detents 286 can be formed on the inside surface of the top disc 268 or bottom disc 270, forming a narrowed region in the channel 272.
As the spool 214 continues to rotate in the loosening direction B (e.g., from the position of
As the spool 214 continues to rotate in the loosening direction B, the detent 286 passes from one side of the lace (shown in
As shown in
Many variations are possible. For example, the channel 272 can include any suitable number of detents 286 (e.g., 1, 2, 3, 4, 5 detents, etc.) In some embodiments, detents 286 can be formed on both the top disc 268 and the bottom disc 270. In some embodiments, a portion of the disc opposite the detents 286 can be configured to flex outward to allow the lace to cross the detent. For example, the grooves 292 and detents 286 can be formed on opposite discs 268, 270. In some embodiments, the detents 286 can be movable in corresponding bores and can be coupled to springs that bias the detents 286 into the channel 272, and the springs can be compressed to allow the detents 286 to withdraw into the bores to widen the channel 272 at the location of the detents 286 as the lace 206 crosses.
In some embodiments, the reel 202 can have a rotation limiter to prevent the spool 214 from being rotated in the loosening direction B past the fully loose position, which can draw lace 206 into the reel 202 without locking against loosening, and/or to prevent the spool 214 from being rotated too far in the tightening direction A, which can jam the reel 202. The rotation limiter can include a stop cord 300. With reference to
The spool 214 can have a stop cord channel 312 that is configured to receive the stop cord 300 as the spool 214 rotates. In some embodiments, the stop cord 300 can wind around the shaft 226 or any other suitable feature of the reel 202.
The stop cord 300 can be made of any of a variety of materials including steel, monofilament, nylon, Kevlar, or any other suitable material. In some embodiments, SPECTRA™ fiber (manufactured by Honeywell of Morris Township, N.J.) can be used to form the stop cord 300. In some embodiments, the stop cord 300 can be similar to, or the same as, the lace 206 in construction or size or other regards. In some embodiments, the stop cord 300 can have a different size than the lace 206. For example, the stop cord can have a diameter of at least about 0.01 inches and/or no more than about 0.03 inches. In some embodiments, the stop cord can have a diameter outside the ranges provided.
Referring now to
The reel 202 can be attached to an article (e.g., the shoe 208) in various manners. The reel 202 can include a mounting flange 316, which can be formed as part of the housing 212. In come embodiments, the mounting flange 316 can be sewn, adhered, bolted, or otherwise coupled directly to the shoe 208. With reference now to
Although disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof. In addition, while a number of variations have been shown and described in detail, other modifications, which are within the scope of this disclosure, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments can be made and still fall within the scope of the disclosure. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another. Thus, it is intended that the scope of the disclosure should not be limited by the particular disclosed embodiments described above.
This application is a continuation of U.S. patent application Ser. No. 14/821,556, filed Aug. 7, 2015, which is a continuation of U.S. patent application Ser. No. 13/273,060, filed Oct. 13, 2011, issued as U.S. Pat. No. 9,101,181 on Aug. 11, 2015, the entire disclosures of which are hereby incorporated by reference, for all purposes, as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
59332 | White et al. | Oct 1866 | A |
80834 | Prussia | Aug 1868 | A |
117530 | Foote | Aug 1871 | A |
228946 | Schulz | Jun 1880 | A |
230759 | Drummond | Aug 1880 | A |
568056 | Vail, Jr. | Sep 1896 | A |
746563 | McMahon | Dec 1903 | A |
908704 | Sprinkle | Jan 1909 | A |
1060422 | Bowdish | Apr 1913 | A |
1062511 | Short | May 1913 | A |
1090438 | Worth et al. | Mar 1914 | A |
1170472 | Barber | Feb 1916 | A |
1288859 | Feller et al. | Dec 1918 | A |
1393188 | Whiteman | Oct 1921 | A |
1469661 | Migita | Feb 1922 | A |
1412486 | Paine | Apr 1922 | A |
1416203 | Hobson | May 1922 | A |
1481903 | Hart | Apr 1923 | A |
1530713 | Clark | Feb 1924 | A |
1995243 | Clarke | Jun 1934 | A |
2088851 | Gantenbein | Aug 1937 | A |
2109751 | Matthias et al. | Mar 1938 | A |
2124310 | Murr, Jr. | Sep 1938 | A |
2316102 | Preston | Apr 1943 | A |
2539026 | Mangold | Jan 1951 | A |
2611940 | Cairns | Sep 1952 | A |
2673381 | Dueker | Mar 1954 | A |
2907086 | Ord | Oct 1959 | A |
2991523 | Del Conte | Jul 1961 | A |
3035319 | Wolff | May 1962 | A |
3112545 | Williams | Dec 1963 | A |
3163900 | Martin | Jan 1965 | A |
3169325 | Fesl | Feb 1965 | A |
3197155 | Chow | Jul 1965 | A |
3221384 | Aufenacker | Dec 1965 | A |
3276090 | Nigon | Oct 1966 | A |
3401437 | Christpohersen | Sep 1968 | A |
3430303 | Perrin et al. | Mar 1969 | A |
3491465 | Martin | Jan 1970 | A |
3545106 | Martin | Dec 1970 | A |
3618232 | Shnuriwsky | Nov 1971 | A |
3668791 | Salzman et al. | Jun 1972 | A |
3678539 | Graup | Jul 1972 | A |
3703775 | Gatti | Nov 1972 | A |
3729779 | Porth | May 1973 | A |
3738027 | Schoch | Jun 1973 | A |
3793749 | Gertsch et al. | Feb 1974 | A |
3808644 | Schoch | May 1974 | A |
3934346 | Sasaki et al. | Jan 1976 | A |
3975838 | Martin | Aug 1976 | A |
4095354 | Annovi | Jun 1978 | A |
4130949 | Seidel | Dec 1978 | A |
4142307 | Martin | Mar 1979 | A |
4227322 | Annovi | Oct 1980 | A |
4261081 | Lott | Apr 1981 | A |
4267622 | Burnett-Johnston | May 1981 | A |
4408403 | Martin | Oct 1983 | A |
4433456 | Baggio | Feb 1984 | A |
4433679 | Mauldin et al. | Feb 1984 | A |
4463761 | Pols et al. | Aug 1984 | A |
4480395 | Schoch | Nov 1984 | A |
4551932 | Schoch | Nov 1985 | A |
4555830 | Petrini et al. | Dec 1985 | A |
4574500 | Aldinio et al. | Mar 1986 | A |
4616524 | Biodia | Oct 1986 | A |
4619057 | Sartor et al. | Oct 1986 | A |
4620378 | Sartor | Nov 1986 | A |
4631839 | Bonetti et al. | Dec 1986 | A |
4631840 | Gamm | Dec 1986 | A |
4633599 | Morell et al. | Jan 1987 | A |
4654985 | Chalmers | Apr 1987 | A |
4660300 | Morell et al. | Apr 1987 | A |
4660302 | Arieh et al. | Apr 1987 | A |
4680878 | Pozzobon et al. | Jul 1987 | A |
4719670 | Kurt | Jan 1988 | A |
4719709 | Vaccari | Jan 1988 | A |
4719710 | Pozzobon | Jan 1988 | A |
4722477 | Floyd | Feb 1988 | A |
4741115 | Pozzobon | May 1988 | A |
4748726 | Schoch | Jun 1988 | A |
4760653 | Baggio | Aug 1988 | A |
4780969 | White, Jr. | Nov 1988 | A |
4787124 | Pozzobon et al. | Nov 1988 | A |
4790081 | Benoit et al. | Dec 1988 | A |
4796829 | Pozzobon et al. | Jan 1989 | A |
4799297 | Baggio et al. | Jan 1989 | A |
4802291 | Sartor | Feb 1989 | A |
4811503 | Iwama | Mar 1989 | A |
4826098 | Pozzobon et al. | May 1989 | A |
4841649 | Baggio et al. | Jun 1989 | A |
4856207 | Datson | Aug 1989 | A |
4870723 | Pozzobon et al. | Oct 1989 | A |
4870761 | Tracy | Oct 1989 | A |
4884760 | Baggio et al. | Dec 1989 | A |
4937953 | Walkhoff | Jul 1990 | A |
4961544 | Biodia | Oct 1990 | A |
5001817 | De Bortoli et al. | Mar 1991 | A |
5016327 | Klausner | May 1991 | A |
5042177 | Schoch | Aug 1991 | A |
5062225 | Gorza | Nov 1991 | A |
5065480 | DeBortoli | Nov 1991 | A |
5065481 | Walkhoff | Nov 1991 | A |
5117567 | Berger | Jun 1992 | A |
5129130 | Lecouturier | Jul 1992 | A |
5152038 | Schoch | Oct 1992 | A |
5157813 | Carroll | Oct 1992 | A |
5158428 | Gessner et al. | Oct 1992 | A |
5167612 | Bonutti | Dec 1992 | A |
5177882 | Berger | Jan 1993 | A |
5178137 | Goor et al. | Jan 1993 | A |
5181331 | Berger | Jan 1993 | A |
5184378 | Batra | Feb 1993 | A |
D333552 | Berger et al. | Mar 1993 | S |
5205055 | Harrell | Apr 1993 | A |
5213094 | Bonutti | May 1993 | A |
5249377 | Walkhoff | Oct 1993 | A |
5259094 | Zepeda | Nov 1993 | A |
5315741 | Debberke | May 1994 | A |
5319868 | Hallenbeck | Jun 1994 | A |
5325613 | Sussmann | Jul 1994 | A |
5327662 | Hallenbeck | Jul 1994 | A |
5335401 | Hanson | Aug 1994 | A |
5341583 | Hallenbeck | Aug 1994 | A |
5345697 | Quellais | Sep 1994 | A |
5346461 | Heinz et al. | Sep 1994 | A |
5355596 | Sussmann | Oct 1994 | A |
5357654 | Hsing-Chi | Oct 1994 | A |
5365947 | Bonutti | Nov 1994 | A |
5381609 | Hieblinger | Jan 1995 | A |
5395304 | Tarr et al. | Mar 1995 | A |
5425161 | Schoch | Jun 1995 | A |
5425185 | Gansler | Jun 1995 | A |
5430960 | Richardson | Jul 1995 | A |
5433648 | Frydman | Jul 1995 | A |
5437617 | Heinz et al. | Aug 1995 | A |
5456268 | Bonutti | Oct 1995 | A |
5463822 | Miller | Nov 1995 | A |
5477593 | Leick | Dec 1995 | A |
5502902 | Sussmann | Apr 1996 | A |
5511325 | Hieblinger | Apr 1996 | A |
5535531 | Karabed et al. | Jul 1996 | A |
5537763 | Donnadieu et al. | Jul 1996 | A |
5557864 | Marks | Sep 1996 | A |
5566474 | Leick et al. | Oct 1996 | A |
5596820 | Edauw et al. | Jan 1997 | A |
5599000 | Bennett | Feb 1997 | A |
5599288 | Shirley et al. | Feb 1997 | A |
5600874 | Jungkind | Feb 1997 | A |
5606778 | Jungkind | Mar 1997 | A |
5638588 | Jungkind | Jun 1997 | A |
5640785 | Egelja | Jun 1997 | A |
5647104 | James | Jul 1997 | A |
5651198 | Sussmann | Jul 1997 | A |
5669116 | Jungkind | Sep 1997 | A |
5685830 | Bonutti | Nov 1997 | A |
5718021 | Tatum | Feb 1998 | A |
5718065 | Locker | Feb 1998 | A |
5732483 | Cagliari | Mar 1998 | A |
5736696 | Del Rosso | Apr 1998 | A |
5737854 | Sussmann | Apr 1998 | A |
5755044 | Veylupek | May 1998 | A |
5761777 | Leick | Jun 1998 | A |
5772146 | Kawamoto et al. | Jun 1998 | A |
5784809 | McDonald | Jul 1998 | A |
5819378 | Doyle | Oct 1998 | A |
5833640 | Vazquez, Jr. et al. | Nov 1998 | A |
5891061 | Kaiser | Apr 1999 | A |
5934599 | Hammerslag | Aug 1999 | A |
5956823 | Borel | Sep 1999 | A |
6032387 | Johnson | Mar 2000 | A |
6038791 | Cornelius et al. | Mar 2000 | A |
6052921 | Oreck | Apr 2000 | A |
6070886 | Cornelius et al. | Jun 2000 | A |
6070887 | Cornelius et al. | Jun 2000 | A |
6102412 | Staffaroni | Aug 2000 | A |
6119318 | Maurer | Sep 2000 | A |
6128836 | Barret | Oct 2000 | A |
6148489 | Dickie et al. | Nov 2000 | A |
6202953 | Hammerslag | Mar 2001 | B1 |
6256798 | Egolf et al. | Jul 2001 | B1 |
6267390 | Maravetz et al. | Jul 2001 | B1 |
6289558 | Hammerslag | Sep 2001 | B1 |
6416074 | Maravetz et al. | Jul 2002 | B1 |
6464657 | Castillo | Oct 2002 | B1 |
6467195 | Pierre et al. | Oct 2002 | B2 |
6477793 | Pruitt et al. | Nov 2002 | B1 |
6543159 | Carpenter et al. | Apr 2003 | B1 |
6568103 | Durocher | May 2003 | B2 |
6685662 | Curry et al. | Feb 2004 | B1 |
6689080 | Castillo | Feb 2004 | B2 |
6694643 | Hsu | Feb 2004 | B1 |
6708376 | Landry | Mar 2004 | B1 |
6711787 | Jungkind et al. | Mar 2004 | B2 |
6757991 | Sussmann | Jul 2004 | B2 |
6775928 | Grande et al. | Aug 2004 | B2 |
6793641 | Freeman et al. | Sep 2004 | B2 |
6796951 | Freeman et al. | Sep 2004 | B2 |
6802439 | Azam et al. | Oct 2004 | B2 |
6877256 | Martin et al. | Apr 2005 | B2 |
6922917 | Kerns et al. | Aug 2005 | B2 |
6938913 | Elkington | Sep 2005 | B2 |
6942632 | Cho | Sep 2005 | B2 |
6945543 | De Bertoli et al. | Sep 2005 | B2 |
6962571 | Castillo | Nov 2005 | B2 |
6976972 | Bradshaw | Dec 2005 | B2 |
6993859 | Martin et al. | Feb 2006 | B2 |
7076843 | Sakabayashi | Jul 2006 | B2 |
7082701 | Dalgaard et al. | Aug 2006 | B2 |
7134224 | Elkington et al. | Nov 2006 | B2 |
7182740 | Castillo | Feb 2007 | B1 |
7198610 | Ingimundarson et al. | Apr 2007 | B2 |
7281341 | Reagan et al. | Oct 2007 | B2 |
7293373 | Reagan et al. | Nov 2007 | B2 |
7314458 | Bodenschatz | Jan 2008 | B2 |
7331126 | Johnson | Feb 2008 | B2 |
7367522 | Chen | May 2008 | B2 |
7386947 | Martin et al. | Jun 2008 | B2 |
7402147 | Allen | Jul 2008 | B1 |
7490458 | Ford | Feb 2009 | B2 |
7516914 | Kovacevich et al. | Apr 2009 | B2 |
7584528 | Hu | Sep 2009 | B2 |
7591050 | Hammerslag | Sep 2009 | B2 |
7597675 | Ingimundarson et al. | Oct 2009 | B2 |
7600660 | Kasper et al. | Oct 2009 | B2 |
7617573 | Chen | Nov 2009 | B2 |
7618386 | Nordt, III et al. | Nov 2009 | B2 |
7618389 | Nordt, III et al. | Nov 2009 | B2 |
7648404 | Martin | Jan 2010 | B1 |
7662122 | Sterling | Feb 2010 | B2 |
7694354 | Philpott et al. | Apr 2010 | B2 |
7704219 | Nordt, III et al. | Apr 2010 | B2 |
7713225 | Ingimundarson et al. | May 2010 | B2 |
7789844 | Allen | Sep 2010 | B1 |
7794418 | Ingimundarson et al. | Sep 2010 | B2 |
7806842 | Stevenson et al. | Oct 2010 | B2 |
7819830 | Sindel et al. | Oct 2010 | B2 |
7871334 | Young et al. | Jan 2011 | B2 |
7877845 | Signori | Feb 2011 | B2 |
7878998 | Nordt, III et al. | Feb 2011 | B2 |
7887500 | Nordt, III et al. | Feb 2011 | B2 |
7896827 | Ingimundarson et al. | Mar 2011 | B2 |
7900378 | Busse | Mar 2011 | B1 |
7908769 | Pellegrini | Mar 2011 | B2 |
7922680 | Nordt, III et al. | Apr 2011 | B2 |
7935068 | Einarsson | May 2011 | B2 |
7947005 | Castillo | May 2011 | B2 |
7950112 | Hammerslag et al. | May 2011 | B2 |
7954204 | Hammerslag et al. | Jun 2011 | B2 |
7992261 | Hammerslag et al. | Aug 2011 | B2 |
7993296 | Nordt, III et al. | Aug 2011 | B2 |
8016781 | Ingimundarson et al. | Sep 2011 | B2 |
8056150 | Stokes et al. | Nov 2011 | B2 |
8061061 | Rivas | Nov 2011 | B1 |
8074379 | Robinson, Jr. et al. | Dec 2011 | B2 |
8091182 | Hammerslag et al. | Jan 2012 | B2 |
8105252 | Rousso | Jan 2012 | B2 |
8109015 | Signori | Feb 2012 | B2 |
8128587 | Stevenson et al. | Mar 2012 | B2 |
8231074 | Hu et al. | Jul 2012 | B2 |
8231560 | Ingimundarson et al. | Jul 2012 | B2 |
8245371 | Chen | Aug 2012 | B2 |
8303527 | Joseph | Nov 2012 | B2 |
8353088 | Ha | Jan 2013 | B2 |
8381362 | Hammerslag et al. | Feb 2013 | B2 |
8424168 | Soderberg et al. | Apr 2013 | B2 |
8468657 | Soderberg et al. | Jun 2013 | B2 |
8713820 | Kerns et al. | May 2014 | B2 |
8832912 | Ha | Sep 2014 | B2 |
9101181 | Soderberg et al. | Aug 2015 | B2 |
9138030 | Soderberg et al. | Sep 2015 | B2 |
9259056 | Soderberg et al. | Feb 2016 | B2 |
10123589 | Soderberg et al. | Nov 2018 | B2 |
10413019 | Soderberg et al. | Sep 2019 | B2 |
20020052568 | Houser et al. | May 2002 | A1 |
20020095750 | Hammerslag | Jul 2002 | A1 |
20020178548 | Freed | Dec 2002 | A1 |
20030041478 | Liu | Mar 2003 | A1 |
20030051374 | Freed | Mar 2003 | A1 |
20030177662 | Elkington et al. | Sep 2003 | A1 |
20030204938 | Hammerslag | Nov 2003 | A1 |
20050054962 | Bradshaw | Mar 2005 | A1 |
20050081403 | Mathieu | Apr 2005 | A1 |
20050087115 | Martin | Apr 2005 | A1 |
20050098673 | Huang | May 2005 | A1 |
20050102861 | Martin | May 2005 | A1 |
20050126043 | Reagan et al. | Jun 2005 | A1 |
20050198866 | Wiper et al. | Sep 2005 | A1 |
20050273025 | Houser | Dec 2005 | A1 |
20060156517 | Hammerslag et al. | Jul 2006 | A1 |
20060179685 | Borel et al. | Aug 2006 | A1 |
20060185193 | Pellegrini | Aug 2006 | A1 |
20070113524 | Lander | May 2007 | A1 |
20070128959 | Cooke | Jun 2007 | A1 |
20070169378 | Soderberg et al. | Jul 2007 | A1 |
20070276306 | Castillo | Nov 2007 | A1 |
20080060167 | Hammerslag et al. | Mar 2008 | A1 |
20080060168 | Hammerslag et al. | Mar 2008 | A1 |
20080066272 | Hammerslag et al. | Mar 2008 | A1 |
20080066345 | Hammerslag et al. | Mar 2008 | A1 |
20080066346 | Hammerslag et al. | Mar 2008 | A1 |
20080083135 | Hammerslag et al. | Apr 2008 | A1 |
20080092279 | Chiang | Apr 2008 | A1 |
20080172848 | Chen | Jul 2008 | A1 |
20090099562 | Ingimundarson et al. | Apr 2009 | A1 |
20090124948 | Ingimundarson et al. | May 2009 | A1 |
20090172928 | Messmer et al. | Jul 2009 | A1 |
20090184189 | Soderberg | Jul 2009 | A1 |
20090287128 | Ingimundarson et al. | Nov 2009 | A1 |
20100081979 | Ingimundarson et al. | Apr 2010 | A1 |
20100094189 | Ingimundarson et al. | Apr 2010 | A1 |
20100101061 | Ha | Apr 2010 | A1 |
20100139057 | Soderberg et al. | Jun 2010 | A1 |
20100154254 | Fletcher | Jun 2010 | A1 |
20100174221 | Ingimundarson et al. | Jul 2010 | A1 |
20100175163 | Litke | Jul 2010 | A1 |
20100217169 | Ingimundarson | Aug 2010 | A1 |
20100251524 | Chen | Oct 2010 | A1 |
20100319216 | Grenzke et al. | Dec 2010 | A1 |
20100331750 | Ingimundarson | Dec 2010 | A1 |
20110000173 | Lander | Jan 2011 | A1 |
20110004135 | Kausek | Jan 2011 | A1 |
20110071647 | Mahon | Mar 2011 | A1 |
20110098618 | Fleming | Apr 2011 | A1 |
20110099843 | Jung | May 2011 | A1 |
20110144554 | Weaver, II et al. | Jun 2011 | A1 |
20110167543 | Kovacevich et al. | Jul 2011 | A1 |
20110178448 | Einarsson | Jul 2011 | A1 |
20110184326 | Ingimundarson et al. | Jul 2011 | A1 |
20110191992 | Chen | Aug 2011 | A1 |
20110218471 | Ingimundarson et al. | Sep 2011 | A1 |
20110266384 | Goodman et al. | Nov 2011 | A1 |
20110288461 | Arnould et al. | Nov 2011 | A1 |
20110301521 | Weissenbock et al. | Dec 2011 | A1 |
20110306911 | Tran | Dec 2011 | A1 |
20120000091 | Cotterman et al. | Jan 2012 | A1 |
20120004587 | Nickel et al. | Jan 2012 | A1 |
20120005995 | Emery | Jan 2012 | A1 |
20120010547 | Hinds | Jan 2012 | A1 |
20120029404 | Weaver, II et al. | Feb 2012 | A1 |
20120101417 | Joseph | Apr 2012 | A1 |
20120167290 | Kovacevich et al. | Jul 2012 | A1 |
20120246974 | Hammerslag et al. | Oct 2012 | A1 |
20130012856 | Hammerslag et al. | Jan 2013 | A1 |
20130025100 | Ha | Jan 2013 | A1 |
20150101160 | Soderberg et al. | Apr 2015 | A1 |
20150342303 | Soderberg et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
127075 | Feb 1932 | AT |
244804 | Jan 1966 | AT |
2112789 | Aug 1994 | CA |
2114387 | Aug 1994 | CA |
41765 | Sep 1907 | CH |
111341 | Nov 1925 | CH |
199766 | Nov 1938 | CH |
204 834 | Aug 1939 | CH |
562 015 | May 1975 | CH |
577 282 | Jul 1976 | CH |
612 076 | Jul 1979 | CH |
537 164 | Jul 1981 | CH |
624 0001 | Jul 1981 | CH |
471 553 | Dec 1984 | CH |
555211 | Jul 1932 | DE |
641976 | Feb 1937 | DE |
1 661 668 | Aug 1953 | DE |
7045778.2 | Mar 1971 | DE |
1 785 220 | May 1971 | DE |
2 062 795 | Jun 1972 | DE |
7047038 | Jan 1974 | DE |
23 41 658 | Mar 1974 | DE |
24 14 439 | Oct 1975 | DE |
29 00 077 | Jul 1980 | DE |
29 14 280 | Oct 1980 | DE |
31 01 952 | Sep 1982 | DE |
81 01 488.0 | Jul 1984 | DE |
38 13 470 | Nov 1989 | DE |
3822113 | Jan 1990 | DE |
9005496 | Dec 1991 | DE |
43 02 401 | Aug 1994 | DE |
94 13 147 | Oct 1994 | DE |
9315776 | Feb 1995 | DE |
29503552.8 | Apr 1995 | DE |
196 24 553 | Jan 1998 | DE |
19945045 | Mar 2001 | DE |
201 16 755 | Jan 2002 | DE |
0297342 | Jan 1989 | EP |
0 393 380 | Oct 1990 | EP |
0 589 232 | Mar 1994 | EP |
0 589 233 | Mar 1994 | EP |
0 614 624 | Sep 1994 | EP |
0 614 625 | Sep 1994 | EP |
0 651 954 | May 1995 | EP |
0 693 260 | Jan 1996 | EP |
0 734 662 | Oct 1996 | EP |
1 236 412 | Sep 2002 | EP |
2052636 | Apr 2009 | EP |
2359708 | Aug 2011 | EP |
1 349 832 | Jan 1964 | FR |
1 374 110 | Oct 1964 | FR |
1 404 799 | Jul 1965 | FR |
2 019 991 | Jul 1970 | FR |
2 108 428 | May 1972 | FR |
2 173 451 | Oct 1973 | FR |
2 175 684 | Oct 1973 | FR |
2 399 811 | Mar 1979 | FR |
2 565 795 | Dec 1985 | FR |
2 598 292 | Nov 1987 | FR |
7 726 440 | May 1996 | FR |
2 770 379 | May 1999 | FR |
2 814 919 | Apr 2002 | FR |
189911673 | Jul 1899 | GB |
216400 | May 1924 | GB |
2 449 722 | Dec 2008 | GB |
1220811 | Jun 1990 | IT |
2003 A 000197 | Apr 2003 | IT |
2003 A 000198 | Mar 2005 | IT |
8-9202 | Jun 1933 | JP |
49-28618 | Mar 1974 | JP |
51-2776 | Jan 1976 | JP |
51-121375 | Oct 1976 | JP |
51-131978 | Oct 1976 | JP |
53-124987 | Mar 1977 | JP |
54-108125 | Feb 1978 | JP |
62-57346 | Apr 1987 | JP |
63-80736 | May 1988 | JP |
3031760 | Mar 1991 | JP |
7-000208 | Jun 1995 | JP |
3030988 | Nov 1996 | JP |
10-199366 | Jul 1998 | JP |
2004-016732 | Jan 2004 | JP |
2004-041666 | Feb 2004 | JP |
20-0367882 | Nov 2004 | KR |
20-0400568 | Nov 2005 | KR |
10-0598627 | Jul 2006 | KR |
1020100111031 | Oct 2010 | KR |
9427456 | Dec 1994 | WO |
199503720 | Feb 1995 | WO |
9837782 | Sep 1998 | WO |
09915043 | Apr 1999 | WO |
0053045 | Sep 2000 | WO |
200076337 | Dec 2000 | WO |
0108525 | Feb 2001 | WO |
07016983 | Feb 2007 | WO |
Entry |
---|
Translation of EP 0651954 (Year: 2021). |
U.S. Appl. No. 09/956,601, filed Sep. 18, 2001, Hammerslag. |
Asolo® Boot Brochure Catalog upon information and belief date is as early as Aug. 22, 1997, 12 pages. |
La Sportiva, A Technical Lightweight Double Boot for Cold Environments, 1 page. Accessed on May 27, 2015. Retrieved from http://www.sportiva.com/products/footwear/mountain/spantik. |
“Strength of materials used to make my Safety Harnesses,” Elaine, Inc. Jul. 9, 2012. Retrieved from <https://web.archive.org/web/20120709002720/http://www.childharness.ca/strength_data.html> on Mar. 17, 2014, 2 pages. |
International Search Report and Written Opinion for PCT/US2013/032326 dated Jun. 14, 2013, 27 pages. |
International Preliminary Report on Patentability for PCT/US2013/032326 dated Sep. 16, 2014, 6 pages. |
International Search Report and Written Opinion for PCT/US2013/057637 dated Apr. 7, 2014, 34 pages. |
International Preliminary Report on Patentability for PCT/US2013/057637 dated Mar. 3, 2015, 9 pages. |
International Search Report and Written Opinion for PCT/US2013/068342 dated Apr. 7, 2014, 29 pages. |
International Preliminary Report on Patentability for PCT/US2013/068342 dated May 5, 2015, 9 pages. |
International Search Report and Written Opinion for PCT/US2014/014952 dated Apr. 25, 2014, 17 pages. |
International Preliminary Report on Patentability for PCT/US2014/014952 dated Aug. 11, 2015, 9 pages. |
International Search Report and Written Opinion for PCT/US2014/066212 dated Apr. 22, 2015, 16 pages. |
International Search Report and Written Opinion for PCT/US2014/032574 dated Oct. 31, 2014, 19 pages. |
International Search Report and Written Opinion for PCT/US2014/045291 dated Nov. 6, 2014, 12 pages. |
International Search Report and Written Opinion for PCT/US2014/013458 dated May 19, 2014, 12 pages. |
International Preliminary Report on Patentability for PCT/US2014/013458 dated Jul. 28, 2015, 7 pages. |
International Search Report and Written Opinion for PCT/US2013/068814 dated Jun. 9, 2014, 18 pages. |
International Preliminary Report on Patentability for PCT/US2013/068814 dated May 12, 2015, 12 pages. |
Notice of Reasons for Rejection from the Japanese Patent Office dated Feb. 26, 2015 for design application No. 2014-015570, 4 pages. |
Receipt of Certificate of Design Registration No. 1529678 from the Japanese Patent Office for design application No. 2014-015570 dated Jun. 26, 2015, 1 page. |
International Search Report and Written Opinion for PCT/US2014/055710 dated Jul. 6, 2015, 19 pages. |
International Search Report and Written Opinion for PCT/US2014/054420 dated Jul. 6, 2015, 21 pages. |
The Preliminary Rejections from the Korean Intellectual Property Office for Application No. 30-2014-34959 dated Aug. 7, 2015, is not translated into English. The document requests a renaming of the application to be in accordance with Korean patent law, 5 pages total. |
The Preliminary Rejections from the Korean Intellectual Property Office for Application No. 30-2014-34959 dated Apr. 7, 2015, is not translated into English. The document requests a revision of the drawings to be in accordance with Korean patent law, 6 pages total. |
Certificate of Design Registration No. 30-809409 on Aug. 3, 2015 from the Korean Intellectual Property Office for Appln No. 30-2015-11475, 2 pages. |
Certificate of Design Registration No. 30-809410 on Aug. 3, 2015 from the Korean Intellectual Property Office for Appln No. 30-2015-11476, 2 pages. |
European Search Report for EP 14168875 dated Oct. 29, 2014, 9 pages. |
International Search Report and Written Opinion for PCT/US2014/020894 dated Jun. 20, 2014, 12 pages. |
International Preliminary Report on Patentability for PCT/US2014/020894 dated Sep. 8, 2015, 7 pages. |
International Search Report and Written Opinion for PCT/US2014/041144 dated Dec. 10, 2014, 13 pages. |
International Preliminary Report on Patentability for PCT/US2014/032574 dated Oct. 6, 2015, 12 pages. |
International Search Report and Written Opinion for PCT/US2014/046238 dated Nov. 21, 2014, 17 pages. |
Office Action dated Oct. 8, 2015 from the German Patent and Trademark Office for Appln No. 402015100191.2, regarding the title of the invention, 2 pages. |
Anonymous, “Shore durometer,” Wikipedia, the free encyclopedia, Mar. 10, 2012, XP002747470, Retrieved from the Internet: URL: https://en.wikipedia.org/w/index.php?title=Shore_durometer&oldid=481128180 [retrieved on Oct. 20, 2015] * shore A, shore D, durometer, polymer, rubber, gel; the whole document *, 6 pages. |
Notice of Reasons for Rejection from the Japanese Patent Office dated Oct. 5, 2015 for design application No. 2015-004923, 4 pages. |
“Save Tourniquet,” 3 pages. Copyright 2015. Accessed on Dec. 11, 2015. Retrieved from http://www.savetourniquet.com/. |
International Preliminary Report on Patentability for PCT/US2014/041144 dated Dec. 8, 2015, all pages. |
Supplementary European Search Report for EP 13761841 dated Oct. 21, 2015, all pages. |
Number | Date | Country | |
---|---|---|---|
20200054097 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14821556 | Aug 2015 | US |
Child | 16557695 | US | |
Parent | 13273060 | Oct 2011 | US |
Child | 14821556 | US |