Reel height control for flexible cutting platform in an agricultural harvesting machine

Information

  • Patent Application
  • 20070289278
  • Publication Number
    20070289278
  • Date Filed
    June 14, 2006
    17 years ago
  • Date Published
    December 20, 2007
    16 years ago
Abstract
An agricultural harvesting machine includes a feeder housing and a cutting platform attached to the feeder housing. The cutting platform includes at least one platform section, with each platform section having a frame, a cutterbar assembly at a leading edge of the platform section, and an excessive localized deflection indicator associated with the cutterbar assembly. One or more pairs of reel support arms are provided, with each pair associated with a corresponding reel. Each pair of reel support arms is movable toward and away from the cutterbar assembly, dependent upon a state of the excessive localized deflection indicator.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a fragmentary, top view of an agricultural combine including an embodiment of a draper platform of the present invention;



FIG. 2 is a fragmentary, perspective view of the agricultural combine of FIG. 1;



FIG. 3 is a fragmentary, perspective view of the cutting platform shown in FIGS. 1 and 2;



FIG. 4 is a side, sectional view through a wing platform section shown in FIGS. 1 and 2; and



FIG. 5 is a side sectional view through the float cylinder shown in FIGS. 3 and 4; and



FIG. 6 is a plan view of the cutting platform shown in FIGS. 1, 2 and 4, while traversing a localized ground protrusion.





DETAILED DESCRIPTION OF THE INVENTION

Referring now to the drawings, and, more particularly to FIGS. 1 and 2, there is shown an agricultural harvesting machine in the form of a combine 10 including an embodiment of a cutting platform 12 of the present invention. Combine 10 includes a feeder housing 14 which is detachably coupled with cutting platform 12. Feeder housing 14 receives the crop material from cutting platform 12, both grain and non-grain crop material, and transports the crop material to a separator within combine 10 in known manner (not shown). The grain crop material is separated from the non-grain crop material, cleaned and transported to a grain tank. The non-grain crop material is transported to a chopper, blower, etc. in known manner and distributed back to the field.


Cutting platform 12 generally includes a plurality of platform sections 16, 18 and 20, a cutterbar assembly 22 and a reel assembly 24. In the embodiment shown, platform section 16 is a center platform section, platform section 18 is a first wing platform section, and platform section 20 is a second wing platform section. Although shown with three platform sections, cutting platform 12 may be configured with more or less platform sections, depending upon the particular application.


Each platform section 16, 18 and 20 generally includes a frame 26, a plurality of float arms 28 coupled with a respective frame 26, a cutterbar 30 carried by the outboard ends of respective float arms 28, an endless belt 32, and a plurality of belt guides 34. The frame 26 of first wing platform section 18 and second wing platform section 20 are each pivotally coupled with center platform section 16, such that the outboard ends of first wing platform section 18 and second wing platform section 20 can move up and down independent from center platform section 16. To that end, a lift cylinder 36 coupled between the frame of combine 10 and feeder housing 14 lifts the entire cutting platform 12, a first tilt cylinder 38 coupled between the respective frame 26 of first wing platform section 18 and center platform section 16 pivotally moves first wing platform section 18 relative to center platform section 16, and a second tilt cylinder 40 coupled between the respective frame 26 of second wing platform section 20 and center platform section 16 pivotally moves second wing platform section 20 relative to center platform section 16.


Cutterbar assembly 22 includes two cutterbars 30 carried at the outboard ends of float arms 28 (i.e., at the leading edge of a platform section 16, 18 or 20). Each cutterbar 30 includes a plurality of knives 42 carried by a bar (not specifically shown). The particular type of knife can vary, such as a double blade knife (as shown) or a single blade knife. The bar is formed from a metal which is flexible to an extent allowing a desired degree of flexure across the width of cutting platform 12. In the embodiment shown, a majority of each cutterbar 30 is carried by a respective first wing platform section 18 or second wing platform section 20, with a lesser extent at the adjacent inboard ends of each cutterbar 30 being carried by center platform section 16. Cutterbars 30 are simultaneously driven by a single knife drive 44, providing reciprocating movement in concurrent opposite directions between cutterbars 30. It is also possible to reciprocally drive cutterbars 30 with multiple knife drives, which can be positioned at the adjacent, inboard ends or the outboard ends of cutterbars 30.


A plurality of knife guards 46 are positioned in opposition to knives 42 for providing opposing surfaces for cutting the crop material with knives 42. A plurality of keepers 48 spaced along cutterbars 30 have a distal end above cutterbars 30 for maintaining cutterbars 30 in place during reciprocating movement.


Float arms 28 may be pivoted at their connection locations with a respective frame 26. A float cylinder 50 coupled between a respective frame 26 and float arm 28 may be used for raising or lowering the outboard end of float arm(s) 28 at the leading edge of cutting platform 12. Each float cylinder 50 may also be placed in a “float” position allowing the connected float arm 28 to generally follow the ground contour during operation. More particularly, each float cylinder 50 is fluidly connected with an accumulator 52 carried by a platform section 16, 18 or 20. Accumulator 52 allows fluid to flow to and from attached float cylinders 50 such that no pressure build-up occurs. In this manner, the rams associated with each float cylinder 50 are free to move back and forth longitudinally, thereby allowing float arms 28 to follow the ground contour. When not in a float mode, float cylinders 50 can be actuated to move float arms 28 in an upward or downward direction. In the embodiment shown, each float cylinder 50 is a hydraulic cylinder, but could possibly be configured as a gas cylinder for a particular application.


Each float arm 28 is also associated with a respective roller 54. The plurality of rollers 54 for each platform section 16, 18 and 20 carry and are positioned within a loop of a respective endless belt 32. At the inboard end of first wing platform section 18 and second wing platform section 20 is a driven roller, and at the outboard end of first wing platform section 18 and second wing platform section 20 is an idler roller. The rollers positioned between the inboard drive roller and outboard idler roller at each float arm 28 also function as idler rollers. It will be appreciated that the number of float arms 28, and thus the number of rollers 54, may vary depending upon the overall width of cutting head 12 transverse to the travel direction.


Reel assembly 24 includes two reels 56, center reel support arm 58 and a pair of outer reel support arms 60. Each reel 56 carries a plurality of tines for moving the crop material onto platform sectionals 16, 18 and 20. Outer reel support arms 60 are pivotally coupled at one end thereof with an outboard end of a respective first wing platform section 18 or second wing platform section 20. Outer reel support arms 60 rotationally carry a respective reel 56 at an opposite end thereof. Each outer reel support arm 60 may be selectively moved up and down using a hydraulic cylinder, and the pair of hydraulic cylinders are typically coupled in parallel so that they move together upon actuation.


Center reel support arm 58 is pivotally coupled at one end thereof with center platform section 16 above the opening leading to feeder housing 14. Center reel support arm 58 rotationally carries an inboard end of each reel 56 at an opposite end thereof. A hydraulic motor 62 or other suitable mechanical drive rotationally drives each reel 56. More particularly, hydraulic motor 62 drives a common drive shaft 64 through a chain and sprocket or other suitable arrangement (not shown). The rotational speed of reels 56 can be adjusted by an operator by adjusting the rotational speed of hydraulic motor 62.


Center reel support arm 58 may be selectively moved up and down using a hydraulic cylinder 66. Center reel support arm 58 is movable independently from outer reel support arms 60. To accommodate this independent movement, drive shaft 64 driven by hydraulic motor 62 is coupled at each end thereof via a universal joint 68 with a respective reel 56. This independent movement of center reel support arm 58 can be accomplished manually using a separate actuating switch or lever in operator's cab 70, or automatically using an electronic controller 72 located within cab 70 or other suitable location.


Each platform section 16, 18 and 20 has a leading edge which is configured to allow cutterbar assembly 22 to flex an appreciable extent in a localized manner across the width of cutting platform 12. Referring to FIGS. 3 and 4, each float arm 28 has a distal end adjacent the leading edge of cutting platform 12. The float arms 28 associated with each respective platform section 16, 18 and 20 each have a distal end which is fastened to a knife guard 46, flexible substrate 74, crop ramp 76 and hold down 48. Flexible substrate 74 for each particular platform section 16, 18 and 20 in essence forms the backbone to which the other modular components are mounted and allows flexibility of the platform section across the width thereof. A bushing housing 76 also mounted to flexible substrate 74 carries a bushing (not shown) which rotatably supports roller 54. In the embodiment shown, flexible substrate 74 is a steel plate with various mounting holes formed therein, and has a modulus of elasticity providing a desired degree of flexibility. The geometric configuration and material type from which flexible substrate 74 is formed may vary, depending upon the application.


In the embodiment shown, each float arm 28 is provided with a passive stop allowing the float arm to move to a normal stop position during normal operation, and past the normal stop position to an overload stop position during an overload stop condition. Such a condition may occur, for example, when cutterbar assembly 22 is biased upward in a localized manner from a ground protrusion or obstruction, such as a rock, log, mound of dirt, etc. (see FIG. 6). Absent the use of a passive stop, each float arm 28 can reach a hard stop at the upper-most travel position, after which further biasing by the ground protrusion may place the weight of the entire cutting platform 12 and/or feeder housing 14 on a single float arm 28. This is undesirable since the float arms 28 must be designed to accommodate such weight, which of course adds to the bulk, weight and cost of cutting platform 12. On the other hand, allowing one or more float arms 28 to pivot upwards past the normal stop position during extreme conditions prevents undue stress on the float arm, which in turn allows the size of each float arm 28 to be smaller.


More particularly, referring to FIGS. 4 and 5, each float cylinder 50 associated with a respective float arm 28 is identically configured as a dual bore cylinder, with a first bore 78 and a larger diameter second bore 80. A floating piston 82 is free floating within second bore 80, and has an inner bore 84 with an inside diameter which is just slightly larger than an outside diameter of rod 86. Floating piston 82 is slidably movable back and forth within second bore 80 adjacent a distal end 88 of float cylinder 28 from which rod 86 extends. Floating piston 82 is movable to a normal stop position shown in FIG. 5 adjacent first bore 78, and an overload stop position adjacent distal end 88.


The variable volume area within first bore 78 between floating piston 82 and proximal end 90 defines a fluid chamber 92 which can either be placed in a “float” state or which receives high pressure fluid from accumulator chamber 52A for extending rod 86 to lift a corresponding float arm 28. The variable volume area within second bore 80 between floating piston 82 and distal end 88 defines a fluid chamber 94 which is in fluid communication with accumulator chamber 52B via fluid line 96. The pressure within accumulator chamber 52B and fluid chamber 94 is set to provide a normal stop position for rod 86. To that end, rod 86 includes a first retainer 98 and a second retainer 100 which are positioned on opposite sides of and engage floating piston 82. In the embodiment shown, each of first retainer 98 and second retainer 100 are configured as snap rings, but may be differently configured depending upon the application. Under normal operating conditions, first retainer 98 engages against the bottom of floating piston 82 which limits the stroke length of rod 86 from distal end 88. However, in the event of a localized extreme upward deflection of cutterbar assembly 22, and in turn the outboard end of float arm 28, the pressure exerted by first retainer 98 against floating piston 82 exceeds the predetermined pressure within second bore 80, thus allowing movement of floating piston 82 and further movement of rod 86. Movement of floating piston 82 away from the normal stop position provides an excessive localized deflection indicator of cutterbar assembly 22. The fluid which is expelled from fluid chamber 94 is discharged to accumulator chamber 52B under substantially constant pressure. The maximum overload stop position occurs at a point in which floating piston 82 second retainer 100 is immediately adjacent distal end 88.


In the embodiment shown, accumulator 52 is shown as including two concentrically arranged accumulator chambers 52A and 52B operating at different pressures for compactness sake. However, separate accumulators each having a single accumulator chamber may also be provided.


Further, in the embodiment shown, a localized extreme upward deflection of cutterbar assembly 22 is indicated when rod 86 moves past the normal stop position. This can be detected, for example, by sensing the pressure of the fluid within fluid chamber 94 above a predetermined pressure using a sensor 102 and providing an output signal to controller 72. Other methods of indicating extreme upward deflection of cutterbar assembly 22 can also be used. For example, a single pressure sensor can be used to sense an increase in the pressure within accumulator chamber 52B. This is a simpler method of determining an overload condition in a float cylinder 50, but does not provide an indication of which float cylinder 50 was in an overload state. Alternatively, the position of rod 86 can be sensed to determine if the stroke length has exceeded the normal stroke length at the normal stop position. Rod 86 could be encoded such as with magnetic or optical encoding to determine when rod 86 has passed the normal stop position. Further, it is possible to sense the angular position of each float arm 28 relative to frame 26 to determine when a float arm 28 has passed the normal stop position.


Regardless of the particular method used, reel 56 above a float arm 28 which is determined to have moved past the normal stop position is automatically raised to avoid tines coming into contact with cutterbar assembly 22, which could result in damage to knives 42 and/or tines. Reel 56 can be raised by raising center reel support arm 58 and/or outer reel support arm 60. The longitudinal position of the particular float arm 28 relative to the support arms 58 and 60 can be used to determine the extent to which support arm(s) 58 and/or 60 must be raised to avoid interference between tines and cutterbar assembly 22. In the event the exact position of rod 86 is not known after traveling past the normal stop position, such as using the hydraulic passive stop of float cylinders 28 described above, then reel 56 can be moved to the extent necessary to ensure clearance when floating piston 82 second retainer 100 is at the maximum overload stop position immediately adjacent distal end 88. On the other hand, when the exact position of rod 86 is known after traveling past the normal stop position, such as by sensing the stroke length of rod 86 or angular orientation of float arm 28, then reel 56 is only moved an extent necessary to ensure clearance with cutterbar assembly 22 (i.e., there need not be an extra safety margin in this instance). Onboard controller 72 receives one or more sensor signals indicating that a float arm 28 has traveled past the normal stop position, (optionally) a relative location of the float arm 28, and (optionally) the extent of travel past the normal stop position, and actuates reel support arm 58 and/or 60 accordingly. As a simpler approach, it is also possible to raise both reels 56 a predetermined distance upon determining that one or more float arms 28 are in an overload condition.


During harvesting operation, cutting platform 12 is placed in a “float” position as combine 10 traverses across the ground. Typically, a field is opened by making several rounds around the periphery of the field. Combine 10 is then moved back and forth across the field, with the combine being shifted approximately the width of cutting platform 12 for each pass across the field. At opposite ends of the field, the cutting platform 12 is raised while the combine is being turned around for the next pass. Under normal operating conditions, the outboard ends of float arms 28 float up and down between the top and bottom normal stop positions as cutting platform 12 moves across the field. In the event cutterbar assembly 22 encounters an abrupt localized ground protrusion (FIG. 6), controller 72 determines that a float arm 28 has traveled past a normal stop position and actuates a reel support arm 58 and/or 60 to provide a clearance distance between tines and cutterbar assembly 22.


Having described the preferred embodiment, it will become apparent that various modifications can be made without departing from the scope of the invention as defined in the accompanying claims.

Claims
  • 1. An agricultural harvesting machine, comprising: a feeder housing; anda cutting platform attached to said feeder housing, said cutting platform including: at least one platform section, each said platform section having a frame, a cutterbar assembly at a leading edge of said platform section, and an excessive localized deflection indicator associated with said cutterbar assembly;at least one reel; andat least one pair of reel support arms, each said pair of reel support arms associated with a corresponding said reel, each said pair of reel support arms movable toward and away from said cutterbar assembly, dependent upon a state of said excessive localized deflection indicator.
  • 2. The agricultural harvesting machine of claim 1, wherein said excessive localized deflection indicator provides an output signal indicating an excessive localized deflection of said cutterbar assembly, and including a controller receiving said output signal and actuating at least one said pair of reel support arms.
  • 3. The agricultural harvesting machine of claim 2, wherein said at least one pair of reel support arms includes a first reel support arm and a second reel support arm, said controller moving at least one of said first reel support arm and said second reel support arm.
  • 4. The agricultural harvesting machine of claim 3, wherein said controller moves each of said first reel support arm and said second reel support arm.
  • 5. The agricultural harvesting machine of claim 3, wherein said at least one reel comprises two reels and including a third reel support arm, said first reel support arm and said second reel support arm comprising one said pair of reel support arms, said second reel support arm and said third reel support arm comprising another said pair of reel support arms.
  • 6. The agricultural harvesting machine of claim 5, wherein each of said first reel support arm, said second reel support arm and said third reel support arm are independently movable using said controller.
  • 7. The agricultural harvesting machine of claim 1, wherein each said platform section includes a plurality of float arms pivotally coupled with said frame, and an endless belt carried by said plurality of float arms, said excessive localized deflection indicator associated with at least one said float arm.
  • 8. The agricultural harvesting machine of claim 7, wherein said excessive localized deflection indicator comprises a plurality of indicators, each said indicator associated with a respective said float arm.
  • 9. The agricultural harvesting machine of claim 8, including a plurality of float cylinders, each said float cylinder associated with a respective said float arm and including a passive stop, each of said indicators comprising one of a pressure sensor and a position indicator associated with a respective said float cylinder.
  • 10. The agricultural harvesting machine of claim 9, wherein each said float cylinder includes a passive stop, each said indicator associated with a respective said passive stop.
  • 11. The agricultural harvesting machine of claim 1, wherein said at least one platform section comprises a plurality of platform sections.
  • 12. The agricultural harvesting machine of claim 1, wherein said plurality of platform sections comprises three platform sections.
  • 13. A cutting platform for use with an agricultural harvesting machine, comprising: at least one platform section, each said platform section having a frame, a cutterbar assembly at a leading edge of said platform section, and an excessive localized deflection indicator associated with said cutterbar assembly;at least one reel; andat least one pair of reel support arms, each said pair of reel support arms associated with a corresponding said reel, each said pair of reel support arms movable toward and away from said cutterbar assembly, dependent upon a state of said excessive localized deflection indicator.
  • 14. The cutting platform of claim 13, wherein said excessive localized deflection indicator provides an output signal indicating an excessive localized deflection of said cutterbar assembly, and including a controller receiving said output signal and actuating at least one said pair of reel support arms.
  • 15. The cutting platform of claim 14, wherein said at least one pair of reel support arms includes a first reel support arm and a second reel support arm, said controller moving at least one of said first reel support arm and said second reel support arm.
  • 16. The cutting platform of claim 15, wherein said controller moves each of said first reel support arm and said second reel support arm.
  • 17. The cutting platform of claim 15, wherein said at least one reel comprises two reels and including a third reel support arm, said first reel support arm and said second reel support arm comprising one said pair of reel support arms, said second reel support arm and said third reel support arm comprising another said pair of reel support arms.
  • 18. The cutting platform of claim 17, wherein each of said first reel support arm, said second reel support arm and said third reel support arm are independently movable using said controller.
  • 19. The cutting platform of claim 13, wherein each said platform section includes a plurality of float arms pivotally coupled with said frame, and an endless belt carried by said plurality of float arms, said excessive localized deflection indicator associated with at least one said float arm.
  • 20. The cutting platform of claim 19, wherein said excessive localized deflection indicator comprises a plurality of indicators, each said indicator associated with a respective said float arm.
  • 21. The cutting platform of claim 20, including a plurality of float cylinders, each said float cylinder associated with a respective said float arm and including a passive stop, each of said indicators comprising one of a pressure sensor and a position indicator associated with a respective said float cylinder.
  • 22. The cutting platform of claim 21, wherein each said float cylinder includes a passive stop, each said indicator associated with a respective said passive stop.
  • 23. The cutting platform of claim 13, wherein said at least one platform section comprises a plurality of platform sections.
  • 24. The cutting platform of claim 13, wherein said plurality of platform sections comprises three platform sections.
  • 25. A method of operating a cutting platform in an agricultural harvesting machine, comprising the steps of: detecting an excessive localized deflection of a cutterbar assembly; andmoving at least one reel away from said cutterbar assembly, dependent upon said detected excessive localized deflection of said cutterbar assembly.
  • 26. The method of operating a cutting platform of claim 25, including the step of outputting an output signal from an excessive localized deflection indicator to a controller indicating said excessive localized deflection of said cutterbar assembly, said controller actuating at least one pair of reel support arms, thereby moving at least one said reel away from said cutterbar assembly.
  • 27. The method of operating a cutting platform 26, wherein said at least one pair of reel support arms includes a first reel support arm and a second reel support arm, said controller moving at least one of said first reel support arm and said second reel support arm.
  • 28. The method of operating a cutting platform of claim 27, wherein said controller moves each of said first reel support arm and said second reel support arm.
  • 29. The method of operating a cutting platform of claim 27, wherein said at least one reel comprises two reels and including a third reel support arm, said first reel support arm and said second reel support arm comprising one said pair of reel support arms, said second reel support arm and said third reel support arm comprising another said pair of reel support arms.
  • 30. The method of operating a cutting platform of claim 29, wherein said controller independently moves each of said first reel support arm, said second reel support arm and said third reel support arm.
  • 31. The method of operating a cutting platform of claim 25, wherein said cutting platform includes a plurality of float arms carrying said cutterbar assembly, and said detecting step comprises detecting a position of at least one said float arm.
  • 32. The method of operating a cutting platform of claim 25, wherein said cutting platform includes a plurality of float arms carrying said cutterbar assembly and a plurality of float cylinders, each said float cylinder associated with a respective said float arm, said detecting step comprising detecting a position of at least one said float cylinder.