1. Field of the Invention
The present invention relates generally to the production of rolls of web material wound on cores supported by a shaft of the machine producing the material and more specifically to removal of rolls of web material from the shaft.
2. Description of the Related Art
Significant losses in product can occur during the operation of extracting a shaft (reel spool) from cylindrical cores placed thereon to be wound with web materials. The losses occur because the friction forces between the inside diameter of the reel spool core and the outside of the shaft are sometimes high and therefore, significant force may be required to extract the shaft from the core. High shaft extraction forces can damage the wound web material, shaft, core and/or extraction equipment. The friction forces between the spool and core may be aggravated by the weight of the material being wound on the core and/or compression of the core in the radial direction due to the compressive forces caused by winding a web of material around the core.
Many products, such as paper, tissue, textiles, plastics, films or polymer webs are wound on cylindrical cores in the machine producing the product. In this application, the word “web” will be used to refer to these materials and is intended to encompass all materials of a width greater than 10 inches (254 mm) that are wound onto any type of cylindrical cores, shafts or the like. Typically, the cores are cylindrical paper, cardboard or plastic tubes supported for rotation on shafts (also referred to as spools or reel spools) in the production equipment. The shaft and its fully wound roll or rolls of web material must be periodically removed from the production equipment and replaced with another shaft equipped with empty cores. The removed shaft is then separated from the rolls of web material, provided with empty cores and re-used.
Past methods of separating the shaft from the rolls of web material have involved using a shaft-extracting device or a roll-extracting device. Shaft extracting devices typically support the roll of web material on a floor, table, or like surface, then attach an external device to the shaft and pull the shaft out of the roll core. Shaft extractors may be fixed, or adjustable in elevation.
Roll-extracting devices separate the rolls from the shafts by fixing the shafts in a support device, which is usually cantilevered. The elevation of the shaft (and hence the rolls of web material) is changed to rest the outside surface of the wound web material on a cart, or the like. The cart is then moved in the opposite direction, away from the fixed support of the shaft, and pulls the rolls of web material axially off the shaft.
Excessive shaft extraction forces may damage the cores, shaft, shaft extracting equipment and the wound web material.
An object of the present invention is to provide a new and improved apparatus and method for reducing the friction between the core of a roll of web material and a shaft supporting the roll of web material.
An aspect of the invention relates to producing a fluid cushion, preferably of compressed air, between the shaft and core (with the alternative introduction, application or activation of any solid, liquid or gas or other means as described below), to reduce friction between the core and shaft. Reduced friction at the shaft/core interface lowers the forces required to separate rolls of web material from the shaft. Lower separation forces should mean less damage to the wound web material and less wear and tear on the shaft and extraction equipment.
According to further aspects of the present invention, the cushion/bearing material (encompassed by the term ‘fluid’, for the remainder of the specification) may be introduced to the core/shaft interface anywhere through the shaft structure. Alternatively, the fluid may be introduced directly between the reel spool and core, without first passing through the shaft itself.
The web material, whether paper, tissue, textile, plastic, film or polymer web, is wound on cylindrical cores of paperboard, cardboard or plastic supported for rotation by shafts in or near the equipment producing the web material. The word ‘web’ is used herein to refer to all materials of a width greater than 10 inches (254 mm) that are wound onto any type of cylindrical cores, shafts, or the like. When taking up the web material, it is important for the core to rotate with the shaft and not independently of the shaft. This typically means that the cores are configured to fit snugly over the shaft. This snug relationship between the core and shaft may be aggravated by atmospheric conditions such as humidity, variation in the size of the cores, the weight of the wound web material and by compressive forces exerted on the core by the wound web material. In combination, these factors frequently result in frictional forces between the core of a roll of web material and the supporting shaft that can be difficult to overcome. Forces generated during attempts to remove frictionally engaged cores from their shafts are frequently of such a magnitude as to damage the wound web material, the core, the shaft and/or the shaft extraction equipment.
The basic features of an exemplary embodiment are illustrated in
The injection of a pressurized fluid at the interface 36 of the core 32 and the shaft 20 produces a cushion or “fluid bearing” 40 between the core and the shaft. The fluid bearing 40 alters the coefficient of friction between the core 32 and the shaft 20, reducing the force necessary to produce relative motion between the core an the shaft.
The connection for introducing fluid is provided with a source of pressurized fluid. While compressed air is the most cost-effective fluid for the purposes of the present invention, other compressed gasses or liquids are compatible with the invention. A variation of the invention uses a lubricant introduced between the outside of the shaft and the core to reduce the friction between the core and shaft. The lubricant may be a fluid substance (air, as in the base invention, or liquids), or dry lubricants, including but not limited to graphite. In some cases, a carrier fluid, such as compressed air may be used to disperse a liquid or dry lubricant at the shaft/core interface.
An alternative embodiment of the inventive reel spool shaft 20a is illustrated in
Another alternative embodiment of the inventive reel spool shaft 20b uses low friction elements and/or materials on the shaft outside surface 44 of the shaft. As shown in
The present invention is applicable for use in conjunction with any and all types of shaft-extraction and or wound roll removal devices. Exemplary embodiments of the present invention have been set forth for purposes of illustration. The foregoing description should not be deemed a limitation of the invention. Various modifications, adaptations and alternatives may occur to one skilled in the art without departing from the spirit and the scope of the present invention.
This application claims the benefit of U.S. Provisional Application No. 60/535,875, filed Jan. 12, 2004.
Number | Date | Country | |
---|---|---|---|
60535875 | Jan 2004 | US |