Print systems are oftentimes provided with scanning print heads. During a print operation, these print heads are moved (“scanned”) along a scan axis for firing ink onto the substrate in a number of swaths, to the end of printing an image onto the substrate. During a printing operation, after each one or multiple scanning movements along the scan axis, the substrate is moved with respect to the print head and subsequently a next swath of ink is printed onto the substrate.
The print head is mounted onto a print head carriage. The print head carriage is usually mounted onto a guide for guiding the print head along the scan axis. The print head may be mounted on the carriage so as to be exchanged, or the print head and the print head carriage may form an integral assembly. Furthermore, it is advantageous to detect the position and/or the speed of the print head carriage. For an accurate detection of the print head carriage speed and/or position, most print systems are provided with a print head carriage feedback system.
For the purpose of illustration, certain embodiments of the present invention will now be described with reference to the accompanying diagrammatic drawings, in which:
In the following detailed description, reference is made to the accompanying drawings. The embodiments in the description and drawings should be considered illustrative and are not to be considered as limiting to the specific embodiment of element described. Multiple embodiments may be derived from the following description and/or drawings through modification, combination or variation of certain elements. Furthermore, it may be understood that also embodiments or elements that are not literally disclosed may be derived from the description and drawings by a person skilled in the art.
It may be a challenge to detect the position of the print head in an environment where ink aerosol is dispersed during use, and wherein multiple parts may be replaced. It may be a challenge to provide a feedback system that is robust enough to allow operators to exchange, maintain and/or clean parts such as the print head with a relatively low risk of damaging the feedback system. At the same time the feedback system may be accurate to prevent possible misalignment of ink drops.
In
The print system 1 may comprise a print head carriage 3. The print head carriage 3 may comprise a print head 5, as shown in
The print head carriage 3 may be arranged to scan along a scan axis 6 in opposite scanning directions M. The print head carriage 3 may be mounted onto a guide 7 to scan along the scan axis 6. The guide 7 may comprise a rail or tube or the like. A drive system (not shown) may be provided to drive the print head carriage 3 along the guide 7. The print head 5 may fire ink drops onto the substrate 2 while scanning in either one or both scanning directions M.
The print system 1 may comprise a print head carriage feedback system for determining a position of the print head carriage 3 and providing feedback to a controller 8 about the position of the print head carriage 3. The print head carriage feedback system may comprise a detector 9 for determining a position of the print head carriage 3 with respect to the scan axis. The detector 9 may send signals to the controller 8 for further processing. In the shown embodiment, the detector 9 is mounted onto the print head carriage 3. The print head carriage feedback system may further comprise a reference strip 10 that is arranged along the scan axis. The reference strip 10 may extend parallel to the guide 7. The detector 9 may be arranged to use the reference strip 10 as a reference for detecting the position of the print head carriage 3 with respect to the scan axis 6. As shown in
The print head carriage feedback system may further comprise a controller 8. The controller 8 may comprise a processor 13 that is configured to process signals received from the detector 9 for determining the position of the print head carriage 3 with respect to the scan axis 7, according to a predetermined algorithm. The controller 8 may further comprise a storage unit 12 comprising said algorithm for determining the position of the print head carriage 3 with respect to the scan axis 7.
The detector 9 may comprise an emitter 14 and a receiver 15, as illustrated by
In other embodiments, the detector 9 may be arranged differently. For example, the emitter 14 may be mounted onto the print head carriage 3 and multiple receivers 15 may be mounted in the print system 1 so as to have a fixed position with respect to the reference strip 10 so that the print head carriage 3 moves with respect to the receivers 15. In again another embodiment, the detector may be fixedly arranged within the print system 1 while the receivers may be mounted onto the print head carriage 3.
The transmission windows 11 may be arranged along a substantial part of the length L of the reference strip 10 in parallel to each other and also next to each other. The transmission windows 11 may have a substantially longitudinal shape, the longitudinal direction L being perpendicular to the scanning direction M. Each transmission window 11 may comprise one or more bridges 17. Such bridges 17 may locally reinforce the reference strip 10. The bridge 17 may extend across the width W of the respective transmission window 11. In this description, reinforcing may be understood as stiffening, strengthening, and/or locally decreasing the flexibility of the strip 10.
Each transmission window 11 may correspond to a position with respect to the scanning axis 7. Each transmission window 11 may comprise multiple transmission window portions 16. Transmission window portions 16 that correspond to the same transmission window 11 may be arranged on the same longitudinal axis A, having the same one dimensional position along the scanning axis 7, with a bridge 17 in between.
The transmission windows 11 may have rounded edges 22 near the ends, as is more clearly illustrated in
As can be seen from the embodiment of
The reference strip 10 may comprise two edge zones 18, 19 and a transmission zone 20. The reference strip 10 may comprise a top edge zone 18 and a bottom edge zone 19. The transmission zone 20 may be formed by the transmission windows 11.
The transmission zone 20 may comprise a repetitive pattern of bridges 17 and transmission window portions 16. In an embodiment the repetitive pattern may comprise three different transmission windows 11 having different locations and/or different numbers of bridges 17, as can be seen from in
Spaces 21 may be provided between the transmission windows 11. The spaces 21 may form transmission window frames. A function of the bridges 17 may be to reinforce these transmission window frames, to prevent deformation of the transmission window frame. The bridges 17 may affect signal reception by the detector 9 because they may block a signal. Hence, the transmission windows 11 and its bridges pattern may be determined according to a balance between signal reception and a relatively robust print head carriage feedback system.
In an embodiment, the reference strip 10 may have a length L of approximately 1 meter or more. In further embodiments the length of the reference strip 10 is approximately 1.9 meters or more, or approximately 2.4 meters or more, for example corresponding to the scan length of the respective print system 1. The reference strip 10 may have a thickness T (see
The reference strip 10 may have a height H of between approximately 2 and approximately 50 millimeters, or for example between approximately 5 and approximately 30 millimeters. In an embodiment, the height H of the reference strip 10 is approximately 13.5 millimeters. The transmission zone 20 may be between approximately 1 and approximately 20 millimeters, for example approximately 6 millimeter.
In an embodiment, the transmission windows 11 may have a width W of between approximately 0.01 and approximately 0.4 millimeters, for example between approximately 0.03 and approximately 0.2 millimeters. In an embodiment the width W of the transmission windows 11 is approximately 0.0847 millimeters. In an embodiment, a Space S between neighboring transmission windows 11 may be between approximately 0.04 and approximately 0.4 millimeter, for example between approximately 0.03 and approximately 0.2 millimeters. In an embodiment the said space S is approximately 0.0847 millimeters. The space S between subsequent transmission windows 11 may be approximately the same as the width W of the transmission windows 11. The pitch of the transmission windows 11 may be approximately 0.17 millimeters.
The bridges 17 may have a width B of between approximately 0.01 and approximately 0.5 millimeters, the width B being determined by the distance between two transmission window portions 16 of the same transmission window 11, as can be seen from
In the shown embodiments, the transmission windows 11 may comprise through holes in the reference strip 10, which may prevent that aerosol sticks to the transmission windows 11 and facilitates better transmission. The dimensions of the transmission windows 11 may prevent that aerosol passes through the transmission windows 11, onto the receivers 15. In another embodiment (not shown), the reference strip 10 may comprise a transparent film or layer covering the transmission windows 11.
The measures discussed in this disclosure may prevent aerosol from affecting the detector 9. The measures discussed in this disclosure may prevent that the reference strip 10 may be deformed during usage and/or during replacement and/or inspection of parts of the print system 1. Furthermore, the measures discussed in this disclosure may be manufactured relatively efficiently.
The above description is not intended to be exhaustive or to limit the invention to the embodiments disclosed. Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. The indefinite article “a” or “an” does not exclude a plurality, while a reference to a certain number of elements does not exclude the possibility of having more elements. A single unit may fulfil the functions of several items recited in the disclosure, and vice versa several items may fulfil the function of one unit.
In the following claims, the mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage. Multiple alternatives, equivalents, variations and combinations may be made without departing from the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5742303 | Taylor et al. | Apr 1998 | A |
5774141 | Cooper et al. | Jun 1998 | A |
6264303 | Watanabe | Jul 2001 | B1 |
6302514 | Eade et al. | Oct 2001 | B1 |
7419258 | Murakami et al. | Sep 2008 | B2 |
7631965 | Samoto et al. | Dec 2009 | B2 |
20040061044 | Soar | Apr 2004 | A1 |
20070086820 | Goss et al. | Apr 2007 | A1 |
20090251507 | Lai et al. | Oct 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20110292110 A1 | Dec 2011 | US |