This application is a US 371 Application from PCT/CN2017/106875 filed Oct. 19, 2017, which claims priority to Chinese Application No. 201710083188.4 filed Feb. 16, 2017, the technical disclosures of which are hereby incorporated herein by reference.
The present disclosure relates to a technical field of semiconductor integrated circuit, and more particularly to a reference voltage circuit with low temperature drift.
With the development of technology and the improvement of living standard, the portable device has become one of the necessities in life. The hybrid integrated circuit design, as the brain of the portable device, is faced with more complex and varied requirements and challenges while widely used. The cornerstone of the hybrid integrated circuit, i.e., the performance of the reference voltage, directly affects the performance experience of the terminal portable device. The temperature characteristic of the reference voltage directly determines the temperature range of operating the terminal device, and the minimum operating voltage of the reference voltage circuit limits another important performance, i.e., the endurance capacity of the terminal equipment.
The conventional design of the bandgap reference voltage is to generate the voltage with a positive temperature coefficient and the voltage with a negative temperature coefficient respectively, and then obtain the reference voltage with a zero temperature coefficient through calculation. It is relatively convenient to generate the voltage with the negative temperature coefficient, while it is not easy to obtain the reference voltage with the positive temperature coefficient. In conventional implementation modes, the reference voltage with the positive temperature coefficient is acquired by a voltage difference between base-emitter voltages of two transistors operating at different current densities. However, the designed circuit including the operational amplifier is difficult to operate normally under the condition of a low voltage, such as a voltage below 2V. In order to reduce the matching error, a larger number of transistors with larger sizes are usually selected, and the integrated circuit made in this way has a larger layout and a higher cost.
In the conventional technology, depletion-mode field-effect transistors are used to ensure the circuit to operate normally under an extremely low voltage. However, the temperature coefficient of the output reference voltage cannot be guaranteed, therefore the output reference voltage fluctuates greatly with the temperature, and the temperature has a great impact on the output of the reference voltage, thus it is very difficult to satisfy the application requirements for high precision.
In view of this, to address the problem in the prior art that the temperature has a great impact on the output reference voltage when the depletion-mode field-effect transistors are used to ensure the circuit to operate normally under an extremely low voltage, it is necessary to provide a reference voltage circuit with low temperature drift, which can normally operate at an extremely low voltage, while making the relevance between the output reference voltage and the temperature extremely low.
To achieve the objectives of the present application, a reference voltage circuit with low temperature drift is provided. The reference voltage circuit includes a first voltage unit, a second voltage unit and a K times' amplification unit; wherein,
the first voltage unit is configured to generate a first voltage, and a first end of the first voltage unit is grounded;
the K times' amplification unit is configured to amplify the first voltage by K times; a first end of the K times' amplification unit is connected to a second end of the first voltage unit; and a second end of the K times' amplification unit is connected to a first end of the second voltage unit, wherein K is a constant greater than zero;
the second voltage unit is configured to generate a second voltage; the first end of the second voltage unit is connected to a current source circuit; and a second end of the second voltage unit is connected to a third end of the first voltage unit, and serves as an output end of a reference voltage.
In an embodiment, the first voltage unit includes an NMOSFET (N-channel Metal-Oxide Semiconductor Field-Effect Transistor) MN; the second voltage unit includes a PMOSFET (P-channel Metal-Oxide Semiconductor Field-Effect Transistor) MP; the K times' amplification unit includes a resistor R1 and a resistor R2; wherein,
a source of the NMOSFET MN is connected to a first end of the resistor R2 and then grounded; a gate of the NMOSFET MN is connected to a second end of the resistor R2 and then connected to a first end of the resistor R1; a drain of the NMOSFET MN is connected to a drain and a gate of the PMOSFET MP and serves as the output end of the reference voltage; and
a source of the PMOSFET MP is connected to a second end of the resistor R1 and connected to the current source circuit.
In an embodiment, the first voltage unit includes an NPN transistor QN; the second voltage unit includes a PNP transistor QP; the K times' amplification unit includes a resistor R1 and a resistor R2; wherein, an emitter of the NPN transistor QN is connected to a first end of the resistor R2 and then grounded; a base of the NPN transistor QN is connected to a second end of the resistor R2 and then connected to a first end of the resistor R1; a collector of the NPN transistor QN is connected to a collector and a base of the PNP transistor QP, and serves as the output end of the reference voltage; and
an emitter of the PNP transistor QP is connected to a second end of the resistor R1, and then connected to the current source circuit.
In an embodiment, the current source circuit includes a current mirror circuit.
In an embodiment, the current mirror circuit includes a PMOSFET MP1, a PMOSFET MP2, a PMOSFET MP3, an NMOSFET MN1, an NMOSFET MN2 and a resistor Rs, wherein:
a source of the PMOSFET MP1, a source of the PMOSFET MP2 and a source of the PMOSFET MP3 are connected to the power supply; a gate of the PMOSFET MP2 and a gate of the PMOSFET MP3 are connected to a gate of the PMOSFET MP1; and the gate of the PMOSFET MP3 is connected to a drain of the PMOSFET MP2;
a drain of the PMOSFET MP1 is connected to a drain and a gate of the NMOSFET MN1; a source of the NMOSFET MN1 is grounded;
the drain of the PMOSFET MP2 is connected to a drain of the NMOSFET MN2; a gate of the NMOSFET MN2 is connected to a gate of the NMOSFET MN1; and a source of the NMOSFET MN2 is connected to the resistor Rs and then grounded;
a drain of the PMOSFET MP3 is connected to the first end of the second voltage unit.
The present application further provides a reference voltage circuit with low temperature drift, including a first voltage unit, a second voltage unit and a K times' amplification unit; wherein,
the first voltage unit is configured to generate a first voltage; a first end of the first voltage unit is grounded;
the K times' amplification unit is configured to amplify the first voltage by K times; a first end of the K times' amplification unit is connected to a second end of the first voltage unit; a second end of the K times' amplification unit is connected to a third end of the first voltage unit and connected to a current source circuit; wherein K is a constant greater than zero;
the second voltage unit is configured to generate a second voltage; a first end of the second voltage unit is connected to the third end of the first voltage unit and connected to the current source circuit; and a second end of the second voltage unit serves as an output end of a reference voltage.
In an embodiment, the first voltage unit includes a PMOSFET MP and a MOSFET M1; the second voltage unit includes an NMOSFET MN and a MOSFET M2; the K times' amplification unit includes a resistor R1 and a resistor R2; wherein:
a gate of the PMOSFET MP is connected to a first end of the resistor R1 and a first end of the resistor R2; a source the PMOSFET MP is connected to a second end of the resistor R1 and then connected to the current source circuit; a drain of the PMOSFET MP is connected to a gate and a drain of the MOSFET M1; a source of the MOSFET M1 is grounded; a second end of the R2 is grounded;
a gate and a drain of the NMOSFET MN are connected to the current source circuit; a source of the NMOSFET MN serves as the output end of the reference voltage and is connected to a drain of the MOSFET M2; a gate of the MOSFET M2 is connected to a gate and a drain of the MOSFET M1; and a source of the MOSFET M2 is grounded.
In an embodiment, the first voltage unit includes a PNP transistor QP and a transistor Q1; the second voltage unit includes an NPN transistor QN and a transistor Q2; the K times' amplification unit includes a resistor R1 and a resistor R2, wherein:
a base of the PNP transistor QP is connected to a first end of the resistor R1 and a first end of the resistor R2; an emitter of the PNP transistor QP is connected to a second end of the resistor R1 and connected to the current source circuit; a collector of the PNP transistor QP is connected to a base and a collector of the transistor Q1, an emitter of the transistor Q1 is grounded; a second end of the resistor R2 is grounded;
a base and a collector of the NPN transistor QN are connected to the current source circuit; an emitter of the NPN transistor QN serves as the output end of the reference voltage and is connected to a collector of the transistor Q2; a base of the transistor Q2 is connected to the base and the collector of the transistor Q1; and an emitter of the transistor Q2 is grounded.
In an embodiment, the current source circuit includes a current mirror circuit.
In an embodiment, the current mirror circuit includes a PMOSFET MP1, a PMOSFET MP2, a PMOSFET MP3, an NMOSFET MN1, an NMOSFET MN2, and a resistor Rs, wherein:
a source of the PMOSFET MP1, a source of the PMOSFET MP2 and a source of the PMOSFET MP3 are connected to the same power supply; a gate of the PMOSFET MP2 and a gate of the PMOSFET MP3 are connected to a gate of the PMOSFET MP1; and a gate of the PMOSFET MP3 is connected to a drain of the PMOSFET MP2;
a drain of the PMOSFET MP1 is connected to a drain and a gate of the NMOSFET MN1; and a source of the NMOSFET MN1 is grounded;
the drain of the PMOSFET MP2 is connected to a drain of the NMOSFET MN2; a gate of the NMOSFET MN2 is connected to a gate of the NMOSFET MN1; and a source of the NMOSFET MN2 is connected to the resistor Rs and grounded; and
a drain of the PMOSFET MP3 is connected to the first end of the second voltage unit.
The advantages of the disclosure are as follows:
As for the above-mentioned reference voltage circuit with low temperature drift, the first voltage unit and second voltage unit both having the same positive temperature coefficient or the same negative temperature coefficient are directly utilized, to calculate and obtain the value of K satisfying K*(∂V1/∂T)=(∂V2/∂T), and then design a K times' amplification unit based on the value of K obtained through calculation; and the K times' amplification unit is connected into the circuit, thereby making the output reference voltage have extremely low correlation with the temperature, or even independent of the temperature, i.e., achieving the effects that, under different temperatures, the output reference voltages do not diverge greatly which can satisfy the application requirements for high precision. What's more, the circuit has simple structure, and few device types are required, thereby greatly reducing the difficulty and the risks in design. The reference voltage circuit has very high practicability and versatility in the field of integrated circuit.
In order to make the objectives, technical solutions and advantages of the present disclosure clearer, the reference voltage circuit with low temperature drift of the present disclosure will be further described in detail below through embodiments with reference to accompanying drawings. It should be understood that the specific embodiments described herein are merely illustration of the disclosure, but not intended to limit the present disclosure.
In an embodiment, as shown in
In the embodiment of the reference voltage circuit with low temperature drift, the first voltage unit generates a first voltage V1 when operating, and the second voltage unit generates a second voltage V2 when operating. The voltage VA at point A in the circuit is determined by the K times' amplification unit and the first voltage unit together, i.e., VA=K*V1; and the output reference voltage VREF satisfies VREF=K*V1−V2. In order to make the output reference voltage VREF independent of the temperature, it is required that ∂VREF/∂T=K*(∂V1/∂T)−(∂V2/∂T)=0, i.e., K*(∂V1/∂T)=(∂V2/∂T). However, with regard to the commonly used first and second voltage units, such as a Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) and a transistor, the temperature coefficients of the voltages decrease as the temperature increases, that is, the commonly used first voltage unit and the second voltage unit have temperature coefficients in the same direction, i.e., (∂V1/∂T)*(∂V2/∂T)>0. In order to ensure that K*(∂V1/∂T)=(∂V2/∂T), the value of K needs to be a constant greater than zero (if the value of K is negative, it cannot satisfy the equation), that is, the value of K satisfying the equation K*(∂V1/∂T)=(∂V2/∂T) is calculated and obtained by (∂V1/∂T) and (∂V2/∂T), and then the K times' amplification unit is designed according to the value of K, thereby making the output reference voltage VREF independent of the temperature.
As for the reference voltage circuit with low temperature drift in the present embodiment, the first voltage unit and the second voltage unit both having positive temperature coefficients or negative temperature coefficients are directly used to calculate and obtain the value of K satisfying K*(∂V1/∂T)=(∂V2/∂T), and then design a K times' amplification unit based on the value of K obtained through calculation. The K times' amplification unit is connected between the second end of the first voltage unit and the first end of the second voltage unit, thereby making the output reference voltage have extremely low correlation with the temperature, or even independent of the temperature, that is, achieving the effects that, under different temperatures, the output reference voltages do not diverge greatly, which can satisfy the application requirements for high precision. What's more, the circuit has simple structure, and few device types are required, thereby greatly reducing the difficulty and the risks in design. The reference voltage circuit has very high practicability and versatility in the field of the integrated circuit.
Wherein, the first voltage unit and the second voltage unit can be MOSFETs or transistors respectively.
In an embodiment, referring to
The present embodiment is a specific circuit structure for implementing the circuit diagram shown in
VREF=(1+R1/R2) Vgsn−|Vgsp|, where Vgsp is the gate-source voltage of the PMOSFET MP.
For the NMOSFET MN and the PMOSFET MP, there are: Vgsn=Vdsatn+Vthn, and |Vgsp|=|Vdsatp|+|Vthp|, where Vdsatn is the voltage variation value of the NMOSFET, and Vdsatp is the voltage variation value of the PMOSFET. From the above equations: VREF=(1+R1/R2)Vgsn−|Vgsp|, Vgsn=Vdsatn+Vthn, and |Vgsp|=|Vdsatp|+|Vthp|, we get that, when the current I is constant, and if the resistances of the resistors R1 and R2 are sufficiently large, the reference voltage VREF is independent of the supply voltage. When the current I is constant, and if the width-to-length ratio of the NMOSFET MN and the width-to-length ratio of the PMOSFET MP are sufficiently large, the voltage variation values Vdsatn and Vdsatp have little impact on the NMOSFET MN and the PMOSFET MP (similar to a water pipe, when the width-to-length ratio of the water pipe is sufficiently large, the variation value of the water flow rate has little impact on the water pipe). Vgsn and |Vgsp| have little correlation with the current I and are mainly determined by Vthn and |Vthp|, while Vthn and |Vthp| are determined by the processes for producing the NMOSFET MN and the PMOSFET MP. For most processes, the temperature coefficient Tgsn of Vgsn and temperature coefficient Tgsp of |Vgsp| are both negative and satisfy |Tgsn|<|Tgsp|. Therefore, when the ratio of R1 to R2 is set properly, and satisfies (1+R1/R2)|Tgsn|=|Tgsp|, the reference voltage VREF is independent of the temperature.
As for the reference voltage circuit with low temperature drift in the present embodiment, two voltages both having negative temperature coefficients are utilized to compute and obtain a voltage having a zero temperature coefficient. In order to generate the reference voltage, the supply voltage only needs to be higher than (1+R1/R2)Vgsn≈Vthn+Vthp, and the circuit of the present embodiment is implemented by providing only four devices including the PMOSFET MP, the NMOSFET MN, and the resistors R1 and R2. The structure of the reference voltage circuit is extremely simple and is easy to implement; the layout of the integrated circuit is small in size; and the reference voltage circuit is of great value in the industrial application.
In an embodiment, referring to
The present embodiment is a specific circuit structure for implementing the circuit diagram shown in
In an embodiment, referring to
In an embodiment, referring to
As for the specific circuit structure for generating the current I in the above embodiment, the current mirror circuit can generate the stable current I independent of the power supply. The current mirror circuit mainly includes a PMOSFET MP1 and a PMOSFET MP2, an NMOSFET MN1 and an NMOSFET MN2, and a resistor Rs. Wherein, the PMOSFET MP1 and the PMOS transistor MP2 have the same geometry sizes, and the proportion of the geometry sizes of the NMOSFET MN1 to the NMOSFET MN2 is 1: k.
From the NMOSFETs MN1, MN2 and the resistor Rs, it follows that: Vgs1=Vgs2+I*Rs, where I is the current flowing through the NMOSFETs MN1 and MN2, and Vgs1 and Vgs2 are respectively the gate voltages of the NMOSFET MN1 and the NMOSFET MN2. According to the above formula and the equation of the drain current and the gate voltage of the NMOSFET operating in the saturation region, it is obtained that I=2/(un Cox (W/L)N)*1/(Rs2)*(1−1/√k)2, where W/L is the width-to-length ratio of the NMOSFET, un is the migration rate of electrons of the NMOSFET, and Cox is the capacitance per unit area of gate oxide layer of the NMOSFET. From this formula, it is not difficult to find that the current I is independent of the supply voltage (but is still a function of the temperature and the process), the magnitude of the current I is determined by the resistance of the resistor Rs and the proportion coefficient k of the geometry sizes of the NMOSFET MN2 to the NMOSFET MN1.
The PMOSFETs MP and MP3, the NMOSFET MN, and the resistors R1 and R2 shown in the circuit of
Based on the same invention concept, a reference voltage circuit with low temperature drift is further provided. As shown in
The operating principle of the reference voltage circuit with low temperature drift in the present embodiment is similar to that of the reference voltage circuit with low temperature drift in the foregoing embodiments. The first voltage unit generates a first voltage V1 when operating, and the second voltage unit generates a second voltage V2 when operating. The voltage VA at point A in the circuit is determined by the K times' amplification unit and the first voltage unit together, i.e., satisfies VA=K*V1, and the output reference voltage VREF satisfies VREF=K*V1−V2. In order to make the output reference voltage VREF independent of the temperature, ∂VREF/∂T=K*(∂V1/∂T)−(∂V2/∂T)=0 is required, i.e., K*(∂V1/∂T)=(∂V2/∂T) is required. As for the commonly used first and second voltage units, such as the MOSFET and the transistor, the temperature coefficients of the voltages thereof decrease as temperature increases. That is, the commonly used first and second voltage units have the temperature coefficients in the same direction, i.e., (∂V1/∂T)*(∂V2/∂T)>0. In order to ensure that K*(∂V1/∂T)=(∂V2/∂T), the value of K needs to be a constant greater than zero. During designing the reference voltage circuit with low temperature drift of the present embodiment, it is necessary to obtain a value of K satisfying the equation K*(∂V1/∂T)=(∂V2/∂T) through calculation according to (∂V1/∂T) and (∂V2/∂T), and then to design a K times' magnification unit according to the value of K, so as to make the output reference voltage VREF independent of the temperature.
As for the reference voltage circuit with low temperature drift in the present embodiment, the first voltage unit and the second voltage unit both having positive temperature coefficients or negative temperature coefficients are directly used to calculate and obtain the value of K satisfying the equation K*(∂V1/∂T)=(∂V2/∂T), and then design a K times' amplification unit based on the value of K obtained through calculation; and the K times' amplification unit is connected into the circuit, thereby making the output reference voltage have extremely low correlation with the temperature, or even independent of the temperature, i.e., achieving the effects that, under different temperatures, the output reference voltages do not diverge greatly, which can satisfy the application requirements for high precision What's more, the circuit has simple structure, and few device types are required, thereby greatly reducing the difficulty and the risks in design. The reference voltage circuit has very high practicability and versatility in the field of the integrated circuit.
In an embodiment, referring to
The present embodiment, a preferred embodiment, is a specific circuit structure for implementing the circuit diagram shown in
As for the NMOSFET MN and the PMOSFET MP, there are: Vgsn=Vdsatn+Vthn, and |Vgsp|=|Vdsatp|+|Vthp|, where Vdsatn is the voltage variation value of the NMOSFET, and Vdsatp is the voltage variation value of the PMOSFET. From the above equations VREF=(1+R1/R2) Vgsp−|Vgsn|, Vgsn=Vdsatn+Vthn, and |Vgsp|=|Vdsatp|+|Vthp|, it is got that, when the current I is constant, and if the resistances of the resistors R1, R2 are sufficiently large, the reference voltage VREF is independent of the supply voltage. And when the current I is constant, and if the width-to-length ratio of the NMOSFET MN and the width-to-length ratio of the PMOSFET MP are sufficiently large, the voltage variation values Vdsatn and Vdsatp have little impact on the NMOSFET MN and on the PMOSFET MP. Vgsn and Vgsp have little correlation with the current I, and are mainly determined by Vthn and |Vthp|, while Vthn and |Vthp| are determined by the processes for producing the NMOSFET MN and the PMOSFET MP. For most processes, the temperature coefficient Tgsn of Vgsn and Tgsp of |Vgsp| are both negative and satisfy |Tgsn|>|Tgsp|, therefore, if the ratio of R1 to R2 is set properly and satisfies (1+R1/R2)|Tgsp|=|Tgsn|, then the reference voltage VREF is independent of the temperature.
As for the reference voltage circuit with low temperature drift in the present embodiment, two voltages both having the negative temperature coefficients are utilized to compute and obtain a voltage having a zero temperature coefficient. In order to generate the reference voltage, the supply voltage only needs to be higher than (1+R1/R2)Vgsp≈Vthn+Vthp, and the circuit of this embodiment is implemented by providing only the PMOSFET MP, the NMOSFET MN, the MOSFET M1, the MOSFET M2, and the resistors R1 and R2. The structure of the reference voltage is extremely simple and is easy to implement; the layout of the integrated circuit is small in size; and the reference voltage circuit is of great value in the industrial application.
In an embodiment, the first voltage unit includes a PNP transistor QP and a transistor Q1; the second voltage unit includes an NPN transistor QN and a transistor Q2; and the K times' amplification unit includes a resistor R1 and a resistor R2. The base of the PNP transistor QP is connected to the first end of the resistor R1 and the first end of the resistor R2. Wherein, the base of the PNP transistor QP is connected to the first end of the resistor R1 and the first end of the resistor R2, and then connected to the current source circuit; the collector of the PNP transistor QP is connected to the base and collector of the transistor Q1; the emitter of the transistor Q1 is grounded; the second end of the resistor R2 is grounded; the base and collector of the NPN transistor QN are connected to the current source circuit; the emitter of the NPN transistor QN serves as the output end of the reference voltage and is connected to the collector of the transistor Q2; the base of the transistor Q2 is connected to the base and collector of the transistor Q1, and the emitter of the transistor Q2 is grounded.
The present embodiment is a specific circuit structure for implementing the circuit diagram shown in
In an embodiment, the current source circuit includes a current mirror circuit. Specifically, the current mirror circuit includes a PMOSFET MP1, a PMOSFET MP2, a PMOSFET MP3, an NMOSFET MN1, an NMOSFET MN2, and a resistor Rs. Wherein, the sources of the PMOSFET MP1, the PMOSFET MP2 and the PMOSFET MP3 are connected to the same power supply; the gates of the PMOSFET MP2 and the PMOSFET MP3 are connected to the gate of the PMOSFET MP1; and the gate of the PMOSFET MP3 is connected to the drain of the PMOSFET MP2. The drain of the PMOSFET MP1 is connected to the drain and gate of the NMOSFET MN1; and the source of the NMOSFET MN1 is grounded. The drain of the PMOSFET MP2 is connected to the drain of the NMOSFET MN2; the gate of the NMOSFET MN2 is connected to the gate of the NMOSFET MN1; the source of the NMOSFET MN2 is connected to the resistor Rs and then grounded; and the drain of the PMOSFET MP3 is connected to the first end of the second voltage unit.
The present embodiment is a specific circuit structure for generating the stable current I independent of the power supply. The principle of generating the current I is described in detail in the foregoing embodiments and will not be described repeatedly here.
In order to further illustrate the reference voltage circuit with low temperature drift in the above embodiment, the illustration is provided in combination with the simulation results of simulating relevant parameters of the reference voltage circuit with low temperature drift as follows:
As for the reference voltage circuit with low temperature drift in the above embodiment, the first voltage unit and second voltage unit both having the positive temperature coefficients or the negative temperature coefficients are directly used to calculate and obtain the value of K satisfying K*(∂V1/∂T)=(∂V2/∂T), and then design a K times' amplification unit based on the value of K obtained through calculation; and the K times' amplification unit is connected into the circuit, thereby making the output reference voltage have extremely low correlation with the temperature, or independent of the temperature, that is, achieving the effects that, under different temperatures, that the output reference voltages do not diverge greatly, which can satisfy the application requirements for high precision. What's more, the circuit has simple structure, and few device types are required, thereby greatly reducing the difficulty and the risks in design. The reference voltage circuit has very high practicability and versatility in the field of the integrated circuit.
The technical features of the above-described embodiments may be arbitrarily combined. For the sake of brevity of description, not all possible combinations of the various technical features in the above embodiments are described. However, as long as there is no contradiction between the combinations of these technical features, all should be considered within the scope of the disclosure.
The above-mentioned embodiments are merely illustrative of several embodiments of the present application, and the description thereof is more specific and detailed, but not intended to limit the scope of the disclosure. It should be noted that various variations and modifications may be made by those skilled in the art without departing from the conception of the present disclosure, and these variations and modifications are all within the scope of the disclosure. Therefore, the scope of the disclosure should be subject to the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2017 1 0083188 | Feb 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2017/106875 | 10/19/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/149166 | 8/23/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6441680 | Leung et al. | Aug 2002 | B1 |
20080007243 | Matsumoto | Jan 2008 | A1 |
20080169794 | Rentala et al. | Jul 2008 | A1 |
20090146727 | Huang | Jun 2009 | A1 |
20090160539 | Hsieh | Jun 2009 | A1 |
20100007322 | Huang | Jan 2010 | A1 |
20100237932 | Yano | Sep 2010 | A1 |
20120119819 | Pyo et al. | May 2012 | A1 |
20130193935 | Pan | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
102253684 | Nov 2011 | CN |
102279611 | Dec 2011 | CN |
101598954 | Jan 2012 | CN |
104793689 | Jul 2015 | CN |
104977970 | Oct 2015 | CN |
204808102 | Nov 2015 | CN |
105892548 | Aug 2016 | CN |
106774594 | May 2017 | CN |
206479868 | Sep 2017 | CN |
2015087802 | May 2015 | JP |
Entry |
---|
Zhang, Quian; “(Design of Voltage Reference Base on CMOS Threshold Voltage)”; CMOS; 2009; p. 184-188. |
E/D NMOS Voltage Reference; ACTA Electronica Sinica; vol. 15; Mar. 1987. |
Extended European Search Report for EP Application No. 17896753.5 dated Jul. 22, 2020 (12 pages). |
Number | Date | Country | |
---|---|---|---|
20190361476 A1 | Nov 2019 | US |