This application claims priority under 35 U.S.C. §119 to Japanese Patent Application No. 2008-327935 filed on Dec. 24, 2008, the entire content of which is hereby incorporated by reference.
1. Technical Field
The present invention relates to a reference voltage circuit for generating a reference voltage.
2. Description of the Related Art
Description is given of a conventional reference voltage circuit.
In a metal oxide semiconductor (MOS) transistor that operates in weak inversion, when a gate width is represented by W; a gate length, L; a threshold voltage, Vth; a gate-source voltage, Vgs; the electron charge quantity, q; the Boltzmann's constant, k; absolute temperature, T; and constants each determined depending on a process, Id0 and n, a drain current Id is calculated using Expression (61).
Id=Id0·(W/L)·exp{(Vgs−Vth)·q/nkT} (61)
When a thermal voltage is expressed by “nkT/q” and is represented by UT, Expression (62) is established.
Id=Id0·(W/L)·exp{(Vgs−Vth)/UT} (62)
Accordingly, the gate-source voltage Vgs is calculated using Expression (63).
Vgs=UT·ln [Id/{Id0·(W/L)}]+Vth (63)
P-type MOS (PMOS) transistors 43 to 45 have a current mirror connection, and hence drain currents Id41, Id42, and Id45 of the PMOS transistors 43, 44, and 45 take the same value.
A voltage generated across a resistor 58 is a voltage (Vgs41−Vgs42) determined by subtracting the gate-source voltage Vgs42 of an N-type MOS (NMOS) transistor 42 that operates in weak inversion from the gate-source voltage Vgs41 of an NMOS transistor 41 that operates in weak inversion. Accordingly, based on the voltage (Vgs41−Vgs42) and a resistance R58 of the resistor 58, the drain current Id42 is calculated, and the drain current Id45 is also calculated. Then, Expression (64) is established.
Id45=Id42=(Vgs41−Vgs42)/R58 (64)
Accordingly, when a resistance of a resistor 59 is represented by R59, an output voltage Vref generated across the resistor 59 is calculated using Expression (65).
Vref=R59·Id45=(R59/R58)·(Vgs41−Vgs42) (65)
Through Expression (63), when a gate width of the NMOS transistor 41 is represented by W41; a gate length of the NMOS transistor 41, L41; a threshold voltage of the NMOS transistor 41, Vth41; a gate width of the NMOS transistor 42, W42; a gate length of the NMOS transistor 42, L42; a threshold voltage of the NMOS transistor 42, Vth42; and a difference between the threshold voltages of the NMOS transistors 41 and 42, ΔVth (ΔVth=Vth41−Vth42), the output voltage Vref is calculated using Expression (66).
Vref=(R59/R58)·[UT·ln {(W42/L42)/(W41/L41)}+ΔVth] (66)
As expressed in Expression (66), each aspect ratio of the NMOS transistors 41 and 42 is adjusted so that a temperature characteristic of the first term and a temperature characteristic of the second term may cancel each other. As a result, the output voltage Vref becomes less likely to be dependent on temperature (see, for example, JP 3024645 B).
However, it is between a source and a back gate of the NMOS transistor 42 and a ground terminal 100 that the resistor 58 exists. Accordingly, process fluctuations in the resistor 58 cause fluctuations in the threshold voltage Vth42 as well. In other words, the threshold voltage Vth42 depends not only on process fluctuations in the NMOS transistor 42 but also on the process fluctuations in the resistor 58. As a result, a reference voltage, which should be independent of temperature, is determined based on the difference between the threshold voltages of the NMOS transistors 41 and 42 (ΔVth=Vth41−Vth42), resulting in a problem of an unstable reference voltage.
The present invention has been made in view of the above-mentioned problem, and provides a reference voltage circuit capable of generating a temperature-independent reference voltage more stably.
In order to solve the above-mentioned problem, the present invention provides a reference voltage circuit for generating a reference voltage, including: a first power supply terminal; a second power supply terminal; a current supply circuit that has an input terminal to which a current is input, and a first output terminal and a second output terminal from each of which a current determined based on the current flowing through the input terminal is output; a first resistor; a first metal oxide semiconductor (MOS) transistor of a first conductivity type, the first MOS transistor having a gate connected to the first output terminal, a source and a back gate that are connected to the first power supply terminal, and a drain connected to the first output terminal via the first resistor, the first MOS transistor operating in weak inversion; a second MOS transistor of the first conductivity type, the second MOS transistor having a gate connected to a connection point between the first resistor and the first MOS transistor, a source and a back gate that are connected to the first power supply terminal, and a drain connected to the input terminal, the second MOS transistor having an absolute value of a threshold voltage of the second MOS transistor smaller than an absolute value of a threshold voltage of the first MOS transistor, the second MOS transistor operating in weak inversion; and a second resistor across which the reference voltage is generated, the second resistor being provided between the second output terminal and the first power supply terminal.
Further, in order to solve the above-mentioned problem, the present invention provides a reference voltage circuit for generating a reference voltage, including: a first power supply terminal; a second power supply terminal; a current supply circuit that has an input terminal to which a current is input, and an output terminal from which a current determined based on the current flowing through the input terminal is output; a first resistor; a first MOS transistor of a second conductivity type, the first MOS transistor having a gate connected to the output terminal, a source and a back gate that are connected to the second power supply terminal, and a drain connected to the output terminal via the first resistor, the first MOS transistor operating in weak inversion; a second MOS transistor of the second conductivity type, the second MOS transistor having a gate connected to a connection point between the first resistor and the first MOS transistor, a source and a back gate that are connected to the second power supply terminal, and a drain connected to the input terminal, the second MOS transistor having an absolute value of a threshold voltage of the second MOS transistor smaller than an absolute value of a threshold voltage of the first MOS transistor, the second MOS transistor operating in weak inversion; a third MOS transistor of the second conductivity type, the third MOS transistor having a gate connected to the output terminal, and a source and a back gate that are connected to the second power supply terminal; and a second resistor across which the reference voltage is generated, the second resistor being provided between a drain of the third MOS transistor and the first power supply terminal.
According to the present invention, each of the first and second MOS transistors has the source and the back gate that are short-circuited, and hence the threshold voltages of the first and second MOS transistors respectively depend only on process fluctuations in the first and second MOS transistors and not on process fluctuations in other elements. As a result, a temperature-independent reference voltage may be generated more stably.
In the accompanying drawings:
Referring to the accompanying drawings, embodiments of the present invention are described below.
First, a configuration of a reference voltage circuit according to a first embodiment of the present invention is described.
The reference voltage circuit includes P-type metal oxide semiconductor (PMOS) transistors 3 to 5, N-type metal oxide semiconductor (NMOS) transistors 1 and 2, and resistors 50 and 51. The reference voltage circuit further includes a power supply terminal 101, a ground terminal 100, and an output terminal 102.
The PMOS transistor 3 has a gate and a drain that are connected to a drain of the NMOS transistor 2, and has a source and a back gate that are connected to the power supply terminal 101. The PMOS transistor 4 has a gate connected to the gate of the PMOS transistor 3, a source and a back gate that are connected to the power supply terminal 101, and a drain connected to one terminal of the resistor 50 and a gate of the NMOS transistor 1. The PMOS transistor 5 has a gate connected to the gate of the PMOS transistor 3, a source and a back gate that are connected to the power supply terminal 101, and a drain connected to the output terminal 102. The NMOS transistor 2 has a gate connected to another terminal of the resistor 50 and a drain of the NMOS transistor 1, and has a source and a back gate that are connected to the ground terminal 100. The NMOS transistor 1 has a source and a back gate that are connected to the ground terminal 100. The resistor 51 is provided between the output terminal 102 and the ground terminal 100.
The PMOS transistors 3 to 5 have the same aspect ratio. In addition, the gates of the PMOS transistors 3 to 5 are connected to one another. Accordingly, respective drain currents flowing through the PMOS transistors 3 to 5 also take the same value. The PMOS transistors 3 to 5 function as a current supply circuit, and the current supply circuit has an input terminal (drain of the PMOS transistor 3) to which a current is input, and an output terminal (drain of the PMOS transistor 4) and an output terminal (drain of the PMOS transistor 5) from each of which a current determined based on the current flowing through the input terminal is output.
Further, each of the NMOS transistors 1 and 2 is designed to have a gate width large enough with respect to the corresponding drain current, and hence the NMOS transistors 1 and 2 operate in weak inversion.
Still further, the NMOS transistor 1 has an absolute value of its threshold voltage larger than an absolute value of a threshold voltage of the NMOS transistor 2.
The resistors 50 and 51 are formed of the same kind of polycrystalline silicon. Ion implantation dose of the resistors 50 and 51 is set so that the resistors 50 and 51 may have a minimum temperature coefficient.
The NMOS transistors 1 and 2 are formed on substrates having the same concentration, and only one of the NMOS transistor 1 and the NMOS transistor 2 is subjected to channel doping. Accordingly, process fluctuations in difference between the threshold voltages of the NMOS transistors 1 and 2 depend only on fluctuations in the channel doping process of the one of the NMOS transistor 1 and the NMOS transistor 2. As a result, compared to the case of using depletion-type NMOS transistors, the influence of the process fluctuations may be reduced.
Alternatively, the NMOS transistors 1 and 2 are formed on substrates having the same concentration, and the NMOS transistor 1 and the NMOS transistor 2 may be subjected to channel doping once and thereafter, only one of the NMOS transistor 1 and the NMOS transistor 2 may be subjected to channel doping once more.
Next, an operation of the reference voltage circuit according to the first embodiment is described.
In a MOS transistor that operates in weak inversion, when a gate width is represented by W; a gate length, L; a threshold voltage, Vth; a gate-source voltage, Vgs; the electron charge quantity, q; the Boltzmann's constant, k; absolute temperature, T; and constants each determined depending on a process, Id0 and n, a drain current Id is calculated using Expression (11).
Id=Id0·(W/L)·exp{(Vgs−Vth)·q/nkT} (11)
When a thermal voltage is expressed by “nkT/q” and is represented by UT, Expression (12) is established.
Id=Id0·(W/L)·exp{(Vgs−Vth)/UT} (12)
Accordingly, the gate-source voltage Vgs is calculated using Expression (13).
Vgs=UT·ln [Id/{Id0·(W/L)}]+Vth (13)
When a gate-source voltage of the NMOS transistor 1 is represented by Vgs1; a gate-source voltage of the NMOS transistor 2, Vgs2; and a resistance of the resistor 50, R50, a drain current Id1 of the NMOS transistor 1 is calculated using Expression (14).
Id1=(Vgs1−Vgs2)/R50 (14)
Further, through Expression (13), when a drain current of the NMOS transistor 2 is represented by Id2; a gate width of the NMOS transistor 1, W1; a gate length of the NMOS transistor 1, L1; the threshold voltage of the NMOS transistor 1, Vth1; a gate width of the NMOS transistor 2, W2; a gate length of the NMOS transistor 2, L2; and the threshold voltage of the NMOS transistor 2, Vth2, the gate-source voltages Vgs1 and Vgs2 are respectively calculated using Expressions (15) and (16).
Vgs1=UT·ln [Id1/{Id0·(W1/L1)}]+Vth1 (15)
Vgs2=UT·ln [Id2/{Id0·(W2/L2)}]+Vth2 (16)
Through Expressions (14) to (16), when the drain currents Id1 and Id2 take the same value, and a difference between the threshold voltages of the NMOS transistors 1 and 2 is represented by ΔVth (ΔVth=Vth1−Vth2), the drain current Id1 is calculated using Expression (17) and Expression (18).
Id1=(1/R50)·[UT·ln {(Id1/Id2)·(W2/L2)/(W1/L1)}+ΔVth] (17)
Id1=(1/R50)·[UT·ln {(W2/L2)/(W1/L1)}+ΔVth] (18)
In Expression (18), the thermal voltage UT has a positive temperature coefficient because the thermal voltage UT is directly proportional to temperature. In addition, as illustrated in
Then, because the gates of the PMOS transistors 4 and 5 are connected to each other and the sources thereof are connected to the power supply terminal 101, the drain current Id1 and a drain current Id5 take the same value. Accordingly, Expression (19) is established.
Id5=Id1 (19)
When a resistance of the resistor 51 is represented by R51, an output voltage Vref generated between the output terminal 102 and the ground terminal 100 (generated across the resistor 51) is calculated using Expression (20).
Vref=R51·d5=(R51/R50)·[UT·ln {(W2/L2)/(W1/L1)}+ΔVth] (20)
In Expression (20), in the same manner as described above, each aspect ratio of the NMOS transistors 1 and 2 is adjusted so that the temperature characteristic of the first term and the temperature characteristic of the second term may cancel each other. As a result, the output voltage Vref becomes less likely to be dependent on temperature. Further, each of the resistors 50 and 51, which are formed of the same kind of polycrystalline silicon, has the temperature characteristic, but those temperature characteristics cancel each other as expressed in “(R51/R50)” in Expression (20).
Each of the NMOS transistors 1 and 2 has the source and the back gate that are short-circuited, and hence the threshold voltages Vth1 and Vth2 respectively depend only on the process fluctuations in the NMOS transistors 1 and 2 and not on process fluctuations in other elements. As a result, the reference voltage Vref that is independent of temperature is generated more stably.
Note that, instead of using the resistors 50 and 51, MOS transistors that operate in a linear region may be used.
Further, such a configuration may be employed that each of the resistors 50 and 51 is formed of a plurality of resistors (as shown resistor 51 of
Further alternatively, such a configuration may be employed that each of the resistors 50 and 51 is formed of a plurality of resistors and fuses (as shown in resistor 51 of
Still further, the PMOS transistors 3 to 5 may have different aspect ratios.
Still further, though the drain of the PMOS transistor 3 is connected to the gates of the PMOS transistors 3 to 5 in
Further alternatively, as illustrated in
Still further alternatively, as illustrated in
Further, as illustrated in
Further, in
First, a configuration of a reference voltage circuit according to a second embodiment of the present invention is described.
The reference voltage circuit includes P-type metal oxide semiconductor (PMOS) transistors 8 to 10, N-type metal oxide semiconductor (NMOS) transistors 11 and 12, and resistors 52 and 53. The reference voltage circuit further includes the power supply terminal 101, the ground terminal 100, and the output terminal 102.
The NMOS transistor 11 has a gate and a drain that are connected to a drain of the PMOS transistor 9, and has a source and a back gate that are connected to the ground terminal 100. The NMOS transistor 12 has a gate connected to the gate of the NMOS transistor 11, a source and a back gate that are connected to the ground terminal 100, and a drain connected to one terminal of the resistor 52. The PMOS transistor 9 has a gate connected to a connection point between a drain of the PMOS transistor 8 and another terminal of the resistor 52, and has a source and a back gate that are connected to the power supply terminal 101. The PMOS transistor 8 has a gate connected to a gate of the PMOS transistor 10 and the one terminal of the resistor 52, and has a source and a back gate that are connected to the power supply terminal 101. The PMOS transistor 10 has a source and a back gate that are connected to the power supply terminal 101, and has a drain connected to the output terminal 102. The resistor 53 is provided between the output terminal 102 and the ground terminal 100.
The NMOS transistors 11 and 12 have the same aspect ratio. In addition, the gates of the NMOS transistors 11 and 12 are connected to each other. Accordingly, respective drain currents flowing through the NMOS transistors 11 and 12 also take the same value. The NMOS transistors 11 and 12 function as a current supply circuit, and the current supply circuit has an input terminal (drain of the NMOS transistor 11) to which a current is input, and an output terminal (drain of the NMOS transistor 12) from which a current determined based on the current flowing through the input terminal is output.
Next, an operation of the reference voltage circuit according to the second embodiment is described.
When a gate-source voltage of the PMOS transistor 8 is represented by Vgs8; a gate-source voltage of the PMOS transistor 9, Vgs9; and a resistance of the resistor 52, R52, a drain current Id8 of the PMOS transistor 8 is calculated using Expression (34).
Id8=(Vgs8−Vgs9)/R52 (34)
Further, through Expression (13), when a drain current of the PMOS transistor 9 is represented by Id9; a gate width of the PMOS transistor 8, W8; a gate length of the PMOS transistor 8, L8; the threshold voltage of the PMOS transistor 8, Vth8; a gate width of the PMOS transistor 9, W9; a gate length of the PMOS transistor 9, L9; and the threshold voltage of the PMOS transistor 9, Vth9, the gate-source voltages Vgs8 and Vgs9 are respectively calculated using Expressions (35) and (36).
Vgs8=UT·ln [Id8/{Id0·(W8/L8)}]+Vth8 (35)
Vgs9=UT·ln [Id9/{Id0·(W9/L9)}]+Vth9 (36)
Through Expressions (34) to (36), when the drain currents Id8 and Id9 take the same value, and a difference between the threshold voltages of the PMOS transistors 8 and 9 is represented by ΔVth (ΔVth=Vth8-Vth9), the drain current Id8 is calculated using Expression (37) and Expression (38).
Id8=(1/R52)·[UT·ln {(Id8/Id9)·(W9/L9)/(W8/L8)}+ΔVth] (37)
Id8=(1/R52)·[UT·ln {(W9/L9)/(W8/L8)}+ΔVth] (38)
As expressed in Expression (38), similarly to the first embodiment, the drain current Id8 becomes less likely to be dependent on temperature.
Then, because the gates of the PMOS transistors 8 and 10 are connected to each other and the sources thereof are connected to the power supply terminal 101, the drain current Id8 and a drain current Id10 take the same value. Accordingly, Expression (39) is established.
Id10=Id8 (39)
When a resistance of the resistor 53 is represented by R53, an output voltage Vref generated between the output terminal 102 and the ground terminal 100 is calculated using Expression (40).
Vref=R53·Id10=(R53/R52)·[UT·ln {(W9/L9)/(W8/L8)}+ΔVth] (40)
As a result, similarly to the first embodiment, temperature characteristics of the resistors 52 and 53 may cancel each other.
Number | Date | Country | Kind |
---|---|---|---|
2008-327935 | Dec 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4327320 | Oguey et al. | Apr 1982 | A |
5563760 | Lowis et al. | Oct 1996 | A |
6677808 | Sean et al. | Jan 2004 | B1 |
6930538 | Chatal | Aug 2005 | B2 |
20080211572 | Riho | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
2000-172353 | Jun 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20100156386 A1 | Jun 2010 | US |