This non-provisional application claims priority of Taiwan patent application No. 108126910, filed on 30 Jul. 2019, included herein by reference in its entirety.
The invention relates to a reference voltage generation circuit, and specifically, to a reference voltage generation circuit insensitive to temperature variations and voltage variations.
A reference voltage generation circuit, and in particular a bandgap voltage generation circuit may provide a reference voltage level insensitive to temperature variations. However, when a supply voltage to the reference voltage generation circuit shifts, the reference voltage level will shift accordingly, resulting in being unable to deliver a stable reference voltage.
Thus, a reference voltage generation circuit is in need to provide a stable voltage less susceptible to temperature or voltage variations.
According to one embodiment of the invention, a reference voltage generation circuit for generating a bandgap reference voltage includes a supply voltage terminal, a node, a first current source, an output terminal, a common voltage terminal, a bandgap reference circuit and a feedback circuit. The supply voltage terminal is used to provide a supply voltage. The first current source is coupled between the supply voltage terminal and the node, and used to receive the supply voltage and generate a first current according to a feedback signal, and output the first current to establish at the node a first voltage substantially insensitive to the supply voltage. The common voltage terminal is used to provide a common voltage. The bandgap reference circuit is coupled between the node and the common voltage terminal, and used to establish a temperature-invariant bandgap voltage at the output terminal. The feedback circuit is coupled to the node and the current source, and used to generate a feedback signal according to the first voltage. A variation trend of the first voltage is related to a variation trend of the feedback signal.
According to another embodiment of the invention, a reference voltage generation circuit for generating a bandgap reference voltage includes a supply voltage terminal, a node, a first current source, an output terminal, a common voltage terminal, a bandgap reference circuit and a feedback circuit. The supply voltage terminal is used to provide a supply voltage. The first current source is coupled between the supply voltage terminal and the node, and used to generate a first current according to the supply voltage, and output the first current to establish a first voltage at the node. The common voltage terminal is used to provide a common voltage. The bandgap reference circuit is coupled between the node and the common voltage terminal, and used to establish the bandgap reference voltage at the output terminal, and includes a second current source, a first resistor, a first bipolar junction transistor, a second resistor, a second bipolar junction transistor, a third resistor, a third bipolar junction transistor, and a fourth resistor. The second current source is coupled to the node, and used to generate a second current to establish the bandgap reference voltage at the output terminal. The first resistor has a first terminal and a second terminal. The first terminal of the first resistor is coupled to the output terminal. The first bipolar junction transistor has a collector, a base, and an emitter, wherein the collector of the first bipolar junction transistor is coupled to the second terminal of the first resistor and the base of the first bipolar junction transistor, and the emitter of the first bipolar junction transistor is coupled to the common voltage terminal. The second resistor has a first terminal and a second terminal, and the first terminal of the second resistor is coupled to the output terminal. The second bipolar junction transistor has a collector coupled to the second terminal of the second resistor, a base coupled to the base of the first bipolar junction transistor, and an emitter. The third resistor is coupled between the emitter of the second bipolar junction transistor and the common voltage terminal. The third bipolar junction transistor has a collector, a base coupled to the collector or the base of the second bipolar junction transistor, and an emitter coupled to the common voltage terminal. The fourth resistor has a first terminal and a second terminal. The first terminal of the fourth resistor is coupled to the node, and the second terminal of the fourth resistor is coupled to the second current source and the collector of the third bipolar junction transistor. The feedback circuit is coupled to the node and the first current source, and used to stabilize the first voltage, and includes a fourth bipolar junction transistor and a fifth resistor. The fourth bipolar junction transistor has a collector, a base, and an emitter coupled to the common voltage terminal. A voltage at the base of the fourth bipolar junction transistor is controlled by the first voltage. The fifth resistor has a first terminal coupled to the supply voltage terminal and a second terminal coupled to the first current source and the collector of the fourth bipolar junction transistor.
Below, exemplary embodiments will be described in detail with reference to accompanying drawings so as to be easily realized by a person having ordinary knowledge in the art. The inventive concept may be embodied in various forms without being limited to the exemplary embodiments set forth herein. Descriptions of well-known parts are omitted for clarity, and like reference numerals refer to like elements throughout.
The feedback circuit 16 may receive the voltage V1 from the node 12 and generate a feedback signal Sfb according to the first voltage V1, wherein a variation trend of the first voltage V1 is related to, e.g., in opposite to, a variation trend of the feedback signal Sfb. The current source 11 may receive the supply voltage VCC, generate a current I1 according to the feedback signal Sfb, and, output the current I1 to establish at the node 12 the voltage V1 substantially insensitive to the variations of the supply voltage VCC. The bandgap reference circuit 15 may receive the voltage V1 to establish at the output terminal 13 the bandgap reference voltage VBG substantially insensitive to temperature variations. When the supply voltage VCC increases, the voltage V1 may increase accordingly, and the feedback circuit 16 may decrease the feedback signal Sfb in accordance with the increase of the voltage V1. The current source 11 may reduce the current I1 in accordance with the decreased feedback signal Sfb to establish at the node 12 the voltage V1 substantially insensitive to the variations of the supply voltage VCC. When the supply voltage VCC decreases, the voltage V1 may decrease accordingly, and the feedback circuit 16 may increase the feedback signal Sfb in accordance with the decrease of the voltage V1. The current source 11 may raise the current I1 in accordance with the increased feedback signal Sfb to establish at the node 12 the voltage V1 substantially insensitive to the variations of the supply voltage VCC. Since the voltage V1 may remain unchanged regardless of the supply voltage VCC, the bandgap reference circuit 15 may generate the bandgap reference voltage VBG invariant with variations of the supply voltage VCC. The bandgap reference circuit 15 may be a Widlar bandgap reference circuit as shown in
In another embodiment, a current source 11 and a feedback circuit 16 having different properties may be selected to increase the voltage V1 with an increase of the supply voltage VCC. The feedback circuit 16 may increase the feedback signal Sfb in accordance with an increase of the voltage V1, and the current source 11 may decrease the current I1 in accordance with the increased feedback signal Sfb, so as to establish at the node 12 the voltage V1 substantially insensitive to the variations of the supply voltage VCC. The voltage V1 may be decreased with a decrease of the supply voltage VCC. The feedback circuit 16 may decrease the feedback signal Sfb in accordance with a decrease of the voltage V1. The current source 11 may raise the current I1 in accordance with the decreased feedback signal Sfb to establish at the node 12 the voltage V1 substantially insensitive to the variations of the supply voltage VCC.
The current source 11 may generate the current I1 according to the supply voltage VCC, and output the current I1 to establish the voltage V1 at the node 12. The current source 150 may generate the current I2 according to the voltage V1, and output the current I2 to establish at the output terminal 13 the bandgap reference voltage VBG. The transistors F1 and F2 are configured into source followers or emitter followers. The bandgap reference circuit 15 may combine a forward voltage of a PN junction of the bipolar junction transistor Q3 having a negative temperature coefficient and a thermal voltage having a positive temperature coefficient, so as to generate a bandgap reference voltage VBG having substantially zero temperature coefficient. The bipolar junction transistors Q1 and Q2 may be different in cross-sectional areas, and the resistances of the resistors R1 and R2 may be adjustable, thereby keeping the bandgap reference voltage VBG substantially constant. The feedback circuit 16 may provide a feedback loop for the current source 11 to stabilize the voltage V1. In the feedback circuit 16, the level shifter 160 may convert the voltage V1 into the voltage V2 at the base of the bipolar junction transistor Q4, the bipolar junction transistor Q4 and the resistor R5 may form a feedback amplifier and provide the feedback signal Sfb, wherein the feedback signal Sfb is controlled by the voltage V2 at the base of the bipolar junction transistor Q4. In the feedback loop, the bipolar junction transistor Q6 may provide a bias to the bipolar junction transistor Q5 in the level shifter 160, the bipolar junction transistor Q5 forms a diode to down-convert the voltage V1 into the (V1-VBE) to serve as the voltage V2 at the base of the bipolar junction transistor Q4, VBE being a base-emitter voltage of the diode. The voltage V2 at the base of the bipolar junction transistor Q4 controls a collector current of the bipolar junction transistor Q4, and the collector current flows through the resistor R5 to generate the feedback signal Sfb, and the current source 11 may receive the feedback signal Sfb so as to control the voltage V1.
When the supply voltage VCC increases, the voltage V1 may increase accordingly. The bipolar junction transistor Q5 may increase the voltage V2 according to the increased voltage V1, and in turn, the collector current of the bipolar junction transistor Q4 may increase accordingly, the increased collector current may flow through the resistor R5 to reduce the voltage of the feedback signal Sfb, and the current source 11 may receive the reduced voltage of the feedback signal Sfb to suppress the voltage V1, thereby generating the voltage V1 substantially insensitive to the variations of the supply voltage VCC. Conversely, when the supply voltage VCC decreases, the voltage V1 may decrease accordingly. The bipolar junction transistor Q5 may decrease the voltage V2 according to the decreased voltage V1, and in turn, the collector current of the bipolar junction transistor Q4 may decrease accordingly, the decreased collector current may flow through the resistor R5 to increase the voltage of the feedback signal Sfb, and the current source 11 may receive the increased voltage of the feedback signal Sfb to increase the voltage V1, generating the voltage V1 substantially insensitive to the variations of the supply voltage VCC, and enabling the reference voltage generation circuit 1 to generate at the output terminal 13 the bandgap reference voltage VBG substantially insensitive to the variations of the supply voltage VCC. In the embodiments, by employing the feedback control of the current source 11 and the feedback circuit 16, the variations of the voltage V1 and the bandgap reference voltage VBG may be controlled within ±3% regardless of the variation of the supply voltage VCC. For example, as the supply voltage VCC varies in a range between 3.5V and 5.5V, the variation of the voltage V1 may be kept between 1.74V and 1.75V, allowing variation rates of the voltage V1 and the bandgap reference voltage VBG to be kept within ±0.5% regardless of the variation of the supply voltage VCC. In comparison to other circuit designs without employing the current source 11 and the feedback circuit 16, in other words, providing the supply voltage VCC directly to the current source 150 and the first terminal of the resistor R4 of the bandgap reference circuit 15, the circuit designs without the current source 11 and the feedback circuit 16 may result in a considerable increase of the variation rate of the bandgap reference voltage VBG by 7% as the supply voltage VCC varies.
All the bipolar junction transistors Q1 to Q6 may include NPN heterojunction bipolar transistors (HBT). All the bipolar junction transistors may be NPN-type bipolar junction transistors. Both the transistors F1 and F2 may include bipolar junction transistors or field effect transistors, and specifically, NPN-type bipolar junction transistors, N-type metal semiconductor field effect transistors (MESFET) or pseudomorphic high electron mobility transistors (pHEMT).
The reference voltage generation circuits 1 in
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
108126910 | Jul 2019 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
7098729 | Abe | Aug 2006 | B2 |
10437274 | Chien | Oct 2019 | B2 |
10739801 | Tang | Aug 2020 | B2 |
Number | Date | Country |
---|---|---|
201504786 | Feb 2015 | TW |
201506572 | Feb 2015 | TW |
201525647 | Jul 2015 | TW |
201621509 | Jun 2016 | TW |
201827974 | Aug 2018 | TW |
Number | Date | Country | |
---|---|---|---|
20210034091 A1 | Feb 2021 | US |