This application claims priority to and benefit of Chinese Patent Application No. 201610016282.3, filed on 12 Jan. 2016; the Chinese Patent Application is incorporated herein by reference in its entirety.
The technical field is related to a reference voltage generator and a method of operating the reference voltage generator.
A reference voltage generator may include two resistors connected in series between two power supplies and may be used for providing a reference voltage to a load. A level of the reference voltage provided by the reference voltage generator may depend on the resistance proportion of the two resistors. In order to make a static current associated with the reference voltage generator to be acceptably low, the resistance values of the two resistors may need to be sufficiently high. To save layout size, resistor can be replaced by serial MOS transistors in diode connection and with low W/L, in which W is width of MOS and L is channel length of MOS. Nevertheless, when the reference voltage by reference voltage generator is on a load, some electrical characteristics of the load may cause the value of the reference voltage to deviate from its base value (or target value), e.g., an output driver of IO circuit as a load may shift the reference voltage by transient current coupling through equivalent capacitance of the driver. If the resistance values of the two resistors are substantially high, a significantly long time may be required for the reference voltage to return to the base value. An incorrect reference voltage may be undesirably provided during this long period.
An embodiment may be related to a reference voltage generator. The reference voltage generator may include a first power supply terminal, a second power supply terminal, a reference voltage output node, a first switch, a second switch, a first positive feedback module, and a second positive feedback module. The first power supply terminal may receive a first power supply voltage. The second power supply terminal may receive a second power supply voltage. The reference voltage output node may provide a reference voltage. A first terminal of the first switch may be electrically connected to the first power supply terminal. A second terminal of the first switch may be electrically connected to the reference voltage output node. A first terminal of the second switch may be electrically connected to the second power supply terminal. A second terminal of the second switch may be electrically connected to the reference voltage output node. A first input node of the first positive feedback module may be electrically connected to the reference voltage output node. An output node of the first positive feedback module may be electrically connected to a control electrode of the first switch for providing a first feedback voltage to the control electrode of the first switch. A first input node of the second positive feedback module may be electrically connected to the reference voltage output node. An output node of the second positive feedback module may be electrically connected to a control electrode of the second switch for providing a second feedback voltage to the control electrode of the second switch.
The first feedback module may provide the first feedback voltage with a base first feedback voltage value such that conductance of the first switch has a base first conductance value when the reference voltage has a base reference voltage value. The first positive feedback module may provide the first feedback voltage with an increased first feedback voltage value such that the conductance of the first switch has a decreased first conductance value when the reference voltage has an increased reference voltage value. The increased reference voltage value may be higher than the base reference voltage value. The increased first feedback voltage value may be higher than the base first feedback voltage value. The decreased first conductance value may be lower than the base first conductance value.
The second feedback module may provide the second feedback voltage with a base second feedback voltage value such that a conductance of the second switch has a base second conductance value when the reference voltage has the base reference voltage value. The second positive feedback module may provide the second feedback voltage with an increased second feedback voltage value such that the conductance of the second switch has an increased second conductance value when the reference voltage has an increased reference voltage value. The increased reference voltage value may be higher than the base reference voltage value. The increased second feedback voltage value may be higher than the base second feedback voltage value. The increased second conductance value may be higher than the base second conductance value.
The first positive feedback module may provide the first feedback voltage with a decreased first feedback voltage value such that the conductance of the first switch has an increased first conductance value when the reference voltage has a decreased reference voltage value. The decreased reference voltage value may be lower than the base reference voltage value. The decreased first feedback voltage value may be lower than the base first feedback voltage value. The increased first conductance value may be higher than the base first conductance value.
The second positive feedback module may provide the second feedback voltage with a decreased second feedback voltage value such that the conductance of the second switch has a decreased second conductance value when the reference voltage has the decreased reference voltage value. The decreased reference voltage value may be lower than the base reference voltage value. The decreased second feedback voltage value may be lower than the base second feedback voltage value. The decreased second conductance value may be lower than the base second conductance value.
The first power supply terminal and the second power supply terminal may provide a first power voltage difference using the first power supply voltage and the second power supply voltage. One or more of a maximum allowable voltage of the first switch and a maximum allowable voltage of the second switch may be lower than the first power voltage difference.
The first input node of the first positive feedback module may receive a first copy of the reference voltage. A second input node of the first positive feedback module may receive a first copy of a comparison voltage. The first positive feedback module may generate the first feedback voltage based on a comparison between the first copy of the reference voltage and the first copy of the comparison voltage. The first input node of the second positive feedback module may receive a second copy of the reference voltage. A second input node of the second positive feedback module may receive a second copy of the comparison voltage. The second positive feedback module may generate the second feedback voltage based on a comparison between the second copy of the reference voltage and the second copy of the comparison voltage.
The first positive feedback module may provide the first feedback voltage with a first feedback voltage value equal to a value of the first power supply voltage minus a value of a threshold voltage of the first switch. The second positive feedback module may provide the second feedback voltage with a second feedback voltage value equal to a value of a threshold voltage of the second switch plus the second power supply voltage.
The first positive feedback module may include the following elements: a first connection node; a second connection node; a first p-channel transistor, which may be electrically connected between the output node of the first positive feedback module and the first connection node; a second p-channel transistor, which may be electrically connected between the output node of the first positive feedback module and the first power supply terminal; a third p-channel transistor, which may be electrically connected between the second connection node and the first connection node; a fourth p-channel transistor, which may be electrically connected between the second connection node and the first power supply terminal; and a current source, which may be electrically connected between the first connection node and the second power supply terminal. A gate terminal of the first p-channel transistor functions as the first input node of the first positive feedback module for receiving a copy of the reference voltage. A gate terminal of the third p-channel transistor functions as a second input node of the first positive feedback module for receiving a copy of a comparison voltage. A gate terminal of the second p-channel transistor may be electrically connected to the second connection node. A gate terminal of the fourth p-channel transistor may be electrically connected to the output node of the first positive feedback module.
The current source may be/include an n-channel transistor.
The first power supply terminal and the second power supply terminal may provide a first power voltage difference using the first power supply voltage and the second power supply voltage. One or more of a maximum allowable voltage of the first p-channel transistor, a maximum allowable voltage of the second p-channel transistor, a maximum allowable voltage of the third p-channel transistor, and a maximum allowable voltage of the fourth p-channel transistor and a maximum allowable voltage of n-channel transistor as current source may be lower than the first power voltage difference.
The second positive feedback module may include the following elements: a first junction node; a second junction node; a first n-channel transistor, which may be electrically connected between the output node of the second positive feedback module and the first junction node; a second n-channel transistor, which may be electrically connected between the output node of the second positive feedback module and the second power supply terminal; a third n-channel transistor, which may be electrically connected between the second junction node and the first junction node; a fourth n-channel transistor, which may be electrically connected between the second junction node and the second power supply terminal; and a current source, which may be electrically connected between the first junction node and the first power supply terminal. A gate terminal of the first n-channel transistor functions as the first input node of the second positive feedback module for receiving a copy of the reference voltage. A gate terminal of the third n-channel transistor functions as a second input node of the second positive feedback module for receiving a copy of a comparison voltage. A gate terminal of the second n-channel transistor may be electrically connected to the second junction node. A gate terminal of the fourth n-channel transistor may be electrically connected to the output node of the second positive feedback module.
The current source may be/include a p-channel transistor.
The first power supply terminal and the second power supply terminal may provide a first power voltage difference using the first power supply voltage and the second power supply voltage. One or more of a maximum allowable voltage of the first n-channel transistor, a maximum allowable voltage of the second n-channel transistor, a maximum allowable voltage of the third n-channel transistor, and a maximum allowable voltage of the fourth n-channel transistor and a maximum allowable voltage of p-channel transistor as current source may be lower than the first power voltage difference.
The reference voltage generator may include a comparison voltage generator, which may be electrically connected to both a second input node of the first positive feedback module and a second input node of the second positive feedback module and may provide a comparison voltage. The second input node of the first positive feedback module may receive a first copy of the comparison voltage. The second input node of the second positive feedback module may receive a second copy of the comparison voltage.
The comparison voltage generator may include a plurality of diodes or a plurality of resistors. The diodes or the resistors may be electrically connected in series between the first power supply terminal and the second power supply terminal.
An embodiment may be related to a method of operating a reference voltage generator. The method may include the following steps: providing a first power supply voltage to a first power supply terminal of the reference voltage generator; providing a second power supply voltage to a second power supply terminal of the reference voltage generator; providing a reference voltage from a reference voltage output node of the reference voltage generator;
providing a first feedback voltage from an output node of a first positive feedback module to a control electrode of a first switch; and providing a second feedback voltage from an output node of a second positive feedback module to a control electrode of a second switch. A first input node of the first positive feedback module may be electrically connected to the reference voltage output node. The output node of the first positive feedback module may be electrically connected to the control electrode of the first switch. A first terminal of the first switch may be electrically connected to the first power supply terminal. A second terminal of the first switch may be electrically connected to the reference voltage output node. A first input node of the second positive feedback module may be electrically connected to the reference voltage output node. The output node of the second positive feedback module may be electrically connected to the control electrode of the second switch. A first terminal of the second switch may be electrically connected to the second power supply terminal. A second terminal of the second switch may be electrically connected to the reference voltage output node.
The reference voltage generator may include a comparison voltage generator, which may be electrically connected to both a second input node of the first positive feedback module and a second input node of the second positive feedback module and may provide a comparison voltage. The second input node of the first positive feedback module may receive a first copy of the comparison voltage. The second input node of the second positive feedback module may receive a second copy of the comparison voltage.
According to embodiments, although maximum allowable voltages of components (e.g., transistors) in a reference voltage generator may be lower than a power voltage difference, the components may operate under respective maximum allowable voltages, such that the reference voltage generator may operate reliably. According to embodiments, when a reference voltage provided by a reference voltage generator deviates from a base value of the reference voltage, the reference voltage generator may effectively and efficiently restore the reference voltage to the base value using positive feedback mechanisms. Advantageously, a substantially consistent and/or stable reference voltage may be provided.
The above summary is related to some of many embodiments of the invention disclosed herein and is not intended to limit the scope of the invention.
Example embodiments are described with reference to the accompanying drawings. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope. Embodiments may be practiced without some or all of these specific details. Well known process steps and/or structures may not have been described in detail in order to not unnecessarily obscure described embodiments.
The drawings and description are illustrative and not restrictive. Like reference numerals may designate like (e.g., analogous or identical) elements in the specification. Repetition of description may be avoided.
The relative sizes and thicknesses of elements shown in the drawings are for facilitate description and understanding, without limiting possible embodiments. In the drawings, the thicknesses of some layers, films, panels, regions, etc., may be exaggerated for clarity.
Illustrations of example embodiments in the figures may represent idealized illustrations. Variations from the shapes illustrated in the illustrations, as a result of, for example, manufacturing techniques and/or tolerances, may be possible. Thus, the example embodiments should not be construed as limited to the shapes or regions illustrated herein but are to include deviations in the shapes. For example, an etched region illustrated as a rectangle may have rounded or curved features. The shapes and regions illustrated in the figures are illustrative and should not limit the scope of the example embodiments.
Although the terms “first”, “second”, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms may be used to distinguish one element from another element. Thus, a first element discussed in this application may be termed a second element without departing from embodiments. The description of an element as a “first” element may not require or imply the presence of a second element or other elements. The terms “first”, “second”, etc. may also be used herein to differentiate different categories or sets of elements. For conciseness, the terms “first”, “second”, etc. may represent “first-category (or first-set)”, “second-category (or second-set)”, etc., respectively.
If a first element (such as a layer, film, region, or substrate) is referred to as being “on”, “neighboring”, “connected to”, or “coupled with” a second element, then the first element can be directly on, directly neighboring, directly connected to, or directly coupled with the second element, or an intervening element may also be present between the first element and the second element. If a first element is referred to as being “directly on”, “directly neighboring”, “directly connected to”, or “directed coupled with” a second element, then no intended intervening element (except environmental elements such as air) may be provided between the first element and the second element.
Spatially relative terms, such as “beneath”, “below”, “lower”, “above”, “upper”, and the like, may be used herein for ease of description to describe one element or feature's spatial relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms may encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations), and the spatially relative descriptors used herein should be interpreted accordingly.
The terminology used herein is for the purpose of describing particular embodiments and is not intended to limit the embodiments. As used herein, the singular forms, “a”, “an”, and “the” may indicate plural forms as well, unless the context clearly indicates otherwise. The terms “includes” and/or “including”, when used in this specification, may specify the presence of stated features, integers, steps, operations, elements, and/or components, but may not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups.
Unless otherwise defined, terms (including technical and scientific terms) used herein have the same meanings as commonly understood by one of ordinary skill in the art. Terms, such as those defined in commonly used dictionaries, should be interpreted as having meanings that are consistent with their meanings in the context of the relevant art and should not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The term “connect” may mean “electrically connect”, “directly connect”, or “indirectly connect”. The term “insulate” may mean “electrically insulate”. The term “conductive” may mean “electrically conductive”. The term “electrically connected” may mean “electrically connected without any intervening transistors”. If a component (e.g., a transistor) is described as connected between a first element and a second element, then a source/drain/input/output terminal of the component may be electrically connected to the first element through no intervening transistors, and a drain/source/output/input terminal of the component may be electrically connected to the second element through no intervening transistors.
The term “conductor” may mean “electrically conductive member”. The term “insulator” may mean “electrically insulating member”. The term “dielectric” may mean “dielectric member”. The term “interconnect” may mean “interconnecting member”. The term “provide” may mean “provide and/or form”. The term “form” may mean “provide and/or form”.
Unless explicitly described to the contrary, the word “comprise” and variations such as “comprises”, “comprising”, “include”, or “including” may imply the inclusion of stated elements but not the exclusion of other elements.
Various embodiments, including methods and techniques, are described in this disclosure. Embodiments may also cover an article of manufacture that includes a non-transitory computer readable medium on which computer-readable instructions for carrying out embodiments of the inventive technique are stored. The computer readable medium may include, for example, semiconductor, magnetic, opto-magnetic, optical, or other forms of computer readable medium for storing computer readable code. Further, embodiments may also cover apparatuses for practicing embodiments. Such apparatus may include circuits, dedicated and/or programmable, to carry out operations pertaining to embodiments. Examples of such apparatus include a general purpose computer and/or a dedicated computing device when appropriately programmed and may include a combination of a computer/computing device and dedicated/programmable hardware circuits (such as electrical, mechanical, and/or optical circuits) adapted for the various operations pertaining to embodiments.
The first switch 101 may be connected between the first power supply terminal 105 and the reference voltage output node 106. The first switch 101 may be/include a p-channel metal-oxide-semiconductor (PMOS) transistor.
The second switch 102 may be connected between the second power supply terminal 107 and the reference voltage output node 106. The second switch 102 may be/include an n-channel metal-oxide-semiconductor (NMOS) transistor.
The first positive feedback module 103 may receive a second copy of the reference voltage REF and may provide a first feedback voltage to the first switch 101 for controlling the conductance of the first switch 101. When the reference voltage REF increases (or is higher), the first feedback voltage may increase (or may be higher), such that the conductance of the first switch 101 may decrease (or may be lower). When the reference voltage REF decreases (or is lower), the first feedback voltage may decrease (or may be lower), such that the conductance of the first switch 101 may increase (or may be higher).
The second positive feedback module 104 may receive a third copy of the reference voltage REF and may provide a second feedback voltage to the second switch 102 for controlling the conductance of the second switch 102. When the reference voltage REF increases (or is higher), the second feedback voltage may increase (or may be higher), such that the conductance of the second switch 102 may increase (or may be higher). When the reference voltage decreases (or is lower), the second feedback voltage may decrease (or may be lower), such that the conductance of the second switch 102 may decrease (or may be lower).
The first power supply terminal 105 may receive a first power supply voltage VDD (e.g., 3.3 V), the second power supply terminal 107 may receive a second power supply voltage VSS (e.g., 0 V), such that a first power voltage difference (e.g., 3.3 V) may be provided between the first power supply terminal 105 and the second power supply terminal 107. The maximum allowable voltage of the first switch 101 and/or the maximum allowable voltage of the second switch 102 may be lower than the first power voltage difference. In an embodiment, the first power voltage difference may be 3.3 V, the maximum allowable voltage of the first switch 101 may be 1.8 V, and the maximum allowable voltage of the second switch 102 may be 1.8 V.
The first feedback voltage may be substantially equal to VDD minus Vtp, and the second feedback voltage may be substantially equal to Vtn plus VSS, wherein VDD is the first power supply voltage, Vtp is a threshold voltage of the first switch 101, and Vtn is a threshold voltage of the second switch.
In a method of operating the reference voltage generator, when the reference voltage REF increases (or is higher), the first feedback voltage may increase (or may be higher) to cause the conductance of the first switch 101 to decrease (or to be lower), and the second feedback voltage may increase (or may be higher) to cause the conductance of the second switch 102 to increase (or to be higher). As a result, the reference voltage REF may decrease and may return to a base value (e.g., a target value) of the reference voltage REF.
In a method of operating the reference voltage generator, when the reference voltage REF decreases (or is lower), the first feedback voltage may decrease (or may be lower) to cause the conductance of the first switch 101 to increase (or to be higher), and the second feedback voltage may decrease (or may be lower) to cause the conductance of the second switch 102 to decrease (or to be lower). As a result, the reference voltage REF may increase and may return to a base value (e.g., a target value) of the reference voltage REF.
According to embodiments, through providing the first feedback voltage and the second feedback voltage, the first positive feedback module 103 and the second positive feedback module 104 may enable the reference voltage REF to efficiently and effectively return to a base value (e.g., a target value) of the reference voltage REF.
According to embodiments, the first positive feedback module 103 may provide a first feedback voltage to the first switch 101 based on a comparison between the reference voltage REF and a comparison voltage, and/or the second positive feedback module 104 may provide a second feedback voltage to the second switch 102 based on a comparison between the reference voltage REF and a comparison voltage.
The first positive feedback module 103 (and/or the first differential amplifier) may include a first circuit (e.g., a left circuit), a second circuit (e.g., a right circuit), and a first current source 255.
The first circuit may include a first p-channel transistor 201 (e.g., a PMOS transistor) and a second p-channel transistor 202 (e.g., a PMOS transistor). The first p-channel transistor 201 may be connected between the output node 203 and a connection node 204. The second p-channel transistor 202 may be connected between the output node 203 and the first power supply terminal 105.
The second circuit may include a third p-channel transistor 205 (e.g., a PMOS transistor) and a fourth p-channel transistor 206 (e.g., a PMOS transistor). The third p-channel transistor 205 may be connected between a connection node 207 and the connection node 204. The fourth p-channel transistor 206 may be connected between the connection node 207 and the first power supply terminal 105.
The first current source 255 may be connected between the connection node 204 and the second power supply terminal 107. The first current source 255 may be/include an n-channel transistor (e.g., an NMOS transistor).
In the first positive feedback module 103, the gate terminal of the first p-channel transistor 201 may function as the first input node for receiving a copy of the reference voltage REF, the gate terminal of the third p-channel transistor 205 may function as the second input node for receiving a copy of the comparison voltage COMPARE, the gate terminal of the second p-channel transistor 202 may be connected to the connection node 207, the gate terminal of the fourth p-channel transistor 206 may be connected to the output node 203, and the output node 203 may provide the first feedback voltage VBP to the first switch 101.
One or more of a maximum allowable voltage of the first p-channel transistor 201, a maximum allowable voltage of the second p-channel transistor 202, a maximum allowable voltage of the third p-channel transistor 205, and a maximum allowable voltage of the fourth p-channel transistor 206 may be lower than the first power voltage difference. However, the components may operate under respective maximum allowable voltages in this structure, such that the components in the first positive feedback module 103 may operate reliably.
In an embodiment, each of the transistors 201, 202, 205, 206, and 255 in the first positive feedback module 103 may have a threshold voltage of about 0.5 V, the comparison voltage COMPARE may be about 1.65 V, the reference voltage REF may be at a base value, e.g., a steady-state value, such as 1.8 V. The first p-channel transistor 201, the second p-channel transistor 202, and the first current source 255 may be on (i.e., may be conductive). The third p-channel transistor 205 and the fourth p-channel transistor 206 may be off (i.e., may be insulating). The first feedback voltage VBP provided at the output node 203 may be about 2.87 V.
Referring to
Referring to
According to different amplification factors, the change of the first feedback voltage VBP may be different from (e.g., greater than) the change of the reference voltage REF.
Referring to
The third circuit may include a first n-channel transistor 208 (e.g., an NMOS transistor) and a second n-channel transistor 209 (e.g., an NMOS transistor). The first n-channel transistor 208 may be connected between the output node 211 and a junction node 210. The second n-channel transistor 209 may be connected between the output node 211 and the second power supply terminal 107.
The fourth circuit may include a third n-channel transistor 212 (e.g., an NMOS transistor) and a fourth n-channel transistor 213 (e.g., an NMOS transistor). The third n-channel transistor 212 may be connected between a junction node 214 and the junction node 210. The fourth n-channel transistor 213 may be connected between the junction node 214 and the second power supply terminal 107.
The second current source 215 may be connected between the junction node 210 and the first power supply terminal 105. The second current source 215 may be/include a p-channel transistor (e.g., a PMOS transistor).
In the second positive feedback module 104, the gate terminal of the first n-channel transistor 208 may function as the first input node for receiving a copy of the reference voltage REF, the gate terminal of the third n-channel transistor 212 may function as the second input node for receiving a copy of the comparison voltage COMPARE, the gate terminal of the second n-channel transistor 209 may be connected to the junction node 214, the gate terminal of the fourth n-channel transistor 213 may be connected to the output node 211, and the output node 211 may provide the second feedback voltage VBN to the second switch 102.
One or more of a maximum allowable voltage of the first n-channel transistor 208, a maximum allowable voltage of the second n-channel transistor 209, a maximum allowable voltage of the third n-channel transistor 212, and a maximum allowable voltage of the fourth n-channel transistor 213 may be lower than the first power voltage difference. However, the components may operate under respective maximum allowable voltages in this structure, such that the components in the second positive feedback module 104 may operate reliably.
In an embodiment, each of the transistors 208, 209, 212, 213, and 215 in the second positive feedback module 104 may have a threshold voltage of about 0.5 V, the comparison voltage COMPARE may be about 1.65 V, the reference voltage REF may be at a base value, e.g., a steady-state value, such as 1.8 V. The first n-channel transistor 208, the second n-channel transistor 209, the third n-channel transistor 212, and the second current source 215 may be on (i.e., may be conductive). The fourth n-channel transistor 213 may be off (i.e., may be insulating). The second feedback voltage VBN provided at the output node 211 may be about 0.42 V.
Referring to
Referring to
According to different amplification factors, the change of the second feedback voltage VBN may be different from (e.g., greater than) the change of the reference voltage REF.
Referring to
Referring to
In an embodiment, the comparison voltage generator 401 may include a plurality of resistors. The resistors may be connected in series between the first power supply terminal 105 and the second power supply terminal 107.
According to embodiments, although maximum allowable voltages of components (e.g., transistors) in a reference voltage generator may be lower than a power voltage difference, the components may operate under respective maximum allowable voltages, such that the reference voltage generator may operate reliably. According to embodiments, when a reference voltage provided by a reference voltage generator deviates from a base value of the reference voltage, the reference voltage generator may effectively and efficiently restore the reference voltage to the base value using positive feedback mechanisms. Advantageously, a substantially consistent and/or stable reference voltage may be provided.
While some embodiments have been described as examples, there are alterations, permutations, and equivalents. It should be noted that there are many alternative ways of implementing the methods and apparatuses. Furthermore, embodiments may find utility in other applications. The abstract section is provided herein for convenience and, due to word count limitation, is accordingly written for reading convenience and should not be employed to limit the scope of the claims. It is intended that the following appended claims be interpreted as including all alterations, permutations, and equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2016 1 0016282 | Jan 2016 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
8952675 | Fort | Feb 2015 | B2 |
20020014912 | Riccio | Feb 2002 | A1 |
20070296487 | Kuriyama | Dec 2007 | A1 |
20110050197 | Yuasa | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
102623061 | Aug 2012 | CN |
0291062 | Nov 1988 | EP |
05-211426 | Aug 1993 | JP |
Entry |
---|
EP Search Report corresponding to European Patent Application No. 16207487.6, dated May 30, 2017, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20170199538 A1 | Jul 2017 | US |