In some printing systems, a printhead receives a stream of printing fluid from an intermediate tank which is supplied with ink from a supply tank. Printing fluid can be fed from the intermediate tank to the printhead using an air pump wherein the fill level in the intermediate tank can be monitored during refill from the supply tank and during printing when the printing fluid is fed to the printhead to detect both an end of refill and an empty state of the intermediate tank.
The following detailed description will best be understood with reference to the drawings, wherein:
In the example of
The printing equipment may include at least one fluid tank, as shown in
A fill state of the fluid tanks, such as the intermediate tank or the supply tank, can be measured using a fluid level sensor. The fluid level sensor can be a physical sensor provided in the tank or can be a pressure differential sensor, for example. A pressure differential senor may have an air pressure sensor connected to an air pressure supply line in communication with the variable gas volume and a fluid pressure sensor connected to a fluid supply line at a fluid input or fluid output of the fluid tank. The pressure differential sensor may operate based on a pressure difference between the air pressure supplied to the tank and the fluid pressure inside the tank in the fluid reservoir.
Fluid may be transferred from the supply tank to the intermediate tank or from the intermediate tank to the printing device using an air pump, for example. The intermediate tank may act as a buffer of printing fluid, and during normal printing operation is pressurized with air using an air pressure system in order to feed the printing device with printing fluid.
The air pump operates by pressurizing the air volume inside the tank and above or around the ink volume, by applying an air pressure which cycles between a lower_threshold_pressure and an upper_threshold_pressure. For example, the air pressure may be increased to the upper_threshold_pressure by activating the air pump and to force part of the ink volume out of the intermediate tank and towards the printing device. The air pump is deactivated upon reaching the upper_threshold_pressure, and the air pressure will decrease due to part of the ink being discharged from the intermediate tank and other factors, such as small air leaks. When the air pressure reaches the lower_threshold_pressure, the air pump may be again activated to increase the air pressure until it reaches the upper_threshold_pressure. This cycle may be repeated as long as the printing equipment is operating to deliver printing fluid to the printing device. At the end of a print job or in a printing pause, the system can be depressurized.
In a similar way, printing fluid may be transferred from the supply tank to the intermediate tank to refill the intermediate tank upon demand. Alternatively, the supply tank may use a different type of pump, such as a fluid pump, for example. A refill operation may be triggered by a level sensor in the intermediate tank, for example.
For example, when the printing fluid is consumed from the intermediate tank, the tank may be refilled from the supply tank using a fluid pump, which pushes printing fluid into the intermediate tank. In one example, the refill operation is continued until a differential pressure sensor, measuring fluid vs. air pressure, detects an end of refill state when the intermediate tank is considered full. The end of refill state can be detected by correlation of the differential pressure with a look up table of pressure values vs. fill level, for example.
Accordingly, a level sensor may generate an out of ink signal and/or an end of refill signal when certain fill levels are reached. The level sensor may be a differential pressure sensor comparing the pressure of printing fluid, such as ink, versus the air or other gas pressure, such as differential_pressure=ink_pressure−air_pressure. This differential pressure sensor may be sensitive to pressure variations caused by temperature changes or other influences in circuits of the fluid delivery system. Accordingly, in certain circumstance, the level sensor may generate an early or false positive signal. Therefore, a system and method to double check the fill state of the printing equipment's tanks can enhance reliability of the overall system. By providing an extra level of monitoring, false positive signals can be discovered and situations can be avoided where the intermediate tank is not completely filled or is over-filled during a refill operation, for example.
For example, not completely filling the intermediate tank, over time, may lead to emptying completely the intermediate tank and starving the printing device. As another example, not detecting an end of refill on time and over-filling an intermediate tank may cause a broken tank that can contaminate with printing fluid the air pressure system, control boards and other delicate components.
Accordingly, this disclosure can provide for checking that the intermediate tank is close to be fully refilled using the signals of the air pressure sensor. Based on a similar principle, it can be checked whether the intermediate tank or the supply tank is close to running empty. More generally, it can be ensured that a tank fill level is as desired. This can work as a safety double-check of an end of refill detection using a differential pressure sensor, because it uses an independent sensor to do so. This safety check hence can enhance reliability of detection of a fill state of a component, such as a tank in an ink or other fluid delivery system.
An end of refill safety diagnostic of the intermediate tank is provided by monitoring the output signal of an air pressure sensor. With increasing ink volume and decreasing air volume, the frequency of the air pump cycle between the lower_threshold_pressure and the upper_threshold_pressure will increase. The frequency increase or a related parameter can be used as a measure of a close to full state of the ink tank. Examples of a related parameter are a change in cycle period and a change in cycle slope, as illustrated below.
As described, the inner volume of a fluid tank is divided in two parts, the fluid volume and the air volume. The fluid volume may be enclosed by a fluid bag, such as a plastic bag, while the air volume can be the space between this bag and the external walls of the tank. When a refill operation starts, part of the fluid inside the fluid bag has been previously used, hence the volume of fluid inside the bag is low and the volume of air inside the tank and surrounding the fluid bag is relatively large, e.g. in a ratio of 80:20 or 75:25 of air:fluid volume. As a consequence, it takes more time to an air pressure system to pressurize the larger air volume when compared to a full or almost full fluid tank, e.g. one having an air:fluid volume ratio of 20:80 or 25:75, because of the larger volume of air that needs to have its pressure increased. Then, during the refill operation, the amount of fluid inside the tank increases due to the fluid being pushed into the tank, resulting in the increase of volume of the fluid bag and the reduction of the air volume. Thus, as the refill operation goes on, the quantity of air to be pressurized becomes smaller and thus the duration of one pressurization cycle become shorter, the frequency of pressurization cycles increases and the slope of a respective air pressure cycle becomes steeper.
Accordingly, an end of refill safety diagnostic of the tank can be provided by monitoring the output signal of an air pressure sensor. With increasing ink volume and decreasing air volume, the frequency of the air pump cycle between the lower_threshold_pressure and the upper_threshold_pressure will increase. The frequency increase or a related parameter can be used as a measure of a full or close to full state of the ink tank or of an empty or close to empty tank.
The ink supply tank 110 is connected to the intermediate tank 120 via a first feed line 170, with the ink pump 150 coupled to the first feed line 170. The intermediate tank 120 is connected to the printhead 130 via a second feed line 172. The ink flow is directed towards the printhead or the intermediate tank by the ink pump and the air pump. An air pressure line 162 is connecting the air pressure source 160 and the intermediate tank 120.
A fluid pressure sensor 152 is coupled to the first feed line 170, downstream of the ink pump 150 to detect a fluid pressure in the first feed line 170 and hence in the intermediate tank 120 connected thereto. An air pressure sensor 164 is coupled to the air pressure line 162, downstream of the air pressure source 160 to detect an air pressure in the air pressure line 162 and hence in the intermediate tank 120 connected thereto.
In the example, the intermediate tank 120 includes an ink volume 122 and an air volume 124 which are separated by a flexible membrane, wall, bag or the like in such a way that they are physically separated but a pressure increase in the air volume is translated to the ink volume and vice versa. For example, the intermediate tank 120 includes a container enclosing a collapsible ink bag and a volume of air between the inner walls of the container and the outer wall of the ink bag. Accordingly, the first fluid line 170 is coupled to the ink volume 122 inside the intermediate tank 120 and the air pressure line 162 is coupled to the air volume 124 inside the intermediate tank 120.
The supply tank 110, the ink pump 150, the air pressure source 152, the fluid pressure sensor 152 and the air pressure sensor 164 are communicatively coupled to the controller 140 wherein communication can be wireless or wired to control operation of these components and to receive feedback signals from the sensors 152 and 164 and to control a refill operation. In addition, the printhead 130 can be coupled to the same or a different controller to control the printing operation. The controller 140 can be a single control system, a distributed control system and can be implemented in hardware, firmware, software and combinations thereof.
Whereas,
In a printing equipment designed for multiple types of ink, such as BCMY inks and conditioning fluids for example, a separate ink pump may be provided in respective separate fluid lines between a respective supply tank and a respective intermediate tank for each type of ink. Each fluid line may be connected to a respective fluid pressure sensor. Further, a single air pressure source may be connected to each one of the respective intermediate tanks, with a single air pressure sensor connected to the air pressure line downstream of the air pressure source or with multiple air pressure sensor connected to air inlets of the respective intermediate tanks.
Whereas,
A refill operation of the printing equipment 100 according to an example is described with reference to
The diagram of
A refill state of the intermediate tank can be detected by detecting a differential pressure and mapping the differential pressure to a fill level, using a look up table of pressure values vs. fill levels or a known differential pressure versus fill level characteristic, e.g. using a correlation curve, for example. As the differential pressure sensor may be sensitive to pressure variations caused by temperature changes or other influences in circuits of the fluid delivery system, in certain circumstance, the level sensor may generate an early or false positive signal. That is, the level senor may signal a full tank before the tank actually is filled to a desired level, e.g. to at least 75% or 805 of its maximum capacity. The level sensor also may fail to detect a full state of the intermediate tank. Therefore, the air pressure measurement is used to double check the fill state of the intermediate tank.
As shown in
As explained, sensor signals from ink pressure sensor 152 and air pressure sensor 160 are fed to controller 140, controller 140 processes sensor signals and controls operation of ink pump 150 and air pressure source 160. In this example, the level sensor hence is a differential pressure sensor.
The air pump operates by pressurizing the air volume inside the tank and above or around the ink volume, by applying an air pressure which cycles between a lower_threshold_pressure and an upper_threshold_pressure, l_t_p and u_t_p in the example of
During a refill period, from t3 to t4 in this example, the amount of fluid inside the tank increases due to the fluid being pushed into the tank from the supply tank resulting in the increase of volume of the fluid bag and the reduction of the air volume. Thus, as the refill operation goes on, the quantity of air to be pressurized becomes smaller and thus the duration of one pressurization cycle become shorter, the frequency of pressurization cycles increases and the slope of a respective air pressure cycle becomes steeper. This is illustrated in curve AP, where a pressurization cycle has a longer period and smaller slope at the beginning of the refill operation and a shorter period and greater slope at the end of the pressurization cycle.
By monitoring a parameter of the pressurization cycles, a change in the fill state of the fluid volume can be determined as a function of the monitored parameter. The parameter may be at least one of a frequency, a duration or a slope of the pressurization cycles. The controller may e.g. detect a reduction of the period or duration of respective pressurization cycles between a first pressurization cycle at the beginning of a refill operation and each current pressurization cycle. If the period of a current pressurization cycle is at or below a defined fraction, e.g. x %, of the initial pressurization cycle, the controller may determine that the tank has reached a desired fill level, e.g. 75% or 80% of its maximum capacity. Just as an example, 30<x<70, or x is about 50. In another example, the controller may detect an absolute value of the period or duration of a current pressurization cycle. If the period of a current pressurization cycle is at or below a defined value, e.g. y ms, the controller may determine that the tank has reached a desired fill level, e.g. 75% or 80% of its maximum capacity. Just a s an example, 2<y<10, or y is about 5.
In a similar manner, a desired fill level can be determined based on the frequency of pressurization cycles or the slope of pressurization cycles, for example.
In the example of
For a printing equipment comprising a plurality of supply tanks and a plurality of intermediate tanks, the refill operation of the printing equipment 100 may proceed in a similar manner as described above with reference to
Further, in case that a single air pressure source is used, depending on the number of intermediate tanks to be refilled, the air pressure curve may be similar to the one AP shown in
As explained above, monitoring the air pressure curve can be used to monitor progress of a refill operation when ink is fed from the supply tank to the intermediate tank. Monitoring can be in addition to use of a level sensor, including a differential pressure sensor. Additionally or alternatively, monitoring can be in addition to monitoring operation of the ink pump which is controlled to generate a defined ink flow.
Monitoring of the air pressure curve may signal an unexpected change in a pressurization cycle parameter, i.e. a parameter change not in line with the signal provided by the level sensor or the progress in feeding ink by the ink pump. In such a case, an error signal may be generated, the ink pump may be stopped, an extra level measurement may be performed at the intermediate tank or a combination of these and other safety precautions can be triggered. The refill operation may be resumed after clarification of the unexpected event.
Whereas, the example described with reference to
A method of monitoring a fluid supply device, according to an example, is described next with reference to the flow diagram of
Controlling the gas pressure may include increasing the gas pressure to an upper pressure threshold by activating a gas pressure pump; decreasing the gas pressure to a lower pressure threshold by deactivation the gas pressure pump; and repeating the increasing and decreasing of the gas pressure, wherein the parameter includes at least one of a frequency, a period or a slope of the cycle of increasing and decreasing of the gas pressure.
The method may be performed using a printing equipment and refill system as described above with reference to
The printing equipment may include a supply tank to hold a supply of printing fluid; an intermediate tank including a collapsible fluid reservoir to contain printing fluid and an outer container to enclose the collapsible fluid reservoir; a printing unit; a fluid pump connected to the supply tank to feed the printing fluid from the supply tank to the intermediate tank; an air pump connected to the intermediate tank to pressurized the printing fluid in the collapsible reservoir to feed the printing fluid from the intermediate tank to the printing unit; an air pressure sensor to monitor an air pressure provided by the air pump; a controller to control the fluid pump to refill the intermediate tank from the supply tank and to monitor a fill level of the intermediate tank based on a change over time of a plurality of pressure cycles of the air pressure provided by the air pump.
The method may be performed at least in part by software, hardware and/or firmware and may be implemented at least in part in the controller 140.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/065766 | 12/11/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/118561 | 6/17/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6036296 | Axtell et al. | Mar 2000 | A |
6224198 | Cook et al. | May 2001 | B1 |
6454375 | Wilson et al. | Sep 2002 | B2 |
6988793 | Wilson et al. | Jan 2006 | B2 |
20020047882 | Karlinski | Apr 2002 | A1 |
20070151350 | Sheldon | Jul 2007 | A1 |
20090290002 | Katoh | Nov 2009 | A1 |
20110134171 | Leighton | Jun 2011 | A1 |
20130027479 | Chen | Jan 2013 | A1 |
20130104668 | Hanko | May 2013 | A1 |
Number | Date | Country |
---|---|---|
2771191 | Dec 2016 | EP |
2007105923 | Apr 2007 | JP |
WO-2010077387 | Jul 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20220410576 A1 | Dec 2022 | US |