The present disclosure generally relates to refiners, such as but not limited to disc refiners, conical refiners, cylindrical refiners, double disc refiners, double conical refiners, and double cylindrical refiners or similar equipment and their plates and plate segments, and more particularly to the shape of the bars and grooves that define the refining elements of these refiner plates or refiner plate segments.
Lignocellulosic material, e.g., wood chips, saw dust and other wood or plant fibrous material, is refined by mechanical refiners or similar equipment that separate fibers from the network of fibers that form the lignocellulosic material. Refiners for lignocellulosic material are fitted with refiner plates or refiner plate segments that are arranged to form a refiner filling. The refiner plates are also referred to as “discs.” In a refiner, two opposing refining surfaces (plates) are positioned such that at least one refiner plate rotates relative to the other refiner plate. In this respect, there may be one refiner plate that is held substantially stationary; this is generally called a “stator.” The other refiner plate that rotates is generally called a “rotor.”
The lignocellulosic material to be refined flows through a center inlet of one of the refiner plates and into a gap between the two refiner plates or surfaces. As one or both of the refiner plates rotate, centrifugal forces move the lignocellulosic material outwards through the gap and towards the periphery of the refiner plate.
The opposing refining surfaces of the refiner plates include annular sections having bars and grooves. The grooves provide passages through which material moves in a plane between the surfaces of the refiner plates. The lignocellulosic material also moves out of the plane from the grooves and over the bars. As the lignocellulosic material moves over the bars, the lignocellulosic material enters a refining gap between crossing bars of the opposing refiner plates. The crossing of bars apply forces to the lignocellulosic material in the refining gap that can act to separate the fibers in the lignocellulosic material. The repeated application of forces in the refining gap refines the lignocellulosic material into a pulp of separated and refined fibers, or exerts plastic deformation fibers to increase their bonding strength, or produces fines and shorter fibers, depending on the application.
Refiner plates for refining lignocellulosic material are known in the art, such as, for example, those described in U.S. Pat. Nos. 7,896,276; 7,712,694; and 6,032,888.
An embodiment of the disclosure may include a fully dammed refiner plate for mechanically refining lignocellulosic material in a refiner having opposing refiner plates. The fully dammed refiner plate comprises at least one refining zone on a major surface of the refiner plate, at least one type of grooves in the refining zone, and at least one full height dam in all or substantially all of the grooves. A full height dam is a dam situated in a groove such that the bottom of the dam is the substantially flat bottom surface of the groove, and the top of the dam is substantially the same height as the top of the bar or the surface of the refiner plate. The dammed grooves on the surface of the refiner plate form segments of grooves, and each groove segment has a length of no more than about 30 mm, about 25 mm, about 15 mm, about 10 mm, or about 5 mm. The terms “substantially” and “about” are used in this disclosure to refer to variations of between 5% to 10% or less.
Another embodiment may include a partially dammed refiner plate for mechanically refining lignocellulosic material in a refiner having opposing refiner plates. The partially dammed refiner plate comprises at least one refining zone on a major surface of the refiner plate, at least one type of grooves in the refining zone, and at least one full height dam in at least one of the grooves. The dammed grooves on the refiner plate form segments of grooves, each groove segment has a length of no more than about 30 mm, about 25 mm, about 15 mm, about 10 mm, or about 5 mm.
An exemplary method to use an embodiment of the present disclosure may include feeding lignocellulosic material into a refining gap between a set of opposing refiner plates from an inner edge of the refiner plates or surfaces, refining the lignocellulosic material between the set of specific refiner plates, and receiving refined lignocellulosic material on an outer edge of the refiner plates, wherein the lignocellulosic material is refined by refiner plates comprising at least one groove segment with a length of no more than about 30 mm.
Certain embodiments may also include two types of dammed grooves on the surface of the refiner plate. Other embodiments may also include having holes in the refiner plate to dewater the fiber flocks.
Refiner plate segments may be used, for example, in refining machines for refining low consistency (or high freeness) lignocellulosic material. Low consistency is generally less than 6% (by weight) solids content of the composition of the lignocellulosic material and liquid (slurry) being fed to the refiner, or even less than 5% or 2% (by weight) solid content of slurry. The refiner plate segments may also be used for medium consistency refining between about 6% to about 12% (by weight) solid content of the composition of the lignocellulosic material and liquid (slurry) being fed to the refiner. In certain aspects, the configuration of bars and grooves may be applied to various refiner geometries, e.g., disc refiners, conical refiners, double disc refiners, double conical refiners, cylindrical refiners, and double cylindrical refiners or similar equipment.
This disclosure relates to the belief that refiners (and the refiner plates used in refiners) may behave similar to centrifugal pumps, albeit inefficient ones, where the rotor is comparable to the impeller of a centrifugal pump, and where the stator acts like the so-called shroud of a pump (e.g., the space between impeller and pump housing).
Certain aspects of the present disclosure may be applicable to any refiner plate designs, including straight (or substantially parallel) bar designs and logarithmic spiral bar designs.
Conventionally, the vast majority of refiner plates use the same design on the rotor and the stator, which means that the shroud is formed like the pumping impeller. It is believed that the logarithmic spiral design for a refiner plate is hydraulically superior (e.g., a higher pressure increase at the same flow rate), an effect attributed to the radial nature of the logarithmic spiral geometry, neither technology (logarithmic spiral or straight designs) has attributed particular importance to the function and formation of the shroud (e.g., the stator) and its influence on the behavior of the hydraulic machine, the refiner, and the interaction between shroud (e.g., stator) and impeller (e.g., rotor).
This disclosure may relate to an insight derived from centrifugal pumps. Centrifugal pump designs have attributed importance to the flow behavior within the shroud. The term for these flows is “leakage”. The size and shape of the shroud (clearance) as well as the direction of the flow, play a role in the following items: (a) frictional losses causing (i) increased power consumption (e.g., comparable to the idle power of a refiner) and (ii) reduced pressure head (delta p, pressure increase across refiner), and (b) forces on the impeller, such as (i) impacting the forces to be consumed by the bearing and therefore influencing the design and safety factor of the bearing assembly and (ii) affecting the forces on the rotor in a low consistency refiner that influence the stability of the refining gap through the movement induced to the rotor (uneven refining in double disc refiners). For low consistency refiners these effects may present themselves as increased idle power, lower pressure increase and imbalanced refining action due to gap instability.
In an aspect, certain embodiments may optimize the hydraulic behavior of the refiner by optimizing the shroud of the pump and thereby optimizing the rotor-stator interaction of low consistency refiners with the intended benefits of one or more of (i) lower power consumption, (ii) better hydraulic efficiency (higher delta p), and (iii) improved gap stability by balancing the rotor in the case of double disc refiners.
With respect to centrifugal pumps, it is believed that the undisturbed inward flow through the shroud can be a major cause of negative effects. In pump housings, there may be a limited ability to respond to these negative effects, and efforts tend to focus on estimating its influence. For low consistency refiners, however, the shroud may influence performance and minimize negative effects related to inward flow of the material. The bars of the stator plate may act like the shroud in a centrifugal pump, rather than a smooth wall, therefore, the arrangement and design of the bars, while suitable for delivering the refining action, may also be used to influence the shroud performance. The same design and effect may be applicable to a medium consistency refiner.
Because it is believed that a root cause of poor performance issues may be the inward flow within the shroud of the pump, the present disclosure relates to minimizing prolonged stretches of open channels. The fluid should be prohibited from picking up speed in the grooves of the refiner plate. This may be accomplished by implementing a series of full height dams within each groove, as well as controlling the lengths of the grooves.
In certain embodiments, the rotor plate bar and groove pattern may be required for a different task in comparison to conventional rotor plates. Due to an increase in hydraulic performance, a reduction in energy consumption and better impeller balancing as a result of optimizing the stator, the rotor may now be designed to moderate and adjust the hydraulic potential of the refiner plate to the application. Three options may be available for this task: (i) a rotor plate that is fully dammed (which may be suitable for low flow requirements), (ii) a rotor plate that is partially dammed (which may be suitable for average flow requirements), and (iii) a rotor plate having no dams at all (which may be suitable for maximum flow requirements). The rotor plate with no dams at all may be substantially the same as the conventional refiner plates. In another embodiment, a stator plate may also be designed with the same three options for the rotor plate.
The rotor and stator designs may be used in a low consistency refiner wherein the pulp has a solid content less than 6% solid content of the composition of the lignocellulosic material and liquid (slurry) being fed to the refiner , or even less than 5% or 2% solid content of slurry. The designs may also be used in a medium consistency refiner that includes a fluid like medium, wherein the composition of the lignocellulosic material and liquid (slurry) being fed to the refiner pulp has a solid content of between about 6% to about 12%.
An embodiment of a dammed refiner plate segment 100 is shown in
In an embodiment, a first groove type 150 is separated by dams 160, and have a length X (as shown in
An embodiment of the first groove type 150 in three-dimensional view is shown in
A magnified view of a section of the dammed refiner plate segment 100 is shown in
An embodiment of the disclosure may include use of only one of the first groove type 150 or the second groove type 180 situated between dams 160 in logarithmic groove lines. The groove lines may also be in a straight line pattern with parallel bars 140. An additional embodiment of the disclosure may have an alternate repeating pattern wherein the first groove type 150 and the second groove type 180 are situated alternatively between dams 160, and along straight or logarithmic groove lines.
Another embodiment of the disclosure may be partially dammed, e.g., a partially dammed refiner plate segment 200 shown in
The exemplary partially dammed refiner plate segment 200 comprises partially dammed grooves (e.g., between about 10% to about 90% of the grooves are dammed, preferably between about 25% to about 75%, more preferably between about 35% to about 60%), undammed grooves in the first refining zone 202, and undammed grooves in the second refining zone 203. The dams, when present, are full height dams. In
An embodiment of the second groove type 180 in three-dimensional view is shown in
In an embodiment, the sloped sides (182, 183 and 184) may have angles relative to each of the sloped sides: angle θ2 of the sloped first short side 182 relative to the bottom surface 181, angle θ3 of the first sloped long side 183 relative to the bottom surface 181, and angle θ4 of the second sloped long side 184 relative to the bottom surface 181. Each of the angles may be in similar or distinguishable degrees of slope of no more than about 90 degrees, about 75 degrees, about 45 degrees, about 30 degrees, or about 15 degrees. A cross-section of second groove type 180 in the direction of B may be in a substantially trapezoidal shape.
A magnified view of a section of the partially dammed refiner plate segment 200 is shown in
Alternatively, the design could consist of a series of holes drilled or cast into the refiner plate in the shape of, e.g., circles, rectangles, and triangles, to create recesses for dewatering of the fiber flocks in the refining process, while disallowing continuous inward flow through the stator. The holes may have a diameter or width of no larger than about 15 mm, about 10 mm, about 5 mm, about 3 mm, or about 2 mm.
In certain aspects, this disclosure thus relates to alleviating a problem pertaining to rotor balancing in double disc refiners. This disclosure may also lead to lower energy consumption and improved hydraulics in refiners, e.g., low consistency refiners, and medium consistency refiners that includes a fluid medium.
The disclosure may relate to the special formation of the stator plate, which may be achieved by using dams on refiner plates at a spacing no longer than about 25 mm to about 30 mm apart or by using alternative stator designs yielding a design with groove segments no longer than about 25 mm to about 30 mm. The stator design may require a rotor to be adjusted to the hydraulic needs of the application, which may be achieved by using plate designs, e.g., fully dammed, partially dammed or regular refiner plate designs.
Aspects of this disclosure may allow for significant idle power energy reduction, may provide the tools for managing the hydraulic capacity of the rotor-stator combination, and may alleviate potential problems associated with the issue of rotor centering in double disc low consistency refiners.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Designs of the refiner plates and refiner plate segments are not limited to the embodiments described. Other embodiments may include substantially straight grooves and bars, and/or other combinations.
This invention claims the benefit of U.S. provisional patent application 61/715,398, filed on Oct. 18, 2012, the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61715398 | Oct 2012 | US |