The present invention relates to an anti-reflective structural body.
As conventional examples of an anti-reflective structural body that suppresses reflection of light, the structural bodies described in Patent Literatures 1 and 2 have been proposed.
Patent Literature 1 discloses an anti-reflective structure portion that includes a base structure portion arranged by an alignment of a plurality of structural units each disposed on a reference surface and having a first side surface with which an angle α formed with the reference surface is a predetermined angle, and a plurality of finely uneven portions formed on a surface of the basic structure portion and arrayed regularly at a period of not more than a predetermined wavelength.
Patent Literature 2 discloses an anti-reflective film constituted of a substrate layer constituted, at least at one surface side, of an optically transparent material exhibiting an anti-reflective characteristic in relation to a wavelength of radiation that is incident on the surface.
Designs of industrial products have been diversifying in recent years and an external appearance design can influence sales of a product. Diverse textures are thus required of materials that are visible from the exterior in addition to materials constituting the body of a product. For example, even when the external appearance is simply black, there may be cases where a deeper blackness is demanded.
Also, with the diversification of design, there are cases where it is difficult to apply an anti-reflective processing to inner and outer surfaces of a product itself. In this case, an anti-reflective function can be imparted to the outer surface of the product by attaching an anti-reflective structure film to the inner and outer surfaces of the product.
Thus, an object of the present invention is to provide an anti-reflective structural body capable of expressing an excellent anti-reflective function.
An anti-reflective structural body according to one aspect of the present invention includes a main body constituted of a raw material that contains a color material of black color and an anti-reflective structure formed on an outer surface of the main body, the anti-reflective structure includes a plurality of recesses each being formed to be recessed with respect to the outer surface and a base portion forming boundary portions of the recesses that are mutually adjacent and having a top portion on the outer surface, a profile curve of the base portion in a depth direction of the recesses includes the top portion formed to a curved shape, and virtual circles respectively including portions of the top portion of the curved shape as circular arcs each have a diameter ϕ of not more than 50 μm.
By the anti-reflective structural body according to the one aspect of the present invention, an excellent anti-reflective function can be expressed because the diameter of the virtual circles of the top portion of the base portion of the anti-reflective structural is not more than 50 μm.
First, preferred embodiments of the present invention shall be listed and described.
An anti-reflective structural body according to a preferred embodiment of the present invention includes a main body constituted of a raw material that contains a color material of black color and an anti-reflective structure formed on an outer surface of the main body, the anti-reflective structure includes a plurality of recesses each being formed to be recessed with respect to the outer surface and a base portion forming boundary portions of the recesses that are mutually adjacent and having a top portion on the outer surface, a profile curve of the base portion in a depth direction of the recesses includes the top portion formed to a curved shape, and virtual circles respectively including portions of the top portion of the curved shape as circular arcs each have a diameter ϕ of not more than 50 μm.
With the anti-reflective structural body according to the preferred embodiment of the present invention, the diameter ϕ of the virtual circles may be 1.0 μm to 50 μm.
With the anti-reflective structural body according to the preferred embodiment of the present invention, the main body may be formed to a layer shape having a first surface that includes the outer surface and a second surface at a side opposite the first surface.
With the anti-reflective structural body according to the preferred embodiment of the present invention, a depth D of each of the recesses may be of a magnitude less than ½ of a thickness T of the main body of the layer shape.
With the anti-reflective structural body according to the preferred embodiment of the present invention, the thickness T of the main body of the layer shape may be 0.01 mm to 5 mm and the depth D of each of the recesses may be 0.005 mm to 2.5 mm.
With the anti-reflective structural body according to the preferred embodiment of the present invention, each of the recesses may have, in a sectional view in a depth direction of the recesses, a pair of inclined surfaces that intersect each other and an angle θ between the pair of inclined surfaces may be not more than 90°.
With the anti-reflective structural body according to the preferred embodiment of the present invention, the angle θ between the pair of inclined surfaces may be 5° to 90°.
Preferred embodiments of the present invention shall now be described in detail with reference to the attached drawings.
The anti-reflective structure film 1 as one example of an anti-reflective structural body of the present invention includes a film main body 2 having a first surface 3 and a second surface 4 at a side opposite the first surface 3 and an anti-reflective structure 5 formed on the first surface 3 of the film main body 2.
The film main body 2 is formed, for example, to a rectangular shape. The anti-reflective structure film 1 does not have to be of rectangular shape as long as it is of film shape having flexibility. For example, the anti-reflective structure film 1 may be of square shape or of circular shape. Also, a thickness T of the film main body 2 may, for example, be 0.01 mm to 5 mm. Also, as long as it is formed to a layer shape, the film main body 2 may be defined by another name (for example, a sheet main body). For example, it may be called a film main body if the thickness T is not more than 0.25 mm and may be called a sheet main body if the thickness T exceeds mm.
A base raw material of the film main body 2 is not restricted in particular and a natural rubber, synthetic rubber, (synthetic) resin, etc., can be cited as examples, and preferably a synthetic resin is used. As the synthetic resin, a thermoplastic resin, for example, a styrene resin, PP resin, PE resin, PVC resin, PET resin, PTFE resin, PEEK resin, PPS resin, COP resin, LCP resin, silicone resin, polyurethane resin, acrylic resin, polyamide resin, polycarbonate resin, etc., can be cited. More preferably among these, a polycarbonate resin is used. The base raw materials mentioned above may each be used alone or may be used in combination.
That is, the film main body 2 may be film with which a mixture of a plurality of the base materials are molded in a single layer or may be a plural layer film with which a plurality of the base materials are molded as separate layers and the plurality of layers are layered. In the latter case, one of the layers may be a substrate film (substrate layer) at the second surface 4 side that has a comparatively large thickness and imparts strength to the film main body 2 and a remaining layer layered on the substrate film may be a functional layer at the first surface 3 side on which the anti-reflective structure 5 is formed and by which an anti-reflective function is imparted to the film main body 2.
Also, the base raw material of the film main body 2 may contain a color material of black color to impart a black color to the film main body. The color material of black color is not restricted in particular and carbon black, graphite, titanium black, etc., can be cited as examples. Also, an example of a content ratio of the color material of black color with respect to the base raw material is 0.1 to 15 parts by mass of carbon black with respect to 100 parts by mass of polycarbonate resin. The content ratio of the color material of black color should be changed as appropriate in accordance with intended use of the film main body 2.
Also, the base raw material of the film main body 2 may contain a filler, such as glass fibers, carbon fibers, microfibers, carbon nanotubes, cellulose nanofibers, etc., as necessary.
The first surface 3 of the film main body 2 is a surface of the anti-reflective structure film 1 on which the anti-reflective structure 5 is formed. The first surface 3 of the film main body 2 may be called a front surface of the film main body 2 because it is a front surface side when the anti-reflective structure film 1 is attached to an attachment object structure (not shown).
On the other hand, the second surface 4 of the film main body 2 is a smooth surface of the anti-reflective structure film 1 on which the anti-reflective structure 5 is not formed. The second surface 4 of the film main body 2 may be called a rear surface of the film main body 2 because it is a to-be-attached surface of the anti-reflective structure film 1 with respect to the attachment object structure (not shown). Also, an adhesive layer (not shown) for adhesion to the attachment object structure may be formed on the second surface 4 of the film main body 2.
Referring to
Each recess 6 is formed to be recessed toward a thickness direction interior of the film main body 2 from a base surface 9 set at a height position of a top portion 8 of the base portion 7. That is, each recess 6 is a recess constituted of a conical hollow space having inclined surfaces 11 spreading toward the base surface 9 with the tip portion 10, which is a punctiform apex portion disposed in an interior of the film main body 2, as a center. Also, by the base portion 7, each recess 6 is disposed to be independent of the recesses 6 that are mutually adjacent.
Each recess 6 has an opening portion 12 of quadrilateral shape (square shape). The recess 6 constitutes a quadrilateral conical recess having a first inclined surface 11A, a second inclined surface 11B, a third inclined surface 11C, and a fourth inclined surface 11D that are inclined toward the tip portion 10 from respective sides of the opening portion 12 and join into one at the tip portion 10. Therefore, as shown in
Referring to
Also, a depth D (distance from the base surface 9 to the tip portion 10) of each recess 6 is preferably of a magnitude not more than ½ of the thickness T of the film main body 2 and may, for example, be 0.005 mm to 2.5 mm. By setting such that D≤½T, comparatively thick portions in which hollow portions, such as the recesses 6, are not formed can be secured in the film main body 2 and the film main body 2 can thus be imparted with an appropriate strength.
Also, a pitch P between mutually adjacent recesses 6 (mutual distance between the tip portions 10) may be 0.01 mm to 1 mm.
In addition, a diameter (width) W of the opening portion 12 of each recess 6 can be determined, for example, by determining the angle θ between the inclined surfaces 11, the depth D of the recesses 6, and the pitch P of the recesses 6. A specific range of the width W of the opening portion 12 may, for example, be 0.01 mm to 1 mm.
Next, shapes of the tip portions 10 of the recesses 6 and the top portion 8 of the base portion 7 shall now be described with reference to
The profile curve 30 shown in
As shown in
In the present preferred embodiment, the base portion 7 is formed to a lattice as shown in
Also, as shown in
Also, in the anti-reflective structure 5, the base surface 9 (top portion 8) and the inclined surfaces 11 of the recesses 6 are finished to a state where the raw material of the film main body 2 is exposed. That is, the base surface 9 and the inclined surfaces 11 of the recesses 6 are not covered with a thin film, etc., that is constituted of a raw material differing from the raw material of the film main body 2 and also, the recesses 6 are not refilled with another resin material, etc., but are maintained in a hollow state.
To manufacture the anti-reflective structure film 1, for example, the base raw materials mentioned above and additives (for example, color material, filler, etc.) that are added as necessary are loaded into an extruder (not shown) and extrusion-molded from the extruder. The film main body 2 is thereby molded. In the extrusion molding process, the base raw materials should be made into a film, for example, by extruding the raw materials from a T die 13 included in the extruder. Also, if the film main body 2 is to be of plural layers, the film main body 2 that includes plural layers may be formed by coextrusion of a plurality of raw materials. The extruded film main body 2 is solidified by cooling rolls 14.
Next, by passing through a longitudinal stretching machine 47, the film main body 2 is stretched in a longitudinal axis direction (direction of advance of the film main body 2) and thereafter, by passing through a lateral stretching machine 48, the film main body 2 that has been stretched in the longitudinal axis direction is further stretched in a lateral axis direction (direction orthogonal to the direction of advance). The film main body 2 (biaxially stretched film) that has been stretched along the two axis of the longitudinal axis direction and the lateral axis direction is thereby obtained.
The next step is a transfer step of forming the anti-reflective structure 5 on the film main body 2. In the transfer step, the biaxially stretched film main body 2 is, for example, sandwiched between a pair of upper and lower pinch rolls 15.
As shown in
Projections 17 corresponding to the recesses 6 of the anti-reflective structure 5 and a recess 18 of lattice shape that surrounds the projections 17 and corresponding to the base portion 7 of the anti-reflective structure 5 are formed in the transfer pattern 16. That is, the transfer pattern 16 is formed in an opposite pattern to that of the anti-reflective structure 5. Therefore, tip portions (not shown) of the projections 17 are formed to arcuate shapes having the same diameter as the diameter ϕ2 of the virtual circles 6C of the tip portions 10, and apex portions (not shown) of the recess 18 are formed to arcuate shapes having the same diameter as the diameter ϕ of the virtual circles 7C of the top portion 8. Such a transfer pattern 16 can be formed, for example, by precise processing of a surface of the pinch roll 15 with a diamond cutting tool, etc. The transfer pattern 16 can also be formed by applying plating, laser processing, etc., to the surface of the pinch roll 15.
The first surface 3 of the film main body 2 is then embossed by the transfer pattern 16 being transferred onto the first surface 3 of the film main body 2 when the film main body 2 passes between the pair of pinch rolls 15. The anti-reflective structure 5 is thereby formed on the first surface 3 of the film main body 2. The anti-reflective structure film 1 is thereafter obtained by the film main body 2 being wound up by a winding roll 49.
Although in
As described above, with the anti-reflective structure film 1 of the present preferred embodiment, reflection of light incident on the first surface 3 (base surface 9) of the film main body 2 can be suppressed because the diameter ϕ of the virtual circles 7C of the top portion 8 of the base portion 7 of the anti-reflective structure 5 is not more than 50 μm. Consequently, an excellent anti-reflective function can be expressed. Also, the top portion 8 of the base portion 7 of the anti-reflective structure 5 is of lattice shape and not of sharp, independent shapes and therefore, even if some form of contact occurs with the first surface 3 of the film main body 2, breakage of a portion of the top portion 8 can be suppressed. Forming of unwanted particles can thereby be prevented and shape change of the top portion 8 can be prevented, thereby enabling the anti-reflective function of the anti-reflective structure 5 to be maintained.
Also, with the present preferred embodiment, the quadrilateral conical recesses 6 in the anti-reflective structure 5 are arrayed with regularity along a longitudinal direction and a lateral direction that are mutually orthogonal and therefore the reflection of light on the base surface 9 can be suppressed uniformly.
Further, since the anti-reflective structural body is the anti-reflective structure film 1, even in a case where it is difficult to apply an anti-reflective processing to inner and outer surfaces of a product itself (for example, in a case where the inner and outer surfaces of the product are curved surfaces), the anti-reflective function can be imparted to the inner and outer surfaces of the product by attaching the anti-reflective structure film 1 to the inner and outer surfaces.
Although a preferred embodiment of the present invention has been described above, the present invention may be implemented in other modes.
For example, although with the preferred embodiment described above, the opening portion 12 of each recess 6 of the anti-reflective structure 5 is of square shape, it may instead be of rectangular shape as shown in
Also, although with the preferred embodiment described above, the recesses 6 are formed as quadrilateral conical recesses 6, the recesses may, for example, be circular conical recesses 6 as shown in
Also, although with the preferred embodiment described above, extrusion molding (biaxial stretching) and roll pattern transfer were indicated as an example of a processing process of the anti-reflective structure 5, a processing process besides this, such as UV lamination, embossing, screen printing, injection molding, etc., can be adopted.
For example, the film main body 2 may be formed by a lamination process of
The process of
On the other hand, the process of
The anti-reflective structure film according to the present invention can be used favorably as a film to be attached to an outer surface, for example, of an automotive interior material (instrumental panel, etc.), an automotive exterior material (headlight, tail lamp, etc.), a lens barrel of a camera lens, an anti-reflective structure for an HUD (head-up display), an anti-reflective structure for an optical sensor, a structure for improving a design quality of a watch, or any of other various industrial products.
Also, although with the preferred embodiment described above, the arrangement of the anti-reflective structure film was described as an example of a preferred embodiment of the present invention, the present invention is not restricted to a film and can be applied to industrial products of various shapes. For example, a preferred embodiment may be an anti-reflective structure molded body that includes the anti-reflective structure 5 described above.
The lens barrel 31 as an example of an anti-reflective structural body according to the present invention includes, as a main body portion, a cylindrical portion 33 defining a lens housing portion 32 as an example of a hollow internal space for housing a lens (not shown).
The cylindrical portion 33 has a two-stage structure in which a first portion 34 of relatively large diameter and a second portion 35 of smaller diameter than the first portion 34 are coupled and, at a boundary portion of these portions, a step portion 36 is formed over an entire periphery of the cylindrical portion 33. An inner diameter of the first portion 34 may, for example, be 3.0 mm to 5.0 mm, and an inner diameter of the second portion 35 may, for example, be 3.0 mm to 5.0 mm. Also, an axial direction height of the cylindrical portion 33 may, for example, be 0.50 mm to 5.0 mm.
An annular top portion 37 is provided at a second portion 35 side end portion (one end portion) of the cylindrical portion 33. The annular top portion 37 is formed to a circular annular plate shape having an aperture 38, for taking light into the lens housing portion 32, at a central portion. A surface (outer surface 39) of the annular top portion 37 at a side opposite the lens housing portion 32 constitutes a circular region surrounding the aperture 38 and the anti-reflective structure 5 is formed over an entirety of the circular region. On the other hand, a surface (inner surface 40) of the annular top portion 37 at the lens housing portion 32 side is a smooth surface on which the anti-reflective structure 5 is not formed.
The aperture 38 of the annular top portion 37 penetrates through the annular top portion 37 in a thickness direction and is formed to a circular shape having a tapered peripheral surface 41, which, in the thickness direction, widens in diameter toward the side opposite the lens housing portion 32. A diameter (maximum diameter) of the aperture 38 of the annular top portion 37 is, for example, 1.0 mm to 3.0 mm with respect to an outer diameter (for example of 4.0 mm to 7.0 mm) of the annular top portion 37.
Also, a first portion 34 side end portion (other end portion) of the cylindrical portion 33 is opened with an inner diameter dimension of the first portion 34.
The lens barrel 31 is formed of a molded article with which the cylindrical portion 33 and the annular top portion 37 are integral.
To manufacture the lens barrel 31, molding metal molds (for example, a female mold 42 and a male mold 43) are prepared as shown in
Next, as shown in
Next, the injected base raw material 46 is subject to dwelling and cooling. A dwell pressure in this process may, for example, be 50 MPa to 140 MPa. Also, an injection time that is a sum of a filling time and a dwelling time may, for example, be 1 second to 10 seconds. After cooling, mold opening is performed and the lens barrel 31 having the anti-reflective structure 5 described above is obtained.
Besides the above, various design changes may be applied within the scope of the matters described in the claims.
The present application corresponds to Japanese Patent Application No. 2019-191252 filed in the Japan Patent Office on Oct. 18, 2019 and the entire disclosure of this application is incorporated herein by reference.
Although the present invention shall now be described by way of examples, the present invention is not restricted by the examples described below.
In accordance with the process of
Reflectance measurements were made using a measurement device 23 shown in
From the results in Table 1 and
In accordance with the process of
Reflectance measurements were made using the measurement device 23 shown in
From the results in Table 2 and
Next, how the angle θ between the inclined surfaces 11 is related to the reflectance shall be demonstrated by Examples 8 to 16. In Examples 8 to 16, the angle θ and the diameter ϕ of the top portion 8 of the anti-reflective structure 5 were set as fixed conditions and an evaluation was carried out by changing the depth D of the recesses 6 with respect to the fixed conditions.
Also, although the following results are evaluation results when the depth D of the recesses 6 is made a variable, the results would be the same even when the pitch P of the recesses 6 is changed. That is, as shown in
In accordance with the process of
The molding conditions were set, for example, as follows: resin temperature=approximately 320° C., injection pressure (filling pressure=approximately 210 MPa, dwell pressure=approximately 110 MPa), injection speed=approximately 200 mm/s, injection time (filling time+dwelling time)=approximately 1.6 seconds. In regard to each of the anti-reflective structure molding bodies obtained, the diameter ϕ of the top portion 8, the angle θ between the inclined surfaces 11, and the depth D of the recesses 6 of the anti-reflective structure 5 were as shown in Table 3.
Reflectance measurements were made using the measurement device 23 shown in
From the results in Table 3 and
Also, from the results in Table 3 and
Number | Date | Country | Kind |
---|---|---|---|
2019-191252 | Oct 2019 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/046032 | 11/25/2019 | WO |