Reflection sound generator with series of main and supplementary FIR filters

Information

  • Patent Grant
  • 6782105
  • Patent Number
    6,782,105
  • Date Filed
    Tuesday, November 23, 1999
    25 years ago
  • Date Issued
    Tuesday, August 24, 2004
    20 years ago
Abstract
A reflection sound generator has a first filter of Finite Impulse Response (FIR) type that is provided with a first set of parameters representing a first distribution pattern of reflection sounds, and a second FIR-type filter provided with a second set of parameters representing a second distribution pattern of additional reflection sounds. The first distribution pattern has a time length sufficient to cover an initial reflection sound and subsequent reverberant reflection sounds which are distributed at intervals along the time. The first filter executes convolution operation of sample data of an input sound by the first set of parameters to generate first data containing a sequence of reflection sounds of the input sound. The second filter executes convolution operation of the first data by the second set of parameters to generate second data containing additional reflection sounds which fill the intervals of the reflection sounds of the input sound.
Description




BACKGROUND OF THE INVENTION




This invention relates to a reflection sound generator for generating reflection sounds of an input sound signal using an FIR (Finite Impulse Response) filter. The reflection sound generator allows a greater number of reflection sounds to be generated from a smaller number of parameters, and the reflection sound generator further makes it easy to set and change reverberation characteristics of a sound field such as room size and liveness.




The reflection sound generator using the FIR filter is a device to carry out convolution operation of an input sound signal based on reflection sound parameters, which determine a sequence of or group of reflection sounds in terms of respective delay times and gains or magnitudes, to produce reflected and reverberated sounds. Such a device is used in various applications, for example, for creating the realism of any sound field space (e.g., a hall space) in a limited space (e.g., small room). It may also be provided in an acoustic feedback system for adjusting reverberation characteristics of a room (e.g., a music listening room) or a hall, or for prolonging a reverberation time.





FIG. 2

shows the most basic structure of a reflection sound generator using a conventional FIR filter. This device is designed to produce reflection sounds through one FIR filter


10


. For the FIR filter


10


, as shown in FIG.


3


(


a


), for example, a set of reflection sound parameters is installed such that a sequence of reflection sounds are generated at proper time intervals while their magnitudes gradually decrease to attenuate with time. The FIR filter


10


carries out the convolution operation of an input sound signal based of the reflection sound parameter set to generate a corresponding reflection sound signal.




The time interval At tuned by the FIR filter


10


can be lengthened or shortened throughout its full time domain, thereby causing a variation of room size. For example, as shown in FIG.


3


(


b


), the time interval At of the FIR filter


10


can be lengthened so that the audience can feel the room to become wider. Gains of the reflection sound parameters can also be changed in proportion to the delay times of the respective reflection sounds while maintaining the time interval At, resulting in a variation of liveness. For example, as shown in FIG.


3


(


c


), each gain can be raised in proportion to each delay time to create a live sound field.




According to the structure of the reflection sound generator of

FIG. 2

, the number of parameters set for the FIR filter


10


is, however, required to correspond to the number of reflection sounds (equivalent to the number of taps of the device) to be generated. To solve this problem, another type of reflection sound generator such as shown in

FIG. 4

has been proposed. In this reflection sound generator, a plurality of FIR filters


12


,


14


,


16


are connected in series while respective outputs of the FIR filters


12


,


14


,


16


are coupled commonly to an adder


17


to generate resultant output sounds. FIGS.


5


(


a


),


5


(


b


) and


5


(


c


) show reflection sound-parameters of the FIR filters


12


,


14


,


16


, respectively. As shown, the first FIR filter


12


generates a top part containing an initial reflection sound. Based on the initial reflection sound part, the second FIR filter


14


generates a reverberant reflection sound part following the initial reflection sound part. Then, based on the reverberant reflection sound part, the third FIR filter


16


generates a further reverberant reflection sound part following the reverberant reflection sound part. In this case, the next-stage reflection sounds are generated based on the previous-stage reflection sounds, so that the density of reflection sounds gradually increases along the time axis, thereby generating a greater number of reflection sounds from a smaller number of parameters.




The structure of the reflection sound generator of

FIG. 4

, having the reflection sound parameters shown in FIGS.


5


(


a


),


5


(


b


) and


5


(


c


), however, raises another problem with respect to setting and changing of reverberation characteristics such as the room size and the liveness. In other words, the setting and changing of reverberation characteristics requires respective parameters to be adjusted for each FIR filter


12


,


14


,


16


, and this adjustment.makes it hard to freely set and change the reverberation characteristics.




SUMMARY OF THE INVENTION




The present invention has been made to solve the problems in the conventional technology, and it is an object of the invention to provide a reflection sound generator that allows a greater number of reflection sounds to be generated from a smaller number of parameters, and that further makes it easy to set and change reverberation characteristics such as room size and liveness.




The inventive apparatus is constructed for processing an input sound to generate a sequence of reflection sounds along a time axis including an initial reflection sound and subsequent reverberant reflection sounds. In the inventive apparatus, a first filter of Finite Impulse Response type is provided with a first set of parameters representing a first distribution pattern of reflection sounds. The first distribution pattern has a time length sufficient to cover the initial reflection sound and the subsequent reverberant reflection sounds. Each parameter determines a magnitude (gain) and a delay time of each reflection sound such that the reflection sounds are distributed at intervals along the time axis and such that the magnitudes of the reflection sounds gradually decrease along the time axis. The first filter executes convolution operation of sample data of the input sound by the first set of parameters to generate first data containing a sequence of reflection sounds of the input sound. A second filter of Finite Impulse Response type is provided with a second set of parameters representing a second distribution pattern of additional reflection sounds. The second distribution pattern has a time length shorter than that of the first distribution pattern and longer than each interval of the reflection sounds. Each parameter determines a magnitude and a delay time of each additional reflection sound such that the additional reflection sounds are arranged at intervals shorter than those of the reflection sounds. The second filter executes convolution operation of the first data by the second set of parameters to generate second data containing additional reflection sounds which fill the intervals of the reflection sounds of the input sound.




Preferably, the second filter is provided with the second set of parameters designed such that the magnitudes of the additional reflection sounds gradually decrease along the time axis.




Preferably, the first filter is provided with the first set of parameters designed such that the reflection sounds are distributed at variable intervals, which become gradually short along the time axis.




Preferably, the first filter is provided with the first set of parameters, which can be altered to expand or contract the intervals of the reflection sounds while maintaining relative proportions of the magnitudes thereof so as to change.a rate of attenuation of the reflection sounds along the time axis.




Preferably, the first filter is provided with the first set of parameters, which can be altered to increase or decrease the magnitudes of the reflection sounds in proportion to the delay times of the reflection sounds while maintaining the intervals of the reflection sounds so as to change a rate of attenuation of the reflection sounds along the time axis.




Preferably, the first filter is provided with the first set of parameters, which can be altered so as to periodically fluctuate the delay times of the respective reflection sounds independently from each other along the time axis.




Preferably, the second filter is provided with the second set of parameters, which can be altered so as to periodically fluctuate the delay times of the respective additional reflection sounds independently from each other along the time axis.




Preferably, the first filter is provided with the first set of parameters containing a first direct parameter effective to generate a first direct sound identical to the input sound in precedence to the sequence of the reflection sounds of the input sound by a first lead interval, and the second filter is provided with the second set of parameters containing a second direct parameter effective to generate a second direct sound identical to the first direct sound in precedence to the additional reflection sounds by a second lead interval which is set comparable to the first lead interval.




According to the present invention, there is provided the reflection sound generator using the series connection of the first FIR filter and the second FIR filter. For the first FIR filter (main filter), the first set of reflection sound parameters is set in correspondence to a reflection sound group being generated throughout the entire time domain covering the initial reflection sound and the subsequent reverberant reflection sounds at relatively scattered and irregular time intervals, and being attenuated as delay time elapses. Namely, the first FIR filter carries out the convolution operation of the sample data of the input sound signal based on the first reflection sound parameter set to generate the first reflection sound data. For the second FIR filter (supplementary filter), the second set of reflection sound parameters is set in correspondence to another reflection sound group being generated at irregular but denser time intervals than those of the reflection sound group generated by the first reflection sound parameter set. The overall time length of the second reflection sound group is set longer than any of reflection sound generation intervals of the first reflection sound group and shorter than the overall time length of the first reflection sound group. The second FIR filter carries out the convolution operation of the first reflection sound data generated through the first FIR filter based on the second reflection sound parameter set so as to generate the second reflection sound data for filling out the reflection sound generation intervals of the first FIR filter.




According to the present invention, the second FIR filter produces the additional reflection sounds based on the reflection sounds produced through the first FIR filter, to fill out the reflection sound generation intervals of the first FIR filter. This makes it possible to generate a greater number of reflection sounds from a smaller number of parameters. Further, the first reflection sound parameters produce the sequence of reflection sounds throughout the entire time domain covering the initial reflection sound and the later reverberant reflection sounds, so that the total attenuation characteristics of the reverberation can be mainly determined based on the setting of the first FIR filter. Thus, the reverberation characteristics such as room size and liveness can be set and changed by the first FIR filter alone, and this makes it easy to set and change the reverberation characteristics.




The second reflection sound parameters may be set such that the reflection sound group is attenuated as the delay time elapses. Further, the first reflection sound parameters may be set such that reflection sound generation intervals are gradually shortened as the delay time elapses. Such setting makes it possible to obtain more natural reverberation. Furthermore, the first reflection sound parameters alone or both the first and second reflection sound parameters may be set such that the delay time of each reflection sound is fluctuated with time in each individual cycle, thereby creating random fluctuations to the reflection sounds to prevent occurrence of coloration.




Direct sound may be output without passing the first and second FIR filters. Otherwise, The direct sound may be output through the first and second FIR filters. In such a case, the first direct sound parameter is arranged before the first reflection sound parameter set of the first FIR filter so that the input sound signal is output as it is with no time lag. On the other hand, the second direct parameter is arranged before the second reflection sound parameter set of the second FIR filter so that the direct sound data of the first FIR filter is further output from the second FIR filter as it is with no time lag. The second reflection sound parameter set is arranged after the second direct parameter with a certain lead time interval nearly equal to the lead time interval between the first direct sound parameter and the top of the first reflection sound parameter set.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a block diagram illustrating an embodiment of the present invention.





FIG. 2

is a block diagram illustrating a conventional device.




FIGS.


3


(


a


),


3


(


b


) and


3


(


c


) are parameter diagrams of an FIR filter of FIG.


2


.





FIG. 4

is a block diagram illustrating another conventional device.




FIGS.


5


(


a


),


5


(


b


),


5


(


c


) and


5


(


d


) are parameter diagrams of FIR filters of FIG.


4


.




FIGS.


6


(


a


),


6


(


b


) and


6


(


c


) are parameter diagrams of an FIR filter


18


of FIG.


1


.





FIG. 7

is a parameter diagram of an FIR filter


20


of FIG.


1


.





FIG. 8

is another parameter diagram of the FIR filter


20


of FIG.


1


.




FIGS.


9


(


a


),


9


(


b


) and


9


(


c


) are simulation diagrams of the structure of FIG.


1


.











DETAILED DESCRIPTION OF THE INVENTION





FIG. 1

shows an embodiment of the present invention. A reflection sound generator is constituted of FIR filters


18


and


20


connected in series. An input sound signal passes through the FIR filter


18


to generate a sequence of reflection sounds represented by first reflection sound data. The reflection sounds then pass through the FIR filter


20


to generate second reflection sound data representing further reflection sounds derived from the reflection sounds. The resultant reflection sounds are then output.




FIG.


6


(


a


) shows an example of a filter characteristic set for the FIR filter


18


. The filter characteristic is such that a direct sound parameter P


10


is placed at the head corresponding to a first tap. The direct sound parameter P


10


is so set that its delay time is 0 and gain is 0 dB, thereby creating no delay and attenuation).




Following the direct sound parameter P


10


, reflection sound parameters P


11


, P


12


, . . . , P


1


n are arranged as a first set of reflection sound parameters. A time interval Δt


1


between the direct sound parameter P


10


and the top reflection sound parameter P


11


is set to a value corresponding to a mean free path of an assumed room or hall to be simulated by the inventive device. A time interval between the subsequent reflection sound parameters P


11


and P


12


is set nearly equal to or slightly shorter than the time interval Δt


1


. The subsequent time intervals of the reflection sound parameters P


13


, P


14


, . . . , P


1


n are then gradually shortened. Since the time intervals are gradually shortened, the density of the reflection sounds gradually increases, thereby suppressing comb-filter characteristics of the first FIR filter


18


. The first filter


18


is provided with the first set of parameters designed such that the reflection sounds are distributed at variable intervals, which become gradually short along the time axis.




An overall time length T


1


of the parameters P


10


, P


11


, . . . , P


1


n covers a relatively long time range throughout a time domain of an initial reflection sound and subsequent reverberant reflection sounds (e.g., one-half of the entire time length of the reverberation in a sound field to be reproduced or simulated). In this time range, the parameters P


10


, P


11


, . . . , P


1


n are arranged at relatively scattered intervals such that more than


30


parameters in total are distributed along the time length, for example. The parameters P


10


, P


11


, . . . , P


1


n are gradually attenuated as delay time elapses, thereby tracing a predetermined attenuation curve. A gain or magnitude of the last parameter P


1


n is set to −30 dB relative to the direct sound parameter P


10


. Namely, the first filter


18


of Finite Impulse Response type is provided with the first set of parameters representing a first distribution pattern of reflection sounds shown in FIG.


6


(


a


). The first distribution pattern has the time length Ti sufficient to cover the initial reflection sound and the subsequent reverberant reflection sounds. Each parameter determines a magnitude and a delay time of each reflection sound such that the reflection sounds are distributed at intervals along the time axis and such that the magnitudes of the reflection sounds gradually decrease along the time axis. Each delay time of the reflection sound parameters P


11


, P


12


, . . . , P


1


n varies with time, as shown by the double-dot-and-dash line in FIG.


6


(


a


), with a predetermined amplitude in each individual cycle. This makes it possible to prevent occurrence of coloration. Namely, the first filter


18


is provided with the first set of parameters, which can be altered so as to periodically fluctuate the delay times of the respective reflection sounds independently from each other along the time axis.




Time intervals of the parameters P


10


, P


11


, . . . , P


1


n can be lengthened or shortened throughout the time domain, as shown in FIG.


6


(


b


), while maintaining mutual proportions thereof, thereby changing the room size. Namely, the first filter


18


is provided with the first set of parameters, which can be altered to expand or contract the intervals of the reflection sounds while maintaining relative proportions of the magnitudes thereof so as to change a rate of attenuation of the reflection sounds along the time axis. Gains or magnitudes of the parameters P


10


, P


11


, . . . , P


1


n can also be increased or decreased according to each delay time as shown in FIG.


6


(


c


) (i.e., the longer the delay time, the greater the increase/decrease rate is made), while maintaining the time interval of each parameter, thereby changing the liveness. Namely, the first filter


18


is provided with the first set of parameters, which can be altered to increase or decrease the magnitudes of the reflection sounds in proportion to the delay times of the reflection sounds while maintaining the intervals of the reflection sounds so as to change a rate of attenuation of the reflection sounds along the time axis.





FIG. 7

shows an example of a filter characteristic set for the second FIR filter


20


. The filter characteristic is set such that a direct parameter P


20


is placed at the top corresponding to a first tap so that the output of the first FIR filter


18


is passed as it is from the first tap. The direct parameter P


20


is so set that its delay time is 0 and gain is 0 dB to create no delay and attenuation. Following the parameter P


20


, reflection sound parameters P


21


, P


22


, . . . , P


2


r are arranged as a second set of reflection sound parameters. A time interval Δt


1


between the direct parameter P


20


and the first reflection sound parameter P


21


is set nearly equal to (or slightly longer than) the time interval Δt


1


between the direct sound parameter P


10


and the leading reflection sound parameter P


11


set for the FIR filter


18


, thereby preventing any other reflection sound from being inserted between the direct sound corresponding to the parameter P


10


and the leading reflection sound corresponding to the parameter P


11


generated through the FIR filter


18


. Namely, the first filter


18


is provided with the first set of parameters containing the first direct parameter P


10


effective to generate a first direct sound identical to the input sound in precedence to the sequence of the reflection sounds of the input sound by the first lead interval Δt


1


. The second filter


20


is provided with the second set of parameters containing the second direct parameter P


20


effective to generate a second direct sound identical to the first direct sound in precedence to the additional reflection sounds by the second lead interval Δt


1


which is set comparable to the first lead interval Δt


1


. Time intervals of the reflection sound parameters P


21


, P


22


, . . . , P


2


r are set at random but much shorter than Δt


1


. An overall time length T


2


of the parameters P


20


, P


21


, . . . , P


2


r is set longer than each time interval of the parameters P


10


, P


11


, . . . , P


1


n of the FIR filter


18


, and is set shorter than the overall time length T


1


of the parameters P


10


, P


11


, . . . , P


1


n. The number of the parameters P


20


, P


21


, . . . , P


2


r corresponding to the number of taps may be 30 or more. Namely, the second filter


20


of Finite Impulse Response type is provided with the second set of parameters representing a second distribution pattern of additional reflection sounds. As shown in

FIG. 7

, the second distribution pattern has the time length T


2


shorter than the time length T


1


of the first distribution pattern and longer than each interval of the reflection sounds P


10


, P


11


, . . . , P


1


n of the first distribution pattern. Each parameter P


20


, P


21


, . . . , P


2


r determines the magnitude and delay time of each additional reflection sound such that the additional reflection sounds are arranged at intervals P


20


, P


21


, . . . , P


2


r shorter than those of the reflection sounds P


10


, P


11


, . . . , P


1


n.




The direct sound parameter P


20


and the subsequent reflection sound parameters P


21


, P


22


, . . . , P


2


r are gradually attenuated along a predetermined attenuation curve. Namely, the second filter


20


is provided with the second set of parameters designed such that the magnitudes of the additional reflection sounds gradually decrease along the time axis. Gains of the reflection sound parameters P


21


, P


22


, . . . , P


2


r are preferably set not to exceed a maximum of 0 dB that is a gain of 1. A gain of the last parameter P


2


r is set below −20 dB, for example, relative to the parameter P


20


. Each delay time of the parameters P


20


, P


21


, . . . , P


2


r may be fluctuated with time in each individual cycle, as required, in the same manner as the parameters P


10


, P


11


, . . . , P


1


n of the FIR filter


18


. Namely, the second filter


20


is provided with the second set of parameters, which can be altered so as to periodically fluctuate the delay times of the respective additional reflection sounds independently from each other along the time axis.





FIG. 8

shows another example of a filter characteristic set for the FIR filter


20


. The filter characteristic is such that a direct parameter P


30


is placed at the top corresponding to the first tap so that the output of the FIR filter


18


is passed as it is from the first tap. The parameter P


30


is so set that its delay time is 0 and gain is 0 dB to cause no delay and attenuation. Following the parameter P


30


, reflection sound parameters P


31


, P


32


, . . . , P


3


s are arranged. A time interval Δt


1


between the direct parameter P


30


and the first reflection sound parameter P


31


is set nearly equal to the time interval Δt


1


between the direct sound parameter P


10


and the first reflection sound parameter P


11


of the FIR filter


18


. Time intervals of the reflection sound parameters P


31


, P


32


, . . . , P


3


s are set at random but much shorter than Δt


1


. An overall time length T


3


of the parameters P


30


, P


31


, . . . , P


3


s is set longer than each time interval of the parameters P


10


, P


11


, . . . , P


1


n of the FIR filter


18


, and is set shorter than the total time length T


1


of the parameters P


10


, P


11


, . . . , P


1


n. The number of the parameters P


30


, P


31


, . . . , P


3


s corresponding to the number of taps may be


30


or more.




The direct sound parameter P


30


and the subsequent reflection sound parameters P


31


, P


32


, . . . , P


3


s are gradually attenuated along a predetermined attenuation curve. Here, an attenuation characteristic is so designed that the reflection sounds are attenuated while being swung up and down with respect to a center level at the order of −40 dB. Gains of the reflection sound parameters P


31


, P


32


, . . . , P


3


s are preferably set not to exceed a maximum of 0 dB that is a gain of 1. Each delay time of the parameters P


30


, P


31


, . . . , P


3


s may be fluctuated with time in each individual cycle, as required, in the same manner as the parameters P


10


, P


11


, . . . , P


1


n of the FIR filter


18


.




When the room size is to be changed, the delay time of the FIR filter


20


is preferably varied in synchronization with the variation of the delay time of the FIR filter


18


. For example, as shown in FIG.


6


(


b


), if the time interval between the parameters P


10


and P


11


is changed to 2Δt


1


, the time interval between the parameters P


20


and P


21


of

FIG. 7

, and the time interval between the parameters P


30


and P


31


of

FIG. 8

should be changed to 2Δt


1


as well. Not only is the time interval between the parameters P


20


and P


21


or the parameters P


30


and P


31


changed, but also time intervals of the parameter P


21


and the subsequent parameters or the parameter P


31


and the subsequent parameters can also be changed. In case of FIG.


6


(


b


), each time interval of the parameter P


21


and the subsequent parameters or the parameter P


31


and the subsequent parameters can be doubled. On the other hand, when the liveness is to be changed, the gain of the FIR filter


20


should be varied in synchronization with the variation of the gain of the FIR filter


18


. In other words, the gain of each reflection sound parameter can be increased or decreased according to the delay time. Namely, the longer the delay time, the greater the increase/decrease rate is made.




According to the above structure, the second FIR filter generates the final reflection sound data based on the intermediate reflection sound data produced through the first FIR filter


18


so as to fill out reflection sound generation intervals of the first FIR filter


18


. Namely, the first filter executes the convolution operation of sample data of the input sound based on the first set of parameters to generate first data containing a sequence of reflection sounds of the input sound. Then, the second filter executes the convolution operation of the first data based on the second set of parameters to generate second data containing additional reflection sounds which fill the intervals of the reflection sounds of the input sound. This makes it possible to generate a greater number of reflection sounds from a smaller number of parameters, resulting in a smaller number of taps. In addition, the reflection sound generation intervals of the first reflection sound parameters are gradually shortened, so that the density of the reflection sounds and additional reflection sounds increases, thus obtaining more natural reverberation. On the other hand, the total attenuation characteristic of reverberation is mainly determined based on the setting of the first FIR filter


18


, so that the reverberation characteristics such as room size and liveness can be set or changed by the first FIR filter


18


alone. This makes it easy to set and change the reverberation characteristics.




FIGS.


9


(


a


),


9


(


b


) and


9


(


c


) show simulation results of the structure of FIG.


1


. FIG.


9


(


a


) shows the distribution pattern of the parameters set to the FIR filter


18


, FIG.


9


(


b


) shows the distribution pattern of parameters set to the FIR filter


20


. FIG.


9


(


c


) shows the composite distribution pattern of parameters of the entire circuitry. It is apparent from FIG.


9


(


c


) that the density of reverberant reflection sounds increases with time, and that the attenuation characteristic is roughly traced along that of the FIR filter


18


.



Claims
  • 1. An apparatus for processing an input sound to generate a sequence of reflection sounds along a time axis including an initial reflection sound and subsequent reverberant reflection sounds, the apparatus comprising:a first filter of Finite Impulse Response type being provided with a first set of parameters representing a first distribution pattern of reflection sounds, the first distribution pattern having a first time length sufficient to cover the initial reflection sound and the subsequent reverberant reflection sounds, each parameter determining a first magnitude and a first delay time of each reflection sound such that the reflection sounds are distributed at intervals along the time axis and such that the magnitudes of the reflection sounds gradually decrease along the time axis, the first filter executing convolution operation of sample data of the input sound by the first set of parameters to generate first data containing a sequence of reflection sounds of the input sound; and a second filter of Finite Impulse Response type being provided with a second set of parameters representing a second distribution pattern of additional reflection sounds, the second distribution pattern having a second time length shorter than that of the first distribution pattern and longer than each interval of the reflection sounds, each parameter determining a second magnitude and a second delay time of each additional reflection sound such that the additional reflection sounds are arranged at intervals shorter than those of the reflection sounds, the second filter executing convolution operation of the first data by the second set of parameters to generate second data containing additional reflection sounds which fill the intervals of the reflection sounds of the input sound.
  • 2. The apparatus according to claim 1, wherein the second filter is provided with the second set of parameters designed such that the magnitudes of the additional reflection sounds gradually decrease along the time axis.
  • 3. The apparatus according to claim 1, wherein the first filter is provided with the first set of parameters designed such that the reflection sounds are distributed at variable intervals, which become gradually short along the time axis.
  • 4. An apparatus for processing an input sound to generate a sequence of reflection sounds along a time axis including an initial reflection sound and subsequent reverberant reflection sounds, the apparatus comprising:a first filter of Finite Impulse Response type being provided with a first set of parameters representing a first distribution pattern of reflection sounds, the first distribution pattern having a first time length sufficient to cover the initial reflection sound and the subsequent reverberant reflection sounds, each parameter determining a first magnitude and a first delay time of each reflection sound such that the reflection sounds are distributed at intervals along the time axis and such that the magnitudes of the reflection sounds gradually decrease along the time axis, the first filter executing convolution operation of sample data of the input sound by the first set of parameters to generate first data containing a sequence of reflection sounds of the input sound; and a second filter of Finite Impulse Response type being provided with a second set of parameters representing a second distribution pattern of additional reflection sounds, the second distribution pattern having a second time length shorter than that of the first distribution pattern and longer than each interval of the reflection sounds, each parameter determining a second magnitude and a second delay time of each additional reflection sound such that the additional reflection sounds are arranged at intervals shorter than those of the reflection sounds, the second filter executing convolution operation of the first data by the second set of parameters to generate second data containing additional reflection sounds which fill the intervals of the reflection sounds of the input sound, wherein said first set of parameters can be altered to expand or contract the intervals of the reflection sounds while maintaining relative proportions of the magnitudes thereof so as to change a rate of attenuation of the reflection sounds along the time axis.
  • 5. An apparatus for processing an input sound to generate a sequence of reflection sounds along a time axis including an initial reflection sound and subsequent reverberant reflection sounds, the apparatus comprising:a first filter of Finite Impulse Response type being provided with a first set of parameters representing a first distribution pattern of reflection sounds, the first distribution pattern having a first time length sufficient to cover the initial reflection sound and the subsequent reverberant reflection sounds, each parameter determining a first magnitude and a first delay time of each reflection sound such that the reflection sounds are distributed at intervals along the time axis and such that the magnitudes of the reflection sounds gradually decrease along the time axis, the first filter executing convolution operation of sample data of the input sound by the first set of parameters to generate first data containing a sequence of reflection sounds of the input sound; and a second filter of Finite Impulse Response type being provided with a second set of parameters representing a second distribution pattern of additional reflection sounds, the second distribution pattern having a second time length shorter than that of the first distribution pattern and longer than each interval of the reflection sounds, each parameter determining a second magnitude and a second delay time of each additional reflection sound such that the additional reflection sounds are arranged at intervals shorter than those of the reflection sounds, the second filter executing convolution operation of the first data by the second set of parameters to generate second data containing additional reflection sounds which fill the intervals of the reflection sounds of the input sound, wherein said first set of parameters can be altered to increase or decrease the magnitudes of the reflection sounds in proportion to the delay times of the reflection sounds while maintaining the intervals of the reflection sounds so as to change a rate of attenuation of the reflection sounds along the time axis.
  • 6. An apparatus for processing an input sound to generate a sequence of reflection sounds along a time axis including an initial reflection sound and subsequent reverberant reflection sounds, the apparatus comprising:a first filter of Finite Impulse Response type being provided with a first set of parameters representing a first distribution pattern of reflection sounds, the first distribution pattern having a first time length sufficient to cover the initial reflection sound and the subsequent reverberant reflection sounds, each parameter determining a first magnitude and a first delay time of each reflection sound such that the reflection sounds are distributed at intervals along the time axis and such that the magnitudes of the reflection sounds gradually decrease along the time axis, the first filter executing convolution operation of sample data of the input sound by the first set of parameters to generate first data containing a sequence of reflection sounds of the input sound; and a second filter of Finite Impulse Response type being provided with a second set of parameters representing a second distribution pattern of additional reflection sounds, the second distribution pattern having a second time length shorter than that of the first distribution pattern and longer than each interval of the reflection sounds, each parameter determining a second magnitude and a second delay time of each additional reflection sound such that the additional reflection sounds are arranged at intervals shorter than those of the reflection sounds, the second filter executing convolution operation of the first data by the second set of parameters to generate second data containing additional reflection sounds which fill the intervals of the reflection sounds of the input sound, wherein said first set of parameters can be altered so as to periodically fluctuate the delay times of the respective reflection sounds independently from each other along the time axis.
  • 7. An apparatus for processing an input sound to generate a sequence of reflection sounds along a time axis including an initial reflection sound and subsequent reverberant reflection sounds, the apparatus comprising:a first filter of Finite Impulse Response type being provided with a first set of parameters representing a first distribution pattern of reflection sounds, the first distribution pattern having a first time length sufficient to cover the initial reflection sound and the subsequent reverberant reflection sounds, each parameter determining a first magnitude and a first delay time of each reflection sound such that the reflection sounds are distributed at intervals along the time axis and such that the magnitudes of the reflection sounds gradually decrease along the time axis, the first filter executing convolution operation of sample data of the input sound by the first set of parameters to generate first data containing a sequence of reflection sounds of the input sound; and a second filter of Finite Impulse Response type being provided with a second set of parameters representing a second distribution pattern of additional reflection sounds, the second distribution pattern having a second time length shorter than that of the first distribution pattern and longer than each interval of the reflection sounds, each parameter determining a second magnitude and a second delay time of each additional reflection sound such that the additional reflection sounds are arranged at intervals shorter than those of the reflection sounds, the second filter executing convolution operation of the first data by the second set of parameters to generate second data containing additional reflection sounds which fill the intervals of the reflection sounds of the input sound, wherein said second set of parameters can be altered so as to periodically fluctuate the delay times of the respective additional reflection sounds independently from each other along the time axis.
  • 8. An apparatus for processing an input sound to generate a sequence of reflection sounds along a time axis including an initial reflection sound and subsequent reverberant reflection sounds, the apparatus comprising:a first filter of Finite Impulse Response type being provided with a first set of parameters representing a first distribution pattern of reflection sounds, the first distribution pattern having a first time length sufficient to cover the initial reflection sound and the subsequent reverberant reflection sounds, each parameter determining a first magnitude and a first delay time of each reflection sound such that the reflection sounds are distributed at intervals along the time axis and such that the magnitudes of the reflection sounds gradually decrease along the time axis, the first filter executing convolution operation of sample data of the input sound by the first set of parameters to generate first data containing a sequence of reflection sounds of the input sound; and a second filter of Finite Impulse Response type being provided with a second set of parameters representing a second distribution pattern of additional reflection sounds, the second distribution pattern having a second time length shorter than that of the first distribution pattern and longer than each interval of the reflection sounds, each parameter determining a second magnitude and a second delay time of each additional reflection sound such that the additional reflection sounds are arranged at intervals shorter than those of the reflection sounds, the second filter executing convolution operation of the first data by the second set of parameters to generate second data containing additional reflection sounds which fill the intervals of the reflection sounds of the input sound, wherein said first set of parameters contains a first direct parameter effective to generate a first direct sound identical to the input sound in precedence to the sequence of the reflection sounds of the input sound by a first lead interval, and wherein said second set of parameters contains a second direct parameter effective to generate a second direct sound identical to the first direct sound in precedence to the additional reflection sounds by a second lead interval which is set comparable to the first lead interval.
  • 9. A method of processing an input sound to generate a sequence of reflection sounds along a time axis including an initial reflection sound and subsequent reverberant reflection sounds, the method comprising the steps of:providing a first set of parameters representing a first distribution pattern of reflection sounds, the first distribution pattern having a first time length sufficient to cover the initial reflection sound and the subsequent reverberant reflection sounds, each parameter determining a first magnitude and a first delay time of each reflection sound such that the reflection sounds are distributed at intervals along the time axis and such that the magnitudes of the reflection sounds gradually decrease along the time axis; subsequently providing a second set of parameters representing a second distribution pattern of additional reflection sounds, the second distribution pattern having a second time length shorter than that of the first distribution pattern and longer than each interval of the reflection sounds, each parameter determining a second magnitude and a second delay time of each additional reflection sound such that the additional reflection sounds are arranged at intervals shorter than those of the reflection sounds; executing convolution operation of sample data of the input sound based on the first set of parameters to generate first data containing a sequence of reflection sounds of the input sound; and subsequently executing convolution operation of the first data based on the second set of parameters to generate second data containing additional reflection sounds which fill the intervals of the reflection sounds of the input sound.
  • 10. The method according to claim 9, wherein the step of subsequently providing provides the second set of parameters designed such that the magnitudes of the additional reflection sounds gradually decrease along the time axis.
  • 11. The method according to claim 9, wherein the step of providing provides the first set of parameters designed such that the reflection sounds are distributed at variable intervals, which become gradually short along the time axis.
  • 12. A method of processing an input sound to generate a sequence of reflection sounds along a time axis including an initial reflection sound and subsequent reverberant reflection sounds, the method comprising the steps of:providing a first set of parameters representing a first distribution pattern of reflection sounds, the first distribution pattern having a first time length sufficient to cover the initial reflection sound and the subsequent reverberant reflection sounds, each parameter determining a first magnitude and a first delay time of each reflection sound such that the reflection sounds are distributed at intervals along the time axis and such that the magnitudes of the reflection sounds gradually decrease along the time axis; subsequently providing a second set of parameters representing a second distribution pattern of additional reflection sounds, the second distribution pattern having a second time length shorter than that of the first distribution pattern and longer than each interval of the reflection sounds, each parameter determining a second magnitude and a second delay time of each additional reflection sound such that the additional reflection sounds are arranged at intervals shorter than those of the reflection sounds; executing convolution operation of sample data of the input sound based on the first set of parameters to generate first data containing a sequence of reflection sounds of the input sound; and subsequently executing convolution operation of the first data based on the second set of parameters to generate second data containing additional reflection sounds which fill the intervals of the reflection sounds of the input sound, wherein said first set of parameters can be altered to expand or contract the intervals of the reflection sounds while maintaining relative proportions of the magnitudes thereof so as to change a rate of attenuation of the reflection sounds along the time axis.
  • 13. A method of processing an input sound to generate a sequence of reflection sounds along a time axis including an initial reflection sound and subsequent reverberant reflection sounds, the method comprising the steps of:providing a first set of parameters representing a first distribution pattern of reflection sounds, the first distribution pattern having a first time length sufficient to cover the initial reflection sound and the subsequent reverberant reflection sounds, each parameter determining a first magnitude and a first delay time of each reflection sound such that the reflection sounds are distributed at intervals along the time axis and such that the magnitudes of the reflection sounds gradually decrease along the time axis; subsequently providing a second set of parameters representing a second distribution pattern of additional reflection sounds, the second distribution pattern having a second time length shorter than that of the first distribution pattern and longer than each interval of the reflection sounds, each parameter determining a second magnitude and a second delay time of each additional reflection sound such that the additional reflection sounds are arranged at intervals shorter than those of the reflection sounds; executing convolution operation of sample data of the input sound based on the first set of parameters to generate first data containing a sequence of reflection sounds of the input sound; and subsequently executing convolution operation of the first data based on the second set of parameters to generate second data containing additional reflection sounds which fill the intervals of the reflection sounds of the input sound, wherein said first set of parameters can be altered to increase or decrease the magnitudes of the reflection sounds in proportion to the delay times of the reflection sounds while maintaining the intervals of the reflection sounds so as to change a rate of attenuation of the reflection sounds along the time axis.
  • 14. A method of processing an input sound to generate a sequence of reflection sounds along a time axis including an initial reflection sound and subsequent reverberant reflection sounds, the method comprising the steps of:providing a first set of parameters representing a first distribution pattern of reflection sounds, the first distribution pattern having a first time length sufficient to cover the initial reflection sound and the subsequent reverberant reflection sounds, each parameter determining a first magnitude and a first delay time of each reflection sound such that the reflection sounds are distributed at intervals along the time axis and such that the magnitudes of the reflection sounds gradually decrease along the time axis; subsequently providing a second set of parameters representing a second distribution pattern of additional reflection sounds, the second distribution pattern having a second time length shorter than that of the first distribution pattern and longer than each interval of the reflection sounds, each parameter determining a second magnitude and a second delay time of each additional reflection sound such that the additional reflection sounds are arranged at intervals shorter than those of the reflection sounds; executing convolution operation of sample data of the input sound based on the first set of parameters to generate first data containing a sequence of reflection sounds of the input sound; and subsequently executing convolution operation of the first data based on the second set of parameters to generate second data containing additional reflection sounds which fill the intervals of the reflection sounds of the input sound, wherein said first set of parameters can be altered so as to periodically fluctuate the delay times of the respective reflection sounds independently from each other along the time axis.
  • 15. A method of processing an input sound to generate a sequence of reflection sounds along a time axis including an initial reflection sound and subsequent reverberant reflection sounds, the method comprising the steps of:providing a first set of parameters representing a first distribution pattern of reflection sounds, the first distribution pattern having a first time length sufficient to cover the initial reflection sound and the subsequent reverberant reflection sounds, each parameter determining a first magnitude and a first delay time of each reflection sound such that the reflection sounds are distributed at intervals along the time axis and such that the magnitudes of the reflection sounds gradually decrease along the time axis; subsequently providing a second set of parameters representing a second distribution pattern of additional reflection sounds, the second distribution pattern having a second time length shorter than that of the first distribution pattern and longer than each interval of the reflection sounds, each parameter determining a second magnitude and a second delay time of each additional reflection sound such that the additional reflection sounds are arranged at intervals shorter than those of the reflection sounds; executing convolution operation of sample data of the input sound based on the first set of parameters to generate first data containing a sequence of reflection sounds of the input sound; and subsequently executing convolution operation of the first data based on the second set of parameters to generate second data containing additional reflection sounds which fill the intervals of the reflection sounds of the input sound, wherein said second set of parameters can be altered so as to periodically fluctuate the delay times of the respective additional reflection sounds independently from each other along the time axis.
  • 16. A method of processing an input sound to generate a sequence of reflection sounds along a time axis including an initial reflection sound and subsequent reverberant reflection sounds, the method comprising the steps of:providing a first set of parameters representing a first distribution pattern of reflection sounds, the first distribution pattern having a first time length sufficient to cover the initial reflection sound and the subsequent reverberant reflection sounds, each parameter determining a first magnitude and a first delay time of each reflection sound such that the reflection sounds are distributed at intervals along the time axis and such that the magnitudes of the reflection sounds gradually decrease along the time axis; subsequently providing a second set of parameters representing a second distribution pattern of additional reflection sounds, the second distribution pattern having a second time length shorter than that of the first distribution pattern and longer than each interval of the reflection sounds, each parameter determining a second magnitude and a second delay time of each additional reflection sound such that the additional reflection sounds are arranged at intervals shorter than those of the reflection sounds; executing convolution operation of sample data of the input sound based on the first set of parameters to generate first data containing a sequence of reflection sounds of the input sound; and subsequently executing convolution operation of the first data based on the second set of parameters to generate second data containing additional reflection sounds which fill the intervals of the reflection sounds of the input sound, wherein said first set of parameters contains a first direct parameter effective to generate a first direct sound identical to the input sound in precedence to the sequence of the reflection sounds of the input sound by a first lead interval, and wherein said second set of parameters contains a second direct parameter effective to generate a second direct sound identical to the first direct sound in precedence to the additional reflection sounds by a second lead interval which is set comparable to the first lead interval.
  • 17. A reflection sound generating apparatus comprising a first Finite Impulse Response filter and a second Finite Impulse Response filter for inputting sample sound data and outputting first reflection sound data and second reflection sound data, whereinthe first Finite Impulse Response filter is set with a first reflection sound parameter for executing convolution operation of the inputted sample sound data by the first reflection sound parameter to generate the first reflection sound data representing reflection sounds, the first reflection sound parameter being set to enable the first Finite Impulse Response filter to generate a first initial reflection sound occurring by a first delay time, and subsequent first reflection sounds occurring at variable time intervals, wherein the second Finite Impulse Response filter is set with a second reflection sound parameter for executing convolution operation of the first reflection sound data by the second reflection sound parameter to generate the second reflection sound data representing the reflection sounds, the second reflection sound parameter being set to enable the second filter to generate a second initial reflection sound occurring without a delay time, another second reflection sound occurring by a second delay time which is equal to or longer than the first delay time, and subsequent second reflection sounds occurring at variable time intervals, and wherein reflection sounds associated with the second reflection sound parameter having a first entire time length along a time axis, the first entire time length being longer than each time interval of the reflection sounds associated with the first reflection sound parameter, and the first entire time length being shorter than a second entire time length of the reflection sounds associated with the first reflection sound parameter.
  • 18. The reflection sound generating apparatus according to claim 17, wherein the second reflection sound parameter is set such that magnitudes of the reflection sounds gradually decrease along the time axis.
  • 19. The reflection sound generating apparatus according to claim 17, wherein the first reflection sound parameter is set such that the reflection sounds are distributed at the variable time intervals, which become gradually shorter along the time axis.
  • 20. The reflection sound generating apparatus according to claim 17, wherein the first reflection sound parameter is modifiable to expand or contract time intervals of the reflection sounds while maintaining relative proportions of magnitudes of the reflection sounds so as to change a rate of attenuation of the reflection sounds along the time axis.
  • 21. The reflection sound generating apparatus according to claim 17, wherein the first reflection sound parameter is modifiable to increase or decrease magnitudes of the reflection sounds in proportion to delay times of the reflection sounds while maintaining time intervals of the reflection sounds so as to change a rate of attenuation of the reflection sounds along the time axis.
  • 22. The reflection sound generating apparatus according to claim 17, wherein the first reflection sound parameter is modifiable so as to periodically fluctuate delay times of the respective reflection sounds independently from each other along the tine axis.
  • 23. The reflection sound generating apparatus according to claim 17, wherein the second reflection sound parameter is modifiable so as to periodically fluctuate delay times of the respective reflection sounds independently from each other along the time axis.
Priority Claims (1)
Number Date Country Kind
10-350772 Nov 1998 JP
US Referenced Citations (5)
Number Name Date Kind
5123050 Serikawa et al. Jun 1992 A
5771294 Inoue et al. Jun 1998 A
5774560 Su et al. Jun 1998 A
5796845 Serikawa et al. Aug 1998 A
5995542 Goeckler Nov 1999 A
Foreign Referenced Citations (7)
Number Date Country
61-296896 Dec 1986 JP
62-53100 Mar 1987 JP
04-240896 Aug 1992 JP
05-143089 Jun 1993 JP
05-165485 Jul 1993 JP
05-232979 Sep 1993 JP
70-28482 Jan 1995 JP