NONE
This disclosure relates generally to antennas and more particularly, to a reflector antenna specialized in producing a shaped beam.
A conventional Global Positioning System (GPS) satellite uses an L-Band antenna array to transmit a shaped beam on the earth. The beam is shaped to provide a signal of uniform strength to all exposed portions on the earth. The conventional GPS antenna array antenna, with multiple elements fed by a complex power distribution network, is costly to fabricate. Therefore, what is needed is a reflector based antenna design that can deliver equal or better performance than a conventional array antenna at a fraction of the cost.
In one aspect of the disclosure, an antenna is provided. The antenna includes an outer dish having a first surface and a second surface; an inner dish mounted to the first surface of the outer dish; a helix feed mounted on a ground plane; and a support mounted at an axial center of the inner dish for supporting the ground plane.
In a second aspect of the disclosure, a method for shaping an antenna beam is provided. The method includes producing a first beam having a first phase angle, wherein the first beam is generated from signals reflected off an inner dish of a reflector antenna; producing a second beam having a second phase angle, wherein the second beam is generated from signals reflected off an outer dish; and superimposing the second beam onto the first beam resulting in an M-shaped beam pattern.
This brief summary has been provided so that the nature of the disclosure may be understood quickly. A more complete understanding of the disclosure may be obtained by reference to the following detailed description of the preferred embodiments thereof in connection with the attached drawings.
The foregoing features and other features of the disclosure will now be described with reference to the drawings of various objects of the disclosure. The illustrated embodiment is intended to illustrate, but not to limit the disclosure. The drawings include the following:
a shows a top view of a multi-element antenna array configuration for GPS satellites.
b shows an isometric view of the multi-element antenna array configuration shown in
a shows an antenna, according to one aspect of the disclosure,
b shows an example of antenna dimensions, according to one aspect of the disclosure;
c shows an example of an antenna on a GPS satellite, according to one aspect of the disclosure;
a–8d show backfire monofilar helix patterns at various frequencies, according to one aspect of the disclosure; and
a-9d show reflector antenna patterns at various frequencies, according to one aspect of the disclosure.
The disclosure provides a reflector antenna and a method for shaping an antenna beam. To facilitate a better understanding of the preferred embodiment, the general architecture and operation of a GPS satellite antenna will be described. The specific architecture and operation of the preferred embodiment will then be described with reference to the general architecture.
R=(a+h)cos θ−√{square root over (((a+h)2 cos2 θ−h(2a+h)))}{square root over (((a+h)2 cos2 θ−h(2a+h)))} (1)
Where the Earth radius a=6,366 km and
Satellite altitude, h=20,200 km.
The θ value is zero along the center line and has a maximum value of θmax=13.87° at the “visible edge” of the earth.
The angle α is a signal incidence angle onto a horizontally laid GPS receiver antenna on a geo-location and varies due to the curvature of the earth. It should be noted that values of a range from 0° at the centerline 4 to αmax=89.92° at the “visible edge” of earth 2.
When a constant power level is desired everywhere on earth, the gain pattern of a transmitting antenna on a GPS satellite should be made proportional to the square of the range to compensate for space loss, i.e. Gt(θ)∝R2(θ). When range R in equation (1) is rendered on a normalized dB scale, the desired GPS satellite antenna pattern results, as shown in
Conventional GPS satellite antenna arrays use multiple radiating elements.
When a GPS satellite antenna pattern, as shown in
A conventional antenna system comprising of twelve helix radiating elements and a power distribution network, as shown in
In an aspect of the disclosure, a single helix feed reflector antenna is provided. The single helix feed antenna illuminates two co-focal, stacked dishes (described below with reference
Unlike a conventional array antenna, reflector antenna 39 of the disclosure (shown in
a shows antenna 39 (hereinafter referred to as “reflector antenna 39”), according to one aspect of the disclosure. Reflector antenna 39 comprises an inner dish 40 and a outer dish 42, each having a parabolic surface and where outer dish 42 has a larger diameter than inner dish 40. As described above, inner dish 42 and outer dish 40 are stacked together creating an antenna reflector with two stacked co-focal parabolic dishes. Inner dish 42 and outer dish 40 are roughly separated by quarter wavelengths at the center frequency and may be held together by using known conductive adhesive or fasteners that are known in the art.
The dimensions and separation of dishes 42, 40 are optimized to produce the M-shaped pattern, shown in
The feed of reflector antenna 39 may be a circular polarization backfire monofilar helix 44 with a ground plane 46, for backfiring. Ground plane 46 is mounted on a support 48 located on the axis of reflector antenna 39 at the co-focal point of inner dish 42 and outer dish 40 for optimal results. The optimized ground plane 46 incurs efficient backfiring from the helix feed and has an additional benefit of small aperture blockage. Aperture blockage is normally due to shadowing by the feed, subreflector and/or support members.
Although the disclosure is described using a monofilar helix, those skilled in the art will recognize that the principles and teachings described herein may be applied to a variety of antenna feeds, including, but not limited to, horn feed, splash plate feed, bifilar and quadrifilar feeds.
In one aspect of the disclosure, reflector antenna 39 with a single feed can handle all the radiated power. In one aspect, a heavy duty helix antenna design, i.e. utilizing a thick wire, may be used to improve power handling capability.
In a second aspect, a backfire quadrifilar helix with feed currents in quadrature may be used. The multiple feed points of a quadrifilar helix feed may provide the ability to handle more power. Furthermore, a quadrifilar helix feed may improve pattern symmetry.
c shows an example of reflector antenna 39 used on a GPS satellite 39A, according to one aspect of the disclosure.
In order to minimize blockage, a backfire circular polarization feed on ground plane 46 is utilized, as shown in
The L-band signal of a GPS satellite typically has right hand circular polarization (RHCP). For a conventional array antenna, each radiating helix element is RHCP. However, for reflector antenna 39, the feed illuminates reflector antenna 39 with the left hand circular polarization (LHCP) waves as a result of the feed being reflected off inner dish 42 and outer dish 40, the wave polarization changes to RECP. In addition, the helix is wound in the counter clock-wise (CCW) sense so that the forward radiation is RHCP, while the backward radiation is LHCP. The backfire helix for a reflector feed is similar to a forward fire helix antenna, except for the size of ground plane 46. In addition, if the helix is wound in the clock-wise (CW) sense, the forward radiation is LHCP, while the backward radiation is RHCP.
a-8d show the backfire monofilar helix patterns at frequencies L1, L2, L3 and L5 according to one aspect of the disclosure. As can be seen in these figures, back firing capability with respect to forward firing over the frequency band is improved over conventional designs. It should be noted that when the back to front ratio is 20 dB, over 99% of the feed radiated power is toward the dishes and reflected to form the M-shaped far-field pattern on the earth.
a-9d show reflector antenna patterns at frequencies L1, L2, L3 and L5 plotted versus θ when reflector antenna 39 is fed by the helix feed pattern in
Reflector antenna 39, fed by a backfire LHCP monofilar helix feed, can produce a GPS satellite-specific beam over various frequencies, for example. L1 through L5 frequencies at RHCP. Furthermore, reflector antenna 39 is simpler, compact, sturdy, economically feasible, and robust in performance over existing designs. It demonstrates optimal performance in regard to beam shape, gain, axial ratio, and back-to-front ratio over the 30% frequency bandwidth while delivering substantially improved beam shaping capability. Furthermore, the antenna system of the disclosure can significantly reduce cost over the existing multi-element GPS satellite array antenna systems.
Reflector antenna 39 is not limited to GPS satellites and can be applied to DirecTV®, Mobile Communication Satellites, and other various communication satellites where an M-shaped beam or any modified M-shaped beam is required. For GPS satellite applications, the reflector shape is circular. However, for an arbitrarily shaped contour beam, the boundaries of the inner and outer dishes 42, 40 are properly shaped and can be arbitrary.
In summary, the disclosure provides a reflector antenna fed by a backfire LHCP monofilar helix feed producing a RHCP GPS satellite-specific beam over a wide frequency range, for example, L1 through L5 frequencies. The reflector antenna provides robust antenna beam shaping capability over a wide band. The use of the continuous aperture of the antenna, combined with minimal feed blockage and minimal feed insertion losses results in a highly efficient shaped beam antenna with high gain. Furthermore, as a result of the simple feeding structure, the operating frequency bandwidth is wider than conventional antennas.
Although reflector antenna 39 of the disclosure is implemented using GPS satellites, those skilled in the art will recognize that the principles and teachings described herein may be applied to a variety of platforms including communication satellites, terrestrial communication systems, and Radar systems to name a few. Furthermore, reflector antenna 39 is not limited to a helix feed and may be used for any type of feed or an array of feed including horn, dipole, slot, patch and splash plate antennas.
While the disclosure is described above with respect to what is currently considered its preferred embodiments, it is to be understood that the disclosure is not limited to that described above. To the contrary, the disclosure is intended to cover various modifications and equivalent arrangements within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3184747 | Kach | May 1965 | A |
4742359 | Ishino et al. | May 1988 | A |
5309167 | Cluniat et al. | May 1994 | A |
5444455 | Louzir et al. | Aug 1995 | A |
5774095 | Louzir | Jun 1998 | A |
6861998 | Louzir et al. | Mar 2005 | B2 |