Information
-
Patent Grant
-
6710522
-
Patent Number
6,710,522
-
Date Filed
Thursday, December 6, 200123 years ago
-
Date Issued
Tuesday, March 23, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
-
CPC
-
US Classifications
Field of Search
US
- 313 113
- 313 110
- 313 114
- 313 115
- 313 31811
- 362 546
- 362 296
- 362 226
- 362 267
- 362 519
- 362 547
- 362 549
-
International Classifications
-
Abstract
The invention relates to a reflector lamp which comprises a reflector body (13) with a concave reflective part; an electric lamp (15) comprising a gastight lamp vessel with at least one end portion (18), an electric element (17) arranged in the lamp vessel, and a current conductor (19) extending through the end portion to the electric element; a support body (23) comprising reflector fastening means (30, 27) for fastening the support body to the reflector body, mechanical lamp vessel fastening means (43, 46) for fastening the support body to the end portion of the lamp vessel, and housing fastening means for fastening the support body inside the housing (2).
Description
FIELD OF THE INVENTION
The invention relates to a reflector lamp which comprises a reflector body with a concave reflecting portion and an electric lamp, comprising a closed lamp vessel with at least an end portion, an electric element arranged in the lamp vessel, and current conductors extending through the end portion to the electric element. The invention also relates to an assembly of a lamp housing, a reflector lamp provided therein, and control means for controlling the reflector lamp, and to a method of assembling the above.
BACKGROUND OF THE INVENTION
Reflector lamps are known in which the lamp vessel after alignment is fastened in that it is fixed in a neck formed at the concave reflector body by means of an adhesive agent (cement). This is disadvantageous because curing of the adhesive agent keeps the apparatus in which the lamp is aligned occupied during a considerably longer period than is necessary for the actual alignment. A further disadvantage is that the quality of the cement joint may deteriorate strongly owing to moisture absorption, which hampers the use of the reflector lamp in humid surroundings.
In addition, reflector lamps are known in which the lamp vessel is fastened to said neck of the reflector body by means of a mechanical fastening construction. Such a fastening construction is described, for example, in applicant's European patent application EU 1 055 873 A2 not previously published.
A disadvantage of the known reflector lamps is that the alignment of the lamp is effected before the lamp is placed in the lamp housing by means of a separate fastening. This may mean that the lamp turns out to be insufficiently aligned after being placed. In addition, such a construction is comparatively complicated.
It is an object of the present invention to provide an improved reflector lamp in which the above disadvantages have been counteracted.
SUMMARY OF THE INVENTION
According to a first aspect of the invention, the reflector lamp for this purpose comprises a support body comprising reflector fastening means for fastening the support body to the reflector body, mechanical lamp vessel fastening means for fastening the support body to the end portion of the lamp vessel, and housing fastening means for fastening the support body in a lamp housing. A combined lamp and reflector fastening is achieved thereby, with the result that the lamp remains sufficiently aligned when placed in a housing. In addition, the number of components of the construction is reduced, which leads to a simpler construction.
In a preferred embodiment of the invention, the support body is provided substantially around the reflector body, and the reflector fastening means comprise one or several abutment flanges on which the end face of the reflector body bears in axial direction, and resilient tags fastened to the support body, which tags engage the reflector body and urge the reflector body against the abutment flanges. Besides the advantage of a simple mounting of the reflector body in the support body, the positioning of the reflector body is retained in this embodiment.
Preferably, the reflector fastening means comprise three resilient tags positioned at substantially equal distances, whereby centering of the reflector body in the support body is promoted. To achieve a further improved centering of the reflector body, the reflector fastening means in addition comprise one or several tangential resilient portions for clamping the support body against the reflector body.
In a preferred embodiment, the housing fastening means comprise a number of resilient tags for clamping the support body (with the reflector body and lamp vessel fastened therein) in a lamp housing. The tags may be rigidly coupled to the lamp housing by means of welded and/or glued joints. In other preferred embodiments, the support body may be fastened to the lamp housing with clamping fit, or directly by means of a glued or welded joint.
According to another aspect of the invention, a reflector lamp is provided, preferably of the kind as described above, comprising:
a reflector body with a concave reflecting portion;
an electric lamp comprising a closed lamp vessel with a first and an opposed second end portion, an electric element arranged in the lamp vessel, and current conductors extending through the end portion to the electric element;
wherein an opening is provided in the concave portion of the reflector body so as to serve as a passage for the first end portion of the lamp vessel, and said end portion is fixed by means of a mechanical fastening construction positioned in the reflector body alongside the opening. The mechanical fastening construction here engages the first end portion of the lamp vessel in or immediately above the opening. The use of such a reflector body without a neck enables a stabler fastening of the lamp (burner), because the latter is fastened closer to the focal point. On the other hand, the reflector body shows fewer deformations owing to accumulations of material at the area of said opening, which improves the quality of directing of the light beam and makes the product simpler and accordingly less expensive. In addition, less material is used in the manufacture, and the fastening process is simpler.
Preferably, the mechanical fastening construction comprises means for aligning the lamp vessel and keeping it fixed in the aligned state. This provides an alignment of the lamp vessel.
The electric element of the lamp may be an incandescent body, possibly placed in an inert gas, or a pair of electrodes in an ionizable medium, for example in rare gas, or rare gas and mercury and/or sodium, in which case a high-pressure discharge is maintained during operation.
BRIEF DESCRIPTION OF THE DRAWING
Further advantages, characteristics, and details of the invention will be explained in more detail in the ensuing description of a preferred embodiment. The description is given with reference to the Figures, in which:
FIG. 1
is a diagrammatic view of a reflector lamp and the control arrangements belonging thereto, both provided in a lamp housing;
FIG. 2
is a lateral perspective view of the preferred embodiment of the invention;
FIG. 3
is a perspective bottom view of the preferred embodiment of
FIG. 2
; and
FIG. 4
is a cross-sectional view of the preferred embodiment of FIGS.
2
and
3
.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1
shows a light generator for introducing a light beam into a glass fiber cable f, for example for use in the automobile industry. In an alternative embodiment, for example, reflector lamps may be used in a projection television (beamer).
In the embodiment shown, the glass fiber cable f is connected to a lamp housing
2
via a coupling piece
1
. A concave reflector body
3
is provided in the lamp housing
2
, which body is provided on its inner surface with a reflecting coating, for example of metal such as aluminum or silver. An electric lamp
4
is connected to electric current conductors
5
and
6
and is fixed in the lamp housing
2
by means of a fastening
7
. The lamp
4
can be controlled in a known manner by a starter
9
, an error detector
10
, and further control electronics or ballast
8
. The assembly is connected to an electrical supply source (not shown) by means of a cord
11
.
FIGS. 2
,
3
, and
4
show a preferred embodiment of a reflector lamp
12
. The lamp comprises a concave reflector body
13
, an opening
14
being provided in the top of this body. An electric lamp
15
with a lamp vessel closed in a vacuumtight manner is provided in the reflector body
13
. A first end portion
18
of the lamp vessel extends through the opening
14
, while the opposed second end portion
16
lies substantially on the axis of symmetry or optical axis of the reflector body
13
. The electric element
17
is present in the lamp vessel, and current conductors
19
and
20
extend through the first end portion
18
and the second end portion
16
, respectively, to the electric element
17
. The current conductors
19
and
20
are provided with protective sleeves
21
and
22
in the locations where they pass through the opening
14
in the reflector body
13
.
A support body
23
, preferably made of metal, is provided for a combined fastening of the lamp vessel to the reflector and of the reflector to a lamp housing, if present. The support body comprises an upper wall
24
to which a suspended wall
25
is fastened. A number of tags
26
is provided at the lower side of the suspended wall
25
, which tags are bent at their lower ends so as to form abutment flanges
27
on which the end face
28
of the reflector body
13
can bear in the mounted state.
The suspended wall
25
has been cut open in eight locations so as to obtain four resilient tags
30
for fastening the support body
23
to the reflector body
13
, and four resilient tags for fastening the support body
23
to the lamp housing (not shown).
The cross-sectional view in
FIG. 4
shows how a resilient tag
30
is built up from a portion
31
which extends radially outwards and which merges into a tag
34
via a curved portion
32
and a portion
33
extending radially inwards. This construction is such that each of the tags
34
force the reflector body
13
provided in the support body in downward direction, (the direction indicated by an arrow) against the abutment flanges
27
. The reflector body
13
remains fixed to the support body
23
as a result of this.
Preferably, a metal strip
40
is provided around the tags
26
, which strip is given resilient portions
41
in a number of locations. The spring force of the resilient portions
41
ensures that the tags
26
are urged inwards such that the abutment flanges
27
remain correctly positioned below the end face
28
of the reflector body
13
. This is of importance especially in view of the difference in coefficient of thermal expansion between the metal support body
23
and the cover glass
29
with which the reflector body
13
is closed off. Differences in expansion between the glass and the metal parts arranged around it are compensated in that the strip
40
, and accordingly the tags
26
, are given a certain bias tension.
In addition, the above construction of tags
26
and
30
, whether or not in combination with said metal strip
40
, ensures that the reflector body
13
remains correctly centered with respect to the support body
23
.
To fasten the support body
23
to the lamp housing, a number of resilient tags
42
is provided at the support body
23
. These tags are S-shaped in the embodiment shown. The tags may have an alternative shape or construction, in dependence on the lamp housing used.
The support body
23
with the other parts of the reflector lamp fastened thereto can be fixedly clamped in the lamp housing by means of the resilient tags
42
. In some applications, the tags
42
are subsequently fixed to the lamp housing by means of welded joints and/or glue connections.
There are several possibilities for mechanically fastening the end portion
18
to the upper wall
24
of the support body
23
. In the embodiment shown, a plate
45
is fixed on the upper wall
24
, in which plate
45
two openings are provided for the end portion
18
and for the current conductor
22
, respectively. Four resilient tongues
46
bent in upward direction are cut from the plate
45
. In an alternative embodiment which is not shown, the plate
45
is omitted, and the resilient tongues are formed directly from the upper wall
24
of the support body
23
. A clamp
43
is fastened to the end portion
18
. The clamp
43
is provided with radially extending projections
44
in three positions which correspond to those of the tongues
46
. The projections
44
are each provided with a recess in which the upper side of the associated tongue
46
can be enclosed. The desired position of the lamp vessel in the Z-direction can be laid down by clamping the clamp
43
to the end portion
18
in a correct position In addition, the position of the lamp vessel in the XY-directions can be defined through bending of the tongues
46
. The lamp can be aligned in a simple manner by means of the mechanical construction described.
It is also conceivable to align the lamp first, and then to weld the plate
45
to the upper wall
24
of the support body
23
in a suitable position and fasten the lamp to the plate
45
.
Alternative constructions are possible in addition to the constructions described above. Thus the lamp vessel may be fastened to the reflector body
13
or to the support body
23
by means of a spring cup. This embodiment has the advantage that fewer components are required.
The usual neck of the reflector body has been omitted in all mechanical fastening constructions according to the invention. The absence of the neck renders it possible to fasten the lamp at a smaller distance from the focal point, which makes the fastening more stable.
Claims
- 1. A reflector lamp comprising:a reflector body (13) with a concave reflecting portion; an electric lamp (15) comprising a closed lamp vessel with at least an end portion (18), an electric element (17) arranged in the lamp vessel, and a current conductor (19) extending through the end portion to the electric element; and a support body (23) dimensioned to receive and surround a major portion of the reflector body (13), said support body (23) comprising reflector fastening means (30, 27) for contacting a circular edge of the concave reflector body (13) and for fastening the support body to the reflector body, mechanical lamp vessel fastening means (43, 46) for fastening the support body to the end portion of the lamp vessel, and housing fastening means (42) for fastening the support body in a lamp housing (2).
- 2. A reflector lamp as claimed in claim 1, wherein the support body (23) is fastened to the concave portion of the reflector body.
- 3. A reflector lamp as claimed in claim 1, wherein the support body (23) is provided substantially around the reflector body (13), and the reflector fastening means comprise one or several abutment flanges (27) on which end face (28) of the reflector body (13) bears in axial direction, and resilient tags (30) fastened to the support body, which tags engage the reflector body and urge the reflector body against the abutment flanges (27).
- 4. A reflector lamp as claimed in claim 3, wherein the reflector fastening means comprise three resilient tags (30) positioned at substantially equal distances.
- 5. A reflector lamp as claimed in claim 3, wherein the reflector fastening means in addition comprise one or several tangential resilient portions (41) for clamping the support body (23) against the reflector body (13).
- 6. A reflector lamp as claimed in claim 5, wherein the tangential resilient portions (41) are provided adjacent the end face (28) of the reflector body.
- 7. A reflector lamp as claimed in claim 1, wherein the housing fastening means comprise a number of resilient tags (42) for clamping the support body in the lamp housing (2).
- 8. A reflector lamp as claimed in claim 7, wherein the resilient tags (42) are welded or glued to the lamp housing in the clamped-in state.
- 9. A reflector lamp as claimed in claim 1, wherein the support body (23) is manufactured from one piece of metal.
- 10. A reflector lamp, comprising:a reflector body (13) with a concave reflecting portion; an electric lamp (15) comprising a closed lamp vessel with a first (18) and an opposed second end portion (16), an electric element (17) arranged in the lamp vessel, and current conductors extending through the end portions (16, 18) to the electric element; and a support body (23) dimensioned to receive and surround a major portion of the reflector body (13), said support body (23) comprising reflector fastening means (30, 27) for contacting a circular edge of the concave reflector body (13) and for fastening the support body (23) to the reflector body (13); wherein an opening (14) is provided in the concave portion of the reflector body (13) so as to serve as a passage for the first end portion (18) of the lamp vessel, and said end portion is fixed by means of a mechanical fastening construction positioned in the reflector body alongside the opening (14).
- 11. A reflector lamp as claimed in claim 10, wherein the mechanical fastening construction engages the first end portion of the lamp vessel in or immediately above the opening.
- 12. A reflector lamp as claimed in claim 11, wherein the mechanical fastening construction comprises means (43, 46) for aligning the lamp vessel and fixing it in the aligned state.
- 13. A reflector lamp as claimed in claim 10, wherein the mechanical fastening construction comprises a spring cup.
- 14. A reflector lamp as claimed in claim 10, wherein the mechanical fastening construction comprises a clamp (43) gripping the lamp vessel and a number of resilient tags (46) which engage with the clamp.
- 15. An assembly comprising: a lamp housing (2); control means (8, 9, 10) provided in the lamp housing; and one or several reflector lamps as claimed in claim 1 provided in the lamp housing and connected to the control means (8, 9, 10).
- 16. A method of joining together an assembly as claimed in claim 15, which method comprises the steps of: connecting the support body to the reflector body; connecting an end of the lamp vessel to the support body; fastening the support body in the lamp housing; and aligning the lamp in the fastened state.
Priority Claims (1)
Number |
Date |
Country |
Kind |
00204433 |
Dec 2000 |
EP |
|
US Referenced Citations (10)
Number |
Name |
Date |
Kind |
4682274 |
Freudenreich et al. |
Jul 1987 |
A |
4982132 |
Meyer et al. |
Jan 1991 |
A |
5281889 |
Fields et al. |
Jan 1994 |
A |
5402325 |
Wisler et al. |
Mar 1995 |
A |
5465195 |
Jenner et al. |
Nov 1995 |
A |
5651603 |
Doring |
Jul 1997 |
A |
5945776 |
Koster et al. |
Aug 1999 |
A |
6176604 |
Dubrovin et al. |
Jan 2001 |
B1 |
6210020 |
Van Dulmen et al. |
Apr 2001 |
B1 |
6454436 |
Ilyes et al. |
Sep 2002 |
B1 |
Foreign Referenced Citations (4)
Number |
Date |
Country |
1055873 |
Nov 2000 |
EP |
2783594 |
Mar 2000 |
FR |
10228804 |
Aug 1998 |
JP |
WO0173341 |
Oct 2001 |
WO |