The present disclosure relates to light detection and ranging (LiDAR), and in particular to refraction compensation for LiDAR systems.
Systems exist that enable vehicles to be driven semi-autonomously or fully autonomously. Such systems may use one or more range finding, mapping, or object detection systems to provide sensory input to assist in semi-autonomous or fully autonomous vehicle control. LiDAR systems, for example, can provide the sensory input required by a semi-autonomous or fully autonomous vehicle.
Embodiments discussed herein refer to refraction compensation for LiDAR systems.
In one embodiment, a LiDAR system is provided that can include a laser operative to emit light characterized as having a p-polarization and s-polarization; and a light transmissive cover characterized as having a reflective polarization plane, wherein the laser is aligned with the light transmissive cover such that the p-polarization of the laser is co-planer with the reflective polarization plane of the light transmissive cover.
In one embodiment, a curved cover for use with LiDAR system can be provided that can include a medium comprising a first curve and a second curve, wherein the first and second curves are designed to minimize deformation of exiting and receiving light beams and to prevent formation of ghost images, and wherein a focal length of the first and second curves is infinity.
In one embodiment, a LiDAR system mounted to a windshield of a vehicle is provided that can include a laser system operative to emit light according to a beam field of view towards the windshield; and a windshield cover mounted to the windshield, wherein the windshield cover is operative to adjust the beam field of view to yield an exit beam field of view that compensates for Fresnel properties of the windshield.
In one embodiment, a vehicle system is provided that can include a windshield comprising an anti-reflective (AR) coating that covers a beam transmission portion of the windshield; and a laser system operative to emit light according to a beam field of view towards the beam transmission portion of the windshield, wherein the AR coating is operative to adjust the beam field of view to yield an exit beam field of view that compensates for Fresnel properties of the windshield.
A further understanding of the nature and advantages of the embodiments discussed herein may be realized by reference to the remaining portions of the specification and the drawings.
Illustrative embodiments are now described more fully hereinafter with reference to the accompanying drawings, in which representative examples are shown. Indeed, the disclosed LiDAR systems and methods may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Like numbers refer to like elements throughout.
In the following detailed description, for purposes of explanation, numerous specific details are set forth to provide a thorough understanding of the various embodiments. Those of ordinary skill in the art will realize that these various embodiments are illustrative only and are not intended to be limiting in any way. Other embodiments will readily suggest themselves to such skilled persons having the benefit of this disclosure.
In addition, for clarity purposes, not all of the routine features of the embodiments described herein are shown or described. One of ordinary skill in the art would readily appreciate that in the development of any such actual embodiment, numerous embodiment-specific decisions may be required to achieve specific design objectives. These design objectives will vary from one embodiment to another and from one developer to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would nevertheless be a routine engineering undertaking for those of ordinary skill in the art having the benefit of this disclosure.
LiDAR system 110 may include, among other features, fiber laser 120, controller 130, and scanning system 140. Fiber laser 120 may be any suitable laser that uses a seed laser and at least one amplifier and also includes an active gain medium that is rare-earth ion doped. In some embodiments, two or more fiber lasers may be used in LiDAR system 110. In yet another embodiment, the fiber laser may be replaced with one or more diode lasers. Controller 130 may be operative to control LiDAR system 110. For example, controller 130 may control operating parameters of fiber laser 120. Scanning system 140 may include the appropriate lenses, mirrors, steering optics, and detectors needed to capture an image of a scene existing within a vicinity of vehicle 100. Fiber laser 120 serves as the source of light pulses that are provided to scanning system 140. Scanning system 140 can control projection of those light pulses in accordance with a field of view of scanning system 140. The field of view includes lateral and vertical fields of view in which laser pulses are transmitted to capture an X×Y image every scan cycle. This X×Y image is obtained each scan cycle and any objects detected with the image are detected by returns of the laser pulses. The images are processed by software to determine the location and distance of the objects.
When light passes from one medium (having a first refractive index) to another medium (having a second refractive index), both reflection and refraction of the light may occur. The Fresnel equations describe what fraction of the light is reflected and what fraction is refracted (i.e., transmitted). In LiDAR applications, it is desirable to maximize refraction and minimize reflection. Reflection can cause ghosts, which are undesirable. Normal glass, for example, has a reflection of about 4%. When anti-reflective coatings are applied to the glass, the reflection can be, for example, 1-2% for a few degrees of incidence angles. The angle of incidence is the angle between a ray incident on a surface and the line perpendicular to the surface at the point of incidence, called the normal. The scanning system of a LiDAR system can produce incident angles that exceed 60, 70, 80, 90, 100, 110, 120 degrees or more, thus rendering anti-reflective coatings useless for all but a few degrees of all incident angles produced by the system.
The plane of incidence is the plane which contains the surface normal and the propagation vector of the incoming light. The orientation of the incident light's polarization with respect to the plane of incidence has an important effect on the strength of the reflection. The plane of incidence is the plane made by the incoming propagation direction and the vector perpendicular to the plane of an interface. The component of the electric field parallel to this plane is termed p-like (parallel) and the component perpendicular to this plane is termed s-like. Polarized light with its electric field along the plane of incidence is thus denoted p-polarized, while light whose electric field is normal to the plane of incidence is called s-polarized.
In order to maximize transmission power of incident light through cover 330, the light being emitted by laser 310 is oriented such that its p-polarization is co-planer with the Rp of cover 330. That is, during installation of laser 310 and cover 330 within a LiDAR system, both laser 310 and cover 330 are aligned such that the p-polarization of the laser is co-planer with the Rp of cover 330. When the p-polarization of the laser and Rp of cover are aligned, the transmission power can be maximized throughout a range of incidence angles so long as light being emitted by laser 310 remains co-planer with Rp of cover 330.
R1*n*(n−1)−(n−1)*n*R2+d*(n−1){circumflex over ( )}2=0,
where R1 is the radius of curve 611. R2 is the radius of curve 612, n is the refractive index of medium 610, and d is the thickness of medium 610. The focal length of curved cover 600 can be designed to be infinity. If desired, an anti-reflective material can be applied to one or both curves B11 and B12. Because the incidence angle is relatively small, the anti-reflective material would be effective throughout the Lidar scanning sweep. In addition, there is no need to account for the p-polarization of laser beam with curved cover 600.
Laser steering system 730 may direct light signals through cover 720 and windshield 710. Steering system 730 may control both the vertical and horizontal field of view of the light signals being projected through windshield 710. The vertical field of view may range from a beam steered maximum angle 732 to a beam steered minimum angle 734. Cover 720 is designed so that it selectively adjusts exiting angles of the light originating from steering system 730. As shown, cover 720 has a triangular cross-section that increases in thickness as it spans from top of windshield 710 to bottom of windshield 710. This variation in thickness influences light transmission such that exit angles out of windshield 710 are changed relative to their respective originating beam steering angle. Maximum exit beam 736 and minimum exit beam 738 are shown. In some embodiments, cover 720 can be a prism.
For example, if windshield 710 has an angle of 22 degrees relative to horizontal axis 740 and that cover 720 has a 3 degree angle and a refractive index of 1.5. The incident angle of beam ranges from −4 degrees (for 734) to about 17 degrees (for 732), and the exiting beam ranges from minimum exit angle 738 of about −15 degrees to maximum exit angle 736 of about 14 degrees. The existence of prism 720 increases the range of the vertical field of view by a factor of about 1.4.
It should be appreciated that cover 720 can take any suitable shape to achieve desired exit angles. For example, cover 720 may be custom made for each windshield of each make and type of vehicle to compensate for idiosyncrasies of each windshield to yield desired vertical fields of view. This way, the same Lidar system can be used with any vehicle without a need for modifications to adapt to the windshield. Instead, cover 720 is customized for each windshield to allow an unmodified Lidar system to be used.
In some embodiments, AR-coated film 860 can serve the same function as cover 330 of
AR-coated film 860 may be constructed from a thin and flexible material that is bonded to windshield 810. A first side of AR-coated film 860 may have a refractive index that is substantially similar to a refractive index of the windshield. In addition, an adhesive binding the coating to the windshield may also have a refractive index that substantially matches the refractive index of the first side and the windshield. A second side of AR-coating film 860 can adjust p-polarization (Rp) and s-polarization (Rs) of incident light interfacing with the windshield. In some embodiments, the second side's anti-reflective coating is selected based on the wavelength of the light source.
It is believed that the disclosure set forth herein encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. Each example defines an embodiment disclosed in the foregoing disclosure, but any one example does not necessarily encompass all features or combinations that may be eventually claimed. Where the description recites “a” or “a first” element or the equivalent thereof, such description includes one or more such elements, neither requiring nor excluding two or more such elements. Further, ordinal indicators, such as first, second or third, for identified elements are used to distinguish between the elements, and do not indicate a required or limited number of such elements, and do not indicate a particular position or order of such elements unless otherwise specifically stated.
Moreover, any processes described with respect to
It is to be understood that any or each module or state machine discussed herein may be provided as a software construct, firmware construct, one or more hardware components, or a combination thereof. For example, any one or more of the state machines or modules may be described in the general context of computer-executable instructions, such as program modules, that may be executed by one or more computers or other devices. Generally, a program module may include one or more routines, programs, objects, components, and/or data structures that may perform one or more particular tasks or that may implement one or more particular abstract data types. It is also to be understood that the number, configuration, functionality, and interconnection of the modules or state machines are merely illustrative, and that the number, configuration, functionality, and interconnection of existing modules may be modified or omitted, additional modules may be added, and the interconnection of certain modules may be altered.
Whereas many alterations and modifications of the present invention will no doubt become apparent to a person of ordinary skill in the art after having read the foregoing description, it is to be understood that the particular embodiments shown and described by way of illustration are in no way intended to be considered limiting. Therefore, reference to the details of the preferred embodiments is not intended to limit their scope.
This application claims the benefit of U.S. Provisional Application No. 62/720,307, filed Aug. 21, 2018, the disclosure of which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3897150 | Bridges et al. | Jul 1975 | A |
4464048 | Farlow | Aug 1984 | A |
5006721 | Cameron | Apr 1991 | A |
5157451 | Taboada et al. | Oct 1992 | A |
5234748 | Demiryont | Aug 1993 | A |
5319434 | Croteau et al. | Jun 1994 | A |
5327280 | Morimoto | Jul 1994 | A |
5369661 | Yamaguchi et al. | Nov 1994 | A |
5442358 | Keeler et al. | Aug 1995 | A |
5546188 | Wangler et al. | Aug 1996 | A |
5579153 | Laming et al. | Nov 1996 | A |
5657077 | Deangelis et al. | Aug 1997 | A |
5793491 | Wangler et al. | Aug 1998 | A |
5838239 | Stern et al. | Nov 1998 | A |
5864391 | Hosokawa et al. | Jan 1999 | A |
5926259 | Bamberger et al. | Jul 1999 | A |
5936756 | Nakajima | Aug 1999 | A |
6068914 | Boire | May 2000 | A |
6163378 | Khoury | Dec 2000 | A |
6317202 | Hosokawa et al. | Nov 2001 | B1 |
6594000 | Green et al. | Jul 2003 | B2 |
6650404 | Crawford | Nov 2003 | B1 |
6950733 | Stopczynski | Sep 2005 | B2 |
7128267 | Reichenbach et al. | Oct 2006 | B2 |
7202941 | Munro | Apr 2007 | B2 |
7345271 | Boehlau et al. | Mar 2008 | B2 |
7440084 | Kane | Oct 2008 | B2 |
7440175 | Di et al. | Oct 2008 | B2 |
7489865 | Varshneya et al. | Feb 2009 | B2 |
7576837 | Liu et al. | Aug 2009 | B2 |
7830527 | Chen et al. | Nov 2010 | B2 |
7835068 | Brooks et al. | Nov 2010 | B1 |
7847235 | Krupkin et al. | Dec 2010 | B2 |
7936448 | Albuquerque et al. | May 2011 | B2 |
7969558 | Hall | Jun 2011 | B2 |
7982861 | Abshire et al. | Jul 2011 | B2 |
8072582 | Meneely | Dec 2011 | B2 |
8471895 | Banks | Jun 2013 | B2 |
8736818 | Weimer et al. | May 2014 | B2 |
8749764 | Hsu | Jun 2014 | B2 |
8812149 | Doak | Aug 2014 | B2 |
8994928 | Shiraishi | Mar 2015 | B2 |
9048616 | Robinson | Jun 2015 | B1 |
9065243 | Asobe et al. | Jun 2015 | B2 |
9086273 | Gruver et al. | Jul 2015 | B1 |
9194701 | Bosch | Nov 2015 | B2 |
9255790 | Zhu | Feb 2016 | B2 |
9300321 | Zalik et al. | Mar 2016 | B2 |
9304316 | Weiss et al. | Apr 2016 | B2 |
9316724 | Gehring et al. | Apr 2016 | B2 |
9354485 | Fermann et al. | May 2016 | B2 |
9510505 | Halloran et al. | Dec 2016 | B2 |
9575184 | Gilliland et al. | Feb 2017 | B2 |
9605998 | Nozawa | Mar 2017 | B2 |
9621876 | Federspiel | Apr 2017 | B2 |
9638799 | Goodwin et al. | May 2017 | B2 |
9696426 | Zuk | Jul 2017 | B2 |
9702966 | Batcheller et al. | Jul 2017 | B2 |
9804264 | Villeneuve et al. | Oct 2017 | B2 |
9810786 | Welford et al. | Nov 2017 | B1 |
9812838 | Villeneuve et al. | Nov 2017 | B2 |
9823353 | Eichenholz et al. | Nov 2017 | B2 |
9857468 | Eichenholz et al. | Jan 2018 | B1 |
9869754 | Campbell et al. | Jan 2018 | B1 |
9880263 | Droz et al. | Jan 2018 | B2 |
9880278 | Uffelen et al. | Jan 2018 | B2 |
9885778 | Dussan | Feb 2018 | B2 |
9897689 | Dussan | Feb 2018 | B2 |
9915726 | Bailey et al. | Mar 2018 | B2 |
9927915 | Frame et al. | Mar 2018 | B2 |
9958545 | Eichenholz et al. | May 2018 | B2 |
10007001 | LaChapelle et al. | Jun 2018 | B1 |
10012732 | Eichenholz et al. | Jul 2018 | B2 |
10042159 | Dussan et al. | Aug 2018 | B2 |
10061019 | Campbell et al. | Aug 2018 | B1 |
10073166 | Dussan | Sep 2018 | B2 |
10078133 | Dussan | Sep 2018 | B2 |
10094925 | LaChapelle | Oct 2018 | B1 |
10157630 | Vaughn et al. | Dec 2018 | B2 |
10191155 | Curatu | Jan 2019 | B2 |
10215847 | Scheim et al. | Feb 2019 | B2 |
10267898 | Campbell et al. | Apr 2019 | B2 |
10295656 | Li et al. | May 2019 | B1 |
10310058 | Campbell et al. | Jun 2019 | B1 |
10324170 | Engberg, Jr. et al. | Jun 2019 | B1 |
10324185 | McWhirter et al. | Jun 2019 | B2 |
10393877 | Hall et al. | Aug 2019 | B2 |
10429495 | Wang et al. | Oct 2019 | B1 |
10444356 | Wu et al. | Oct 2019 | B2 |
10451716 | Hughes et al. | Oct 2019 | B2 |
10466342 | Zhu et al. | Nov 2019 | B1 |
10502831 | Eichenholz | Dec 2019 | B2 |
10509112 | Pan | Dec 2019 | B1 |
10520602 | Villeneuve et al. | Dec 2019 | B2 |
10557923 | Watnik et al. | Feb 2020 | B2 |
10571567 | Campbell et al. | Feb 2020 | B2 |
10578720 | Hughes et al. | Mar 2020 | B2 |
10591600 | Villeneuve et al. | Mar 2020 | B2 |
10627491 | Hall et al. | Apr 2020 | B2 |
10641872 | Dussan et al. | May 2020 | B2 |
10663564 | LaChapelle | May 2020 | B2 |
10663585 | McWhirter | May 2020 | B2 |
10663596 | Dussan et al. | May 2020 | B2 |
10684360 | Campbell | Jun 2020 | B2 |
10908262 | Dussan | Feb 2021 | B2 |
10908265 | Dussan | Feb 2021 | B2 |
10908268 | Zhou et al. | Feb 2021 | B2 |
10969475 | Li et al. | Apr 2021 | B2 |
10983218 | Hall et al. | Apr 2021 | B2 |
11002835 | Pan et al. | May 2021 | B2 |
11009605 | Li et al. | May 2021 | B2 |
11194048 | Burbank et al. | Dec 2021 | B1 |
20020136251 | Green et al. | Sep 2002 | A1 |
20040135992 | Munro | Jul 2004 | A1 |
20050033497 | Stopczynski | Feb 2005 | A1 |
20050190424 | Reichenbach et al. | Sep 2005 | A1 |
20050195383 | Breed et al. | Sep 2005 | A1 |
20060071846 | Yanagisawa et al. | Apr 2006 | A1 |
20060132752 | Kane | Jun 2006 | A1 |
20070091948 | Di et al. | Apr 2007 | A1 |
20070216995 | Bollond et al. | Sep 2007 | A1 |
20080174762 | Liu et al. | Jul 2008 | A1 |
20080193135 | Du et al. | Aug 2008 | A1 |
20090010644 | Varshneya et al. | Jan 2009 | A1 |
20090051926 | Chen | Feb 2009 | A1 |
20090059201 | Willner et al. | Mar 2009 | A1 |
20090067453 | Mizuuchi et al. | Mar 2009 | A1 |
20090147239 | Zhu | Jun 2009 | A1 |
20090262760 | Krupkin et al. | Oct 2009 | A1 |
20090316134 | Michael et al. | Dec 2009 | A1 |
20100006760 | Lee et al. | Jan 2010 | A1 |
20100020306 | Hall | Jan 2010 | A1 |
20100020377 | Borchers et al. | Jan 2010 | A1 |
20100027602 | Abshire et al. | Feb 2010 | A1 |
20100045965 | Meneely | Feb 2010 | A1 |
20100053715 | O'Neill et al. | Mar 2010 | A1 |
20100128109 | Banks | May 2010 | A1 |
20100254019 | Cui | Oct 2010 | A1 |
20100271614 | Albuquerque et al. | Oct 2010 | A1 |
20110181864 | Schmitt et al. | Jul 2011 | A1 |
20120038903 | Weimer et al. | Feb 2012 | A1 |
20120124113 | Zalik et al. | May 2012 | A1 |
20120221142 | Doak | Aug 2012 | A1 |
20130107016 | Federspeil | May 2013 | A1 |
20130116971 | Retkowski et al. | May 2013 | A1 |
20130182302 | Shikii | Jul 2013 | A1 |
20130241761 | Cooper et al. | Sep 2013 | A1 |
20130293867 | Hsu et al. | Nov 2013 | A1 |
20130293946 | Fermann et al. | Nov 2013 | A1 |
20130329279 | Nati et al. | Dec 2013 | A1 |
20130342822 | Shiraishi | Dec 2013 | A1 |
20140078514 | Zhu | Mar 2014 | A1 |
20140104594 | Gammenthaler | Apr 2014 | A1 |
20140347650 | Bosch | Nov 2014 | A1 |
20140350836 | Stettner et al. | Nov 2014 | A1 |
20150078123 | Batcheller et al. | Mar 2015 | A1 |
20150084805 | Dawber | Mar 2015 | A1 |
20150109603 | Kim et al. | Apr 2015 | A1 |
20150116692 | Zuk et al. | Apr 2015 | A1 |
20150139259 | Robinson | May 2015 | A1 |
20150158489 | Oh et al. | Jun 2015 | A1 |
20150338270 | Williams et al. | Nov 2015 | A1 |
20150355327 | Goodwin et al. | Dec 2015 | A1 |
20160003946 | Gilliland et al. | Jan 2016 | A1 |
20160047896 | Dussan | Feb 2016 | A1 |
20160047900 | Dussan | Feb 2016 | A1 |
20160061655 | Nozawa | Mar 2016 | A1 |
20160061935 | Mccloskey et al. | Mar 2016 | A1 |
20160100521 | Halloran et al. | Apr 2016 | A1 |
20160117048 | Frame et al. | Apr 2016 | A1 |
20160172819 | Ogaki | Jun 2016 | A1 |
20160178736 | Chung | Jun 2016 | A1 |
20160226210 | Zayhowski et al. | Aug 2016 | A1 |
20160245902 | Watnik et al. | Aug 2016 | A1 |
20160291134 | Droz et al. | Oct 2016 | A1 |
20160313445 | Bailey et al. | Oct 2016 | A1 |
20160327646 | Scheim et al. | Nov 2016 | A1 |
20170003116 | Yee et al. | Jan 2017 | A1 |
20170153319 | Villeneuve et al. | Jun 2017 | A1 |
20170242104 | Dussan | Aug 2017 | A1 |
20170299721 | Eichenholz et al. | Oct 2017 | A1 |
20170307738 | Schwarz et al. | Oct 2017 | A1 |
20170365105 | Rao et al. | Dec 2017 | A1 |
20170371347 | Cohen | Dec 2017 | A1 |
20180040171 | Kundu et al. | Feb 2018 | A1 |
20180050704 | Tascione et al. | Feb 2018 | A1 |
20180069367 | Villeneuve et al. | Mar 2018 | A1 |
20180152691 | Pacala et al. | May 2018 | A1 |
20180158471 | Vaughn et al. | Jun 2018 | A1 |
20180164439 | Droz et al. | Jun 2018 | A1 |
20180156896 | O'Keeffe | Jul 2018 | A1 |
20180188355 | Bao et al. | Jul 2018 | A1 |
20180188357 | Li et al. | Jul 2018 | A1 |
20180188358 | Li et al. | Jul 2018 | A1 |
20180188371 | Bao et al. | Jul 2018 | A1 |
20180210084 | Zwölfer et al. | Jul 2018 | A1 |
20180275274 | Bao et al. | Sep 2018 | A1 |
20180284241 | Campbell et al. | Oct 2018 | A1 |
20180284242 | Campbell | Oct 2018 | A1 |
20180284244 | Russell | Oct 2018 | A1 |
20180284286 | Eichenholz et al. | Oct 2018 | A1 |
20180329060 | Pacala et al. | Nov 2018 | A1 |
20180359460 | Pacala et al. | Dec 2018 | A1 |
20190018108 | Gao | Jan 2019 | A1 |
20190025428 | Li et al. | Jan 2019 | A1 |
20190101627 | Hansson | Apr 2019 | A1 |
20190107607 | Danziger | Apr 2019 | A1 |
20190107623 | Campbell et al. | Apr 2019 | A1 |
20190120942 | Zhang et al. | Apr 2019 | A1 |
20190120962 | Gimpel et al. | Apr 2019 | A1 |
20190154804 | Eichenholz | May 2019 | A1 |
20190154807 | Steinkogler et al. | May 2019 | A1 |
20190212416 | Li et al. | Jul 2019 | A1 |
20190250254 | Campbell et al. | Aug 2019 | A1 |
20190257924 | Li et al. | Aug 2019 | A1 |
20190265334 | Zhang et al. | Aug 2019 | A1 |
20190265336 | Zhang et al. | Aug 2019 | A1 |
20190265337 | Zhang et al. | Aug 2019 | A1 |
20190265339 | Zhang et al. | Aug 2019 | A1 |
20190277952 | Beuschel et al. | Sep 2019 | A1 |
20190299752 | Sadakane | Oct 2019 | A1 |
20190310368 | LaChapelle | Oct 2019 | A1 |
20190369215 | Wang et al. | Dec 2019 | A1 |
20190369258 | Hall et al. | Dec 2019 | A1 |
20190383915 | Li et al. | Dec 2019 | A1 |
20200142070 | Hall et al. | May 2020 | A1 |
20200256964 | Campbell et al. | Aug 2020 | A1 |
20200284906 | Eichenholz et al. | Sep 2020 | A1 |
20200319310 | Hall et al. | Oct 2020 | A1 |
20200400798 | Rezk et al. | Dec 2020 | A1 |
20210088630 | Zhang | Mar 2021 | A9 |
20210271077 | Huber | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
204758260 | Nov 2015 | CN |
204885804 | Dec 2015 | CN |
207457508 | Jun 2018 | CN |
207557465 | Jun 2018 | CN |
1087132472 | Jun 2018 | CN |
208314210 | Jan 2019 | CN |
208421228 | Jan 2019 | CN |
208705506 | Apr 2019 | CN |
106597471 | May 2019 | CN |
209280923 | Aug 2019 | CN |
108445468 | Nov 2019 | CN |
110031823 | Mar 2020 | CN |
108089201 | Apr 2020 | CN |
109116331 | Apr 2020 | CN |
109917408 | Apr 2020 | CN |
109116366 | May 2020 | CN |
109116367 | May 2020 | CN |
110031822 | May 2020 | CN |
211655309 | Oct 2020 | CN |
109188397 | Nov 2020 | CN |
109814086 | Nov 2020 | CN |
109917348 | Nov 2020 | CN |
110492856 | Nov 2020 | CN |
110736975 | Nov 2020 | CN |
109725320 | Dec 2020 | CN |
110780284 | Dec 2020 | CN |
110780283 | Jan 2021 | CN |
110784220 | Feb 2021 | CN |
212623082 | Feb 2021 | CN |
110492349 | Mar 2021 | CN |
109950784 | May 2021 | CN |
213182011 | May 2021 | CN |
213750313 | Jul 2021 | CN |
214151038 | Sep 2021 | CN |
109814082 | Oct 2021 | CN |
113491043 | Oct 2021 | CN |
214795200 | Nov 2021 | CN |
214795206 | Nov 2021 | CN |
214895784 | Nov 2021 | CN |
214895810 | Nov 2021 | CN |
215641806 | Jan 2022 | CN |
112639527 | Feb 2022 | CN |
215932142 | Mar 2022 | CN |
112578396 | Apr 2022 | CN |
0 757 257 | Feb 1997 | EP |
1 237 305 | Sep 2002 | EP |
1 923 721 | May 2008 | EP |
2 157 445 | Feb 2010 | EP |
2 395 368 | Dec 2011 | EP |
2 889 642 | Jul 2015 | EP |
1 427 164 | Mar 1976 | GB |
2000411 | Jan 1979 | GB |
2007144667 | Jun 2007 | JP |
2010035385 | Feb 2010 | JP |
2017-003347 | Jan 2017 | JP |
2017-138301 | Aug 2017 | JP |
10-2012-0013515 | Feb 2012 | KR |
10-2013-0068224 | Jun 2013 | KR |
10-2018-0107673 | Oct 2018 | KR |
2017110417 | Jun 2017 | WO |
2018125725 | Jul 2018 | WO |
2018129410 | Jul 2018 | WO |
2018129408 | Jul 2018 | WO |
2018129409 | Jul 2018 | WO |
2018129410 | Jul 2018 | WO |
2018175990 | Sep 2018 | WO |
2018182812 | Oct 2018 | WO |
2019079642 | Apr 2019 | WO |
2019165095 | Aug 2019 | WO |
2019165289 | Aug 2019 | WO |
2019165294 | Aug 2019 | WO |
2020013890 | Jan 2020 | WO |
Entry |
---|
Chen, X, et al. (Feb. 2010). “Polarization Coupling of Light and Optoelectronics Devices Based on Periodically Poled Lithium Niobate,” Shanghai Jiao Tong University, China, Frontiers in Guided Wave Optics and Optoelectronics, 24 pages,. |
Goldstein, R. (Apr. 1986) “Electro-Optic Devices in Review, The Linear Electro-Optic (Pockels) Effect Forms the Basis for a Family of Active Devices,” Laser & Applications, FastPulse Technology, Inc., 6 pages. |
International Preliminary Report on Patentability, dated Jul. 9, 2019, for International Application No. PCT/US2018/012703, 10 pages. |
International Preliminary Report on Patentability, dated Jul. 9, 2019, for International Application No. PCT/US2018/012704, 7 pages. |
International Preliminary Report on Patentability, dated Jul. 9, 2019, for International Application No. PCT/US2018/012705, 7 pages. |
International Search Report and Written Opinion, dated Jan. 17, 2020, for International Application No. PCT/US2019/019276, 14 pages. |
International Search Report and Written Opinion, dated Jul. 9, 2019, for international Application No. PCT/US2019/018987, 17 pages. |
International Search Report and Written Opinion, dated Sep. 18, 2018, for International Application No. PCT/US2018/012116, 12 pages. |
International Search Report and Written Opinion, dated May 3, 2019, for International Application No. PCT/US2019/019272, 16 pages. |
International Search Report and Written Opinion, dated May 6, 2019, for international Application No. PCT/US2019/019264, 15 pages. |
International Search Report and Written Opinion, dated Jan. 3, 2019, for international Application No. PCT/US2018/056577, 15 pages. |
International Search Report and Written Opinion, dated Mar. 23, 2018, for international Application No. PCT/US2018/012704, 12 pages. |
International Search Report and Written Opinion, dated Jun. 7, 2018, for International Application No. PCT/US2018/024185, 9 pages. |
International Preliminary Report on Patentability, dated Apr. 30, 2020, for International Application No. PCT/US2018/056577, 8 pages. |
European Search Report, dated Jul. 17, 2020, for EP Application No. 18776977.3, 12 pages. |
Extended European Search Report, dated Jul. 10, 2020, for EP Application No. 18736738.8, 9 pages. |
Gunzung, Kim, et al. (Mar. 2, 2016). “A hybrid 3D LIDAR imager based on pixel-by-pixel scanning and DS-OCDMA,” pages Proceedings of SPIE [Proceedings of SPIE ISSN 0277-786X vol. 10524], SPIE, US, vol. 9751, pp. 975119-975119-8. |
Extended European Search Report, dated Jul. 22, 2020, for EP Application No. 18736685.1, 10 pages. |
Gluckman, J. (May 13, 2016). “Design of the processing chain for a high-altitude, airborne, single-photon lidar mapping instrument,” Proceedings of SPIE; [Proceedings of SPIE ISSN 0277-786X vol. 10524], spie, us, vol. 9832, 9 pages. |
Office Action Issued in Japanese Patent Application No. 2019-536019 dated Nov. 30, 2021, 6 pages. |
European Search Report, dated Jun. 17, 2021, for EP Application No. 18868896.4, 7 pages. |
“Fiber laser,” Wikipedia, https://en.wikipedia.org/wiki/Fiber_laser, 6 pages. |
International Search Report and Written Opinion, dated Mar. 19, 2018, for International Application No. PCT/US2018/012705, 12 pages. |
International Search Report and Written Opinion, dated Mar. 20, 2018, for International Application No. PCT/US2018/012703, 13 pages. |
“Mirrors”, Physics LibreTexts, https://phys.libretexts.org/Bookshelves/Optics/Supplemental_Modules_(Components)/Mirrors, (2021), 2 pages. |
“Why Wavelengths Matter in Fiber Optics”, FirstLight, https://www.firstlight.net/why-waveiengths-matter-in-fiber-optics/, (2021), 5 pages. |
Number | Date | Country | |
---|---|---|---|
62720307 | Aug 2018 | US |