1. Field of the Invention
The present invention generally relates to lenses. More specifically, the present invention provides an insert having a diffractive region that can be embedded into any host lens material to form a multifocal lens.
2. Background Art
These is a desire to improve the performance and cosmetic appeal of multifocal lenses. Traditional multifocal lenses; such as bifocal and trifocals, suffer from a number disadvantages. As an example, many traditional multifocal lenses have a visible discontinuity separating each vision zone. Blended multifocals can reduce the visibility associated with these abrupt discontinuities but generally at the cost of rendering the blend zones optically unusable due to high levels of distortion and/or astigmatism. Traditional progressive lenses can provide multiple vision zones with invisable boundaries and no image breaks but these lenses typically have narrow vision zones and are associated with large amounts of unwanted astigmatism.
Diffractive optical structures have many advantages over refractive optical structures and can reduce the visibility of discontinuities between vision zones when used to construct multifocal lenses. However, lenses using diffractive optical structures to date have suffered from a number of compromises including severe chromatic aberration due to dispersion and ghosting due to poor diffraction efficiency.
Accordingly, what is needed is a multifocal lens that exploits the advantages of diffractive optical structures to provide less visible discontinuities while additionally reducing vision compromises commonly associated with diffractive optics.
Aspects of the present invention provide multifocal lenses having one or more multifocal inserts comprising one or more diffractive regions. A diffractive region of a multifocal insert of the present invention can provide a constant optical power or can provide a progression of optical power, or any combination thereof. A multifocal insert of the present invention can be fabricated from any type of material and can be inserted into any type of bulk lens material. A diffractive region of a multifocal insert of the present invention can be positioned to be in optical communication with one or more optical regions of a host lens to provide a combined desired optical power in one or more vision zones. Index matching layers of the present invention can be used to reduce reflection losses at interfaces of the host lens and multifocal insert.
A multifocal insert of the present invention can be applied to any type of optical lens or device including ophthalmic lenses such as, but not limited to, contact lenses, intra-ocular lenses, corneal in-lays, corneal on-lays, and spectacle lenses.
The multifocal lens of the present invention can be a finished lens (edged and ready to mount in a frame), a finished lens blank (not yet edged and ready to mount in a frame), a semi-finished lens blank (finished on at least one outer surface but not yet finished on a second outer surface) or a non-finished lens blank (having neither outer surface finished). Further, the present invention allows for any refractive or diffractive optical power including plano (i.e., no optical power).
The multifocal lens 100 can be a finished, non-finished, or semi-finished lens blank. The multifocal lens 100 can be a final ophthalmic lens. The multifocal lens 100 can be subjected to or can include modifications from any know lens processing including, but not limited to, tinting (e.g., including adding a photochromic), anti-reflection coating, anti-soiling coating, scratch resistance hard coating, ultra-violet coating, selective filtering of high energy light, drilling, edging, surfacing, polishing and free forming or direct digital surfacing.
The multifocal lens 100 can be a static lens. For example, the multifocal lens 100 can be a bifocal, trifocal or multifocal lens, a lens having a progressive addition surface, a lens having a diffractive surface, a lens having a progressive region of optical power or any combination thereof. Overall, the multifocal lens can be any lens having one or more regions or constant or fixed optical power, including different optical powers.
The multifocal lens 100 can be a dynamic lens. For example, the multifocal lens 100 can be an electro-active lens, a fluid lens, a mechanically focusing lens, or a membrane spectacle lens. Overall, the multifocal lens 100 can be any lens capable of having its external convex and/or concave curvature altered mechanically or manually, or its optical power or depth of focus changes or altered in a dynamic manner.
The insert 104 can comprise one or more diffractive regions. The diffractive region can be a static (e.g., non-dynamic or non-electro-active) or a dynamic electro-active diffractive region, or any combination thereof. The diffractive region can provide constant optical power, a progression of optical power or a combination thereof. The diffractive region of the insert 104 can provide discrete changes in optical power without the abrupt sag or slope discontinuities of a conventional refractive surface. As an electro-active diffractive region, the diffractive region can provide an alterable optical power. The diffractive region of the insert 104 can also be cropped or blended. Cropping can reduce the size of the diffractive region (e.g., by removing or not forming a portion of a concentric ring of a typical diffractive structure) while maintaining a desired shape and effective optical power. Overall, a diffractive region of the insert 104 can be or can exhibit any of the characteristics (e.g., variation in shape, size, orientation, positioning, blending, cropping, optical power provided, fabrication, blending efficiency, etc.) of any of the diffractive regions described in U.S. patent application Ser. No. 12/166,526, filed on Jul. 2, 2008, which is hereby incorporated by reference in its entirety.
The insert 104 can be fabricated as an optical film, an optical wafer, a rigid optic or a lens blank. The diffractive region of the insert 104 can be fabricated, for example, to have a thickness ranging from 1 μm to 100 μm. As an optical film, the insert 104 can have a thickness, for example, ranging from 50 μm to 500 μm. As a rigid optic lens wafer, or lens blank, the insert 104 can be fabricated, for example, to have a thickness of 0.1 mm to 7 mm.
Surrounding the diffractive region of the insert 104 can be a refractive region. The refractive region of the insert 104 can be of any optical power, including plano. By including a refractive and diffractive region of differing optical powers, the insert 104 of the present invention can be considered to be a refractive-diffractive multifocal insert.
The host lens material 102 can have different indices of refraction on the front and back surfaces of the multifocal lens 100. That is, the front layer of the host lens material 102 can comprise a material that is different from a material comprising the back layer of the host lens material 102. The front and/or back surfaces of the multifocal lens 100 can comprise refractive optics, elements or regions. For example, a far distance zone of the multifocal lens 100 located in an upper region of the multifocal lens 100 can provide plano optical power while one or more near distance zones located in a lower region of the multifocal lens 100 can provide positive optical power. The radii of curvature of the front and back surfaces of the multifocal lens 100 can be predetermined so as to generate known amounts of refractive optical power. The front, back or internal surfaces of the multifocal lens 100 can comprise progressive surfaces or regions. The progressive regions can be added by grinding and polishing, by free-forming, or by molding or coating.
The multifocal lens 100 can comprise one or more index matching layers 106 (which can also be considered index mediating, mitigating or bridging layers as may be used in the discussion below). The index matching layers 106 can be used to reduce reflection losses between the host lens material 102 and the insert 104. The index matching layer 106 can have, for example, a refractive index that is substantially equal to the arithmetic mean of the refractive indices of the host lens material 102 and the insert 104. Additionally, the index matching layer 106 can be used as a primer layer to promote adhesion between the host lens material 102 and the insert 104 and while reducing the visibility of a diffractive region positioned on the insert 104. Index matching layers/mediating layers 106 may or may not be used depending upon the difference between the indices of refraction between the host lens material 102 and the insert 104. Additional details on the design and use of index matching layers is described in U.S. patent application Ser. No. 12/238,932, filed on Sep. 26, 2008, which is hereby incorporated by reference.
The multifocal lens 100 can provide multiple vision zones that are wider and exhibit less distortion than traditional multifocal lenses including progressive addition lenses. Further, the multifocal lens 100 can provide the multiple vision zones with a significantly reduced or invisible break between adjacent vision zones as compared to traditional bifocal or trifocal lenses. A diffractive region of the insert 104 can provide one or more constant, progressive or variable optical powers that can be combined with the one or more constant, progressive or variable optical powers provided by the surfaces of the host lens material 102. The one or more constant, progressive or variable optical powers contributed in part by the surfaces of the host lens material 102 can be provided by the front and/or back surfaces or layers of the host lens material 102.
The optical powers provided by a diffractive region of the insert 104 can be combined with the optical powers of the host lens material 102 as described in U.S. patent application Ser. No. 12/059,908, filed on Mar. 31, 2008, U.S. patent application Ser. No. 11/964,030, filed on Dec. 25, 2007, and U.S. patent application Ser. No. 12/238,932, filed on Sep. 26, 2008 each of which is hereby incorporated by reference in their entirety. In general, the diffractive region of the insert 104 can be fabricated to provide any desired optical power including, but not limited to, any optical power within a range of +0.12 D to +3.00 D. Further, the diffractive region of the insert 104 can be positioned to be in optical communication with the optical powers provided by the host lens material 102 to provide any desired near distance add power with any corresponding desired intermediate distance corrective prescription.
The multifocal lens 100 can comprise a far distance viewing region that can comprise refractive optics (e.g., refractive regions of the host lens material 102 in combination with refractive regions of the insert 104). The multifocal lens 100 can comprise one or more viewing regions (e.g., far intermediate, intermediate and/or near viewing regions) that can comprise refractive optics, diffractive optics or a combination thereof (e.g., refractive regions of the host lens material 102 in combination with diffractive regions of the insert 104). The multifocal lens 100 can therefore use the combination of refractive and diffractive optics positioned on one or more surfaces or layers to provide multiple vision zones of varying optical power. As such, the multifocal lens 100 can be considered to be a refractive-diffractive multifocal lens.
By locating and distributing the desired refractive curves or diffractive structures on multiple surfaces, layers or regions of the multifocal lens 100, each of which are in a desired location for providing an appropriate and desired optical alignment with respect to one another, enables the multifocal lens 100 to provide multiple vision zones that are wider than traditional multifocal or progressive lenses as described in the related patent applications mentioned above.
The diffractive region of the insert 104 may or may not include an optical power discontinuity. The diffractive region of the insert 104 may not be visible to an observer of the multifocal lens 100. Specifically, because the diffractive structures of the diffractive region of the insert 104 can be fabricated to have minimal heights, the diffractive region of the insert 104 may be nearly visible to an observer—particularly when covered by another layer (i.e., the front layer of the host lens material 102). Further, any discontinuity introduced by the diffractive region's optical power can introduce little or no prismatic optical power jump. An image break introduced by such a discontinuity can be that of a prismatic image break, a magnification image break, a perceived clear/blur image break, or any combination thereof. A change in optical power of approximately 0.08 diopters (D) or larger may be considered as introducing a discontinuity that causes such an image break. As described in the incorporated and related patent applications, any discontinuity can be located in a region traversed by a wearer's line of vision between a near to far distance region or can be located in the periphery of the diffractive region.
Overall, the multifocal lens 100 can comprise any number of discontinuities (including no discontinuities). One or more discontinuities can be introduced by a single diffractive region or by multiple diffractive regions.
As previously described, the host lens material 102 and the insert 104 can be fabricated from any material having different indices of refraction. The materials use to form the host lens material 102 can be any lens material described in U.S. application Ser. No. 12/059,908, filed Mar. 31, 2008 or U.S. application Ser. No. 11/964,030, filed Dec. 25, 2007, including those listed below in Table 1.
The difference in the refractive indices between the host lens material 102 and the insert 104 can be any value such as, but not limited to, greater than 0.01. One skilled in the relevant art(s) will appreciate how a diffractive region of the insert 104 can be designed to account for being placed between materials having a different refractive index (e.g., an index of refraction different from air) and provide a desired optical power. Further, the index of refractive of the host material 102 can be larger than the index of refraction of the insert 104. This can result in a thinner lens as any curves of the host lens material 102 can be made to be flatter than if the index of refraction of the host lens material 104 was smaller.
The insert 104 can be inserted or embedded into the host lens material 102 (with or without one or more index mediating and/or matching layers 106) by any known lens fabrication technique or process. For example, the insert 104 can be molded within the host lens material 102 when the host lens material 102 is first fabricated and/or cast from liquid resin as a lens blank. The insert 104 can also be embedded between two lens wafers that form the front end back components of the host lens material 102. The two lens wafers can then be adhesively bonded together so as to form the multifocal lens 100 as a lens blank. Additional detail on methods of fabricating the multifocal lens 100 is provided in the previously mentioned related patent applications.
A diffractive region of the insert 104 can be embedded as an uncured or semi-curved resin. The diffraction region can also be formed or inserted into the multifocal lens 100 by injection molding, stamping, embossing or thermal forming. The diffractive region can also be fabricated by diamond turning a mold or mold master (for use in subsequent mold replications) that is then used to cast a desired diffractive optic. The insert 104 can be, for example, a material such as polysulfone, polyimide, polyetherimide or polycarbonate.
The insert 104 can alternatively comprise a layer of a photo-sensitive material with uniform thickness (i.e., not initially comprising surface relief diffractive structures). The refractive index of the photo-sensitive material can permanently and irreversibly change to a predetermined value when exposed to optical radiation. The photo-sensitive material may be exposed to radiation in a pattern predetermined to form a desired diffractive optical power region. For example, a diffractive phase profile may be “written” on the photo-sensitive material by means of exposure through an optical mask or a scanning laser source. The optical radiation can be, for example, within the ultra-violet or visible wavelength bands, although other wavelengths can be used.
The diffractive region 206 is shown to be cropped. In particular, the diffractive region 206 is shaped as a portion of a circle but is not so limited. That is, the diffractive region 206 can comprise any shape as previously mentioned. For example, the diffractive region can be a semi-circle. Additionally, the diameter of the diffractive region 206 can be any value including, but not limited to, 40 mm. The diffractive region 206 can provide a constant optical power. As an example, the diffractive region 206 can provide +0.75 Diopters (D) of optical power. A discontinuity may result due to a step-up or step-down in optical power between the refractive region 208 and the diffractive region 206.
As shown in the side view 204, the multifocal lens comprises the host lens material 102 and the insert 104. As an example, the insert 104 can be approximately 100 μm thick and can have an index of refraction of 1.60. The insert 104 can comprise the diffractive region 206 and a refraction region 210. The refractive region 210 can provide any optical power including plano optical power. As such, the insert 104 can be considered to be a thin refractive-diffractive multifocal optic.
The host lens material 102 that surrounds the insert 104 can be a refractive single vision lens. The host lens material can be finished on the front convex curvature can be unfinished on the back side of the semi-finished lens blank. The host lens material can have any index of refraction, including, but not limited to, a refractive index within the range of 1.30 to 2.00.
The optical power of an upper region of the multifocal lens (e.g., the optical power of the overall refractive region 208) can be provided by the refractive region 210 of the insert 104 and the refractive regions of the host lens material 102. The optical power of a lower region of the multifocal lens can be provided by the diffractive region 206 of the insert 104. Once the back unfinished surface is finished by surfacing or free forming, the multifocal lens depicted in
As an example only, the minimum optical power can be plano optical power and the maximum optical power can be +1.75 D. Alternatively, the minimum optical power can be +0.25 D optical power and the maximum optical power can be +1.00 D. A discontinuity may or may not result due to a step-up or step-down in optical power between the refractive region 208 and the diffractive region 206. For example, if the diffractive region 206 begins with an optical power that is substantially the same as the optical power provided by the adjacent portion of the refractive region 208, then no discontinuity may result. Alternatively, if the diffractive region 206 begins with an optical power that is different than the optical power provided by the adjacent portion of the refractive region 208, then a discontinuity may result.
As shown in the side view 304, the multifocal lens comprises the host lens material 102 and the insert 104. As an example, the insert 104 can range from approximately 0.1 mm to 1 mm thick and can have an index of refraction of 1.60.
The host lens material 102 that surrounds the insert 104 can be a refractive single vision lens. The host lens material can be finished on the front convex curvature and can be unfinished on the back side of the semi-finished lens blank. The host lens material can have an index of refraction, for example, of 1.49. The optical power of a lower region of the multifocal lens (e.g., one or more near distance vision zones) can be provided by the progressive diffractive region 206 of the insert 104.
Once the back unfinished surface is finished by surfacing or free forming, the multifocal lens depicted in
The multifocal lens depicted in
As an example only, the minimum optical power can be +0.01 D (or, e.g., +0.25 D) and the maximum optical power can be +1.00 D. A discontinuity may result due to a step-up in optical power between the refractive region 208 and the diffractive region 206 (e.g., if the diffractive structure 206 contributes to an optical power that is 0.08 D or greater). For example, the refractive region 208 may be of plano optical power such that a step-up in optical power results between the refractive region 208 and the diffractive region 206.
The multifocal lens can further comprise a progressive optical power region 406. The progressive optical power region 406 can be a refractive progressive optical power region. The progressive optical power region 206 can be located on the front or back surface of the multifocal lens. For example, the progressive optical power region 206 can be added by molding or by free-forming. The refractive progressive optical power region 206 can be positioned anywhere on a surface of the multifocal lens so that any portion can overlap any portion of the diffractive structure 206. The progressive optical power region 406, as an example, can begin with plano optical power and can increase to +1.00 D of optical power. As such, the progressive optical power region 406 can provide a first incremental add power and the diffractive structure 206 can provide a second incremental add power. Together, when aligned and in proper optical communication with one another, the first and second incremental add powers can provide a total add power of +2.00 D.
As shown in the side view 304, the multifocal lens comprises the host lens material 102 and the insert 104. As an example, the insert 104 can range from approximately 0.1 mm to 1 mm thick and can have an index of refraction of 1.60.
The host lens material 102 that surrounds the insert 104 can be a refractive multifocal lens. The host lens material can be finished on the front convex curvature and can be unfinished on the back side of the semi-finished lens blank. The host lens material can have an index of refraction, for example, of 1.49. The optical power of a lower region of the multifocal lens can be provided by the progressive diffractive region 206 of the insert 104 in optical communication with the progressive optical power region 406 of the host lens material. Additionally, one or more vision zones in the lower region of the multifocal lens can be solely provided by the diffractive structure 206.
Once the back unfinished surface is finished by surfacing or free forming, the multifocal lens depicted in
In general, according to an aspect of the invention, a diffractive region of an insert of the present invention can provide a first incremental add power and a refractive region of a surface of bulk lens material can provide a second incremental add power. Together, the first and second incremental add powers can provide a total desired add power for a multifocal lens of the present invention. This can be accomplished by ensuring that the diffractive region of the insert (at least a portion thereof) is in optical communication with the refractive region (or regions) of the bulk lens material. Further, the diffractive region of the insert and the refractive region (or regions) of the bulk lens material can be oriented or aligned to form multiple vision zones having various optical powers as will be appreciated by one skilled in the pertinent art(s).
According to an aspect of the present invention, the diffractive region of an insert of the present invention can provide 20% to 100% of the total desired add power of an overall lens. In many designs, it may be desired for the diffractive region to provide 30% of approximately 33% of a total desired add power of a lens. Given an add power contribution provided by the diffractive region, an add power of the refraction region(s) of the bulk lens material can be determined. Further, in many designs, the add power of the diffractive region can vary from +0.125 D to +3.00 D in steps of 0.125 D.
The multifocal lens can further comprise a progressive optical power region 406. The progressive optical power region 406 can be positioned anywhere on the multifocal lens and be positioned to be in optical communication with the diffractive region 206. The progressive optical power region 406 can be a refractive progressive optical power region. The progressive optical power region 206 can be locate don the front or back surface of the multifocal lens. As an example, the progressive optical power region 406 can begin with plano optical power and can increase to +1.25 D of optical power. As such, the progressive optical power region 406 can provide a first incremental add power and the diffractive structure 206 can provide a second incremental add power. Together, the first and second incremental add powers can provided a total add power of +2.00 D.
As shown, in the side view 504, the multifocal lens comprises the host lens material 102 and the insert 104. As an example, the insert 104 can range from approximately 0.1 mm to 1 mm thick and can have an index of refraction of 1.60.
The host lens material 102 that surrounds the inert 104 can be a refractive multifocal lens. The host lens material can be finished on the front convex curvature and unfinished on the back side of the semi-finished lens blank. The host lens material can have an index of refraction, for example, of 1.49. The optical power of a lower region of the multifocal lens can be provided by the progressive diffractive region 206 of the insert 104 in optical communication with the progressive optical power region 406 of the host lens material. Additionally, one or more vision zones or regions can be located at or preferably below of fitting point of the lens and can be solely provided by the diffractive structure 206. The fitting point of the lens can be a point on the lens that will align with the center of a wearer's pupil.
Once the back unfinished surface is finished by surfacing or free forming, the multifocal lens depicted in
In general, a refractive-diffractive multifocal insert of the present invention can be combined with one or more other layers, surfaces or optics as described in more detail in any of the previously mentioned related patent applications that have been incorporated by reference.
As shown in
The length of the first, second and third distances 704, 706 and 708, as well as the corresponding first, second and third optical power values can be adjusted and modified to accommodate any ramp-up in optical power within the progressive optical power region 406. For a sharp ramp up in optical power, the distances 704, 706 and 708 can be designed to be short and/or the power changes within each zone can be high. For a slow ramp up in optical power, the distances 704, 706 and 708 can be designed to be extended and/or the power change within each zone can be low. In general, the distance 704, 706 and 708 and corresponding power change values can be designed to be any value.
As an example, each of the distances 704, 706 and 708 can be 1 min in length and the changes in optical power can be +0.03 D in the first distance 704, +0.03 D in the second distance 706, and +0.04 D in the third distance 708. Under this scenario, the first optical power value is +0.03 D, the second optical power value is +0.06 D, and the third optical power value is +0.1 D.
As previously mentioned, the shape of the diffractive region 206 is not limited to the shape depicted in
A multifocal lens comprising an embedded or buried refractive-diffractive multifocal insert optic of the present invention can be fabricated according to any of the methods described in the related and incorporated patent applications. As an example, the refractive diffractive multifocal insert optic of the present invention can comprise a preform. One or more external refractive layers can be added to the preform by casting and curing an optical grade resin on top of the preform.
An example of this process is shown in
In the description above, it will be appreciate by one skilled in the pertinent art(s) that the diffractive structures employed above can be replaced with refractive surface relief Fresnel optical power regions. Surface relief Fresnel optical power regions can comprise a series of optical zones that represent the shape of a conventional refractive surface relief optical power region but modulated over a pre-determined thickness. Such surface relief Fresnel optical power regions can be superimposed on a substrate having a known refractive index. As is the case for refractive optics, Snell's law applies and can be used for designing the surface relief Fresnel optical power regions. For a given design of a surface relief Fresnel optical power region, the angle at which the light rays will be bent will be determined by the refractive index values of the materials forming the surface relief Fresnel optical power regions and the incident angle of said light rays.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example and not limitation. As such, all optical powers, add powers, incremental add powers, optical power ranges, refractive indices, refractive index ranges, thicknesses, thickness ranges, distances from the fitting point of the lens, and diameter measurements that have been provided are examples only and are not intended to be limiting. It will be apparent to one skilled in the pertinent art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Therefore, the present invention should only be defined in accordance with the following claims and their equivalents.
This application is a continuation of U.S. patent application Ser. No. 13/005,876, filed on Jan. 13, 2011 now U.S. Pat. No. 8,197,063, which is a continuation of U.S. patent application Ser. No. 12/270,116, filed on Nov. 13, 2008 now U.S. Pat. No. 7,883,207, which is a continuation-in-part of U.S. patent application Ser. No. 12/059,908, filed on Mar. 31, 2008 now abandoned which is a continuation-in-part of U.S. parent application Ser. No. 11/964,030, filed on Dec. 25, 2007 now U.S. Pat. No. 7,883,206. U.S. patent application Ser. No. 12/270,116 is also a continuation-in-part of U.S. patent application Ser. No. 12/238,932, filed on Sep. 26, 2008 now abandoned. The contests of each of the above-referenced applications are hereby incorporated by reference in their entireties. This application claims priority from and incorporates by reference in their entirety the following provisional applications: U.S. Appl. No. 61/013,822, filed on Dec. 14, 2007;U.S. Appl. No. 61/030,789, filed on Feb. 22, 2008;U.S. Appl. No. 61/038,811, filed on Mar. 24, 2008;U.S. Appl. No. 60/970,024, filed on Sep. 5, 2007;U.S. Appl. No. 60/956,813, filed on Aug. 20, 2007;U.S. Appl. No. 60/935,573, filed on Aug. 20, 2007;U.S. Appl. No. 60/935,492, filed on Aug. 16, 2007;U.S. Appl. No. 60/935,226, filed on Aug. 1, 2007;U.S. Appl. No. 60/924,975, filed on Jun. 7, 2007;U.S. Appl. No. 60/907,367, filed on Mar. 29, 2007;U.S. Appl. No. 60/978,776, filed on Oct. 10, 2007;U.S. Appl. No. 60/960,606, filed on Oct. 5, 2007;U.S. Appl. No. 60/960,607, filed on Oct. 5, 2007;U.S. Appl. No. 60/907,097, filed on Mar. 21, 2007; andU.S. Appl. No. 60/905,304, filed on Mar. 7, 2007.
Number | Name | Date | Kind |
---|---|---|---|
2437642 | Henroleau | Mar 1948 | A |
2576581 | Edwards | Nov 1951 | A |
3161718 | Deluca | Dec 1964 | A |
3245315 | Marks et al. | Apr 1966 | A |
3248460 | Naujokas | Apr 1966 | A |
3309162 | Kosanke et al. | Mar 1967 | A |
3614215 | Mackta | Oct 1971 | A |
3738734 | Tait et al. | Jun 1973 | A |
3791719 | Kratzer et al. | Feb 1974 | A |
4062629 | Winthrop | Dec 1977 | A |
4174156 | Glorieux | Nov 1979 | A |
4181408 | Senders | Jan 1980 | A |
4190330 | Berreman | Feb 1980 | A |
4190621 | Greshes | Feb 1980 | A |
4264154 | Petersen | Apr 1981 | A |
4279474 | Belgorod | Jul 1981 | A |
4300818 | Schachar | Nov 1981 | A |
4320939 | Mueller | Mar 1982 | A |
4373218 | Schachar | Feb 1983 | A |
4395736 | Fraleux | Jul 1983 | A |
4418990 | Gerber | Dec 1983 | A |
4423929 | Gomi | Jan 1984 | A |
4457585 | DuCorday | Jul 1984 | A |
4461550 | Legendre | Jul 1984 | A |
4466703 | Nishimoto | Aug 1984 | A |
4466706 | Lamothe, II | Aug 1984 | A |
4529268 | Brown | Jul 1985 | A |
4564267 | Nishimoto | Jan 1986 | A |
4572616 | Kowel et al. | Feb 1986 | A |
4577928 | Brown | Mar 1986 | A |
4601545 | Kern | Jul 1986 | A |
4609824 | Munier et al. | Sep 1986 | A |
4712870 | Robinson et al. | Dec 1987 | A |
4756605 | Okada et al. | Jul 1988 | A |
4772094 | Sheiman | Sep 1988 | A |
D298250 | Kildall | Oct 1988 | S |
4787733 | Silva | Nov 1988 | A |
4787903 | Grendahl | Nov 1988 | A |
4795248 | Okada et al. | Jan 1989 | A |
4813777 | Rainville et al. | Mar 1989 | A |
4818095 | Takeuchi | Apr 1989 | A |
4836652 | Oishi et al. | Jun 1989 | A |
4842400 | Klein | Jun 1989 | A |
4869588 | Frieder et al. | Sep 1989 | A |
4873029 | Blum | Oct 1989 | A |
4880300 | Payner et al. | Nov 1989 | A |
4890903 | Treisman et al. | Jan 1990 | A |
4904063 | Okada et al. | Feb 1990 | A |
4907860 | Noble | Mar 1990 | A |
4909626 | Purvis et al. | Mar 1990 | A |
4919520 | Okada et al. | Apr 1990 | A |
4921728 | Takiguchi | May 1990 | A |
4927241 | Kuijk | May 1990 | A |
4929865 | Blum | May 1990 | A |
4930884 | Tichenor et al. | Jun 1990 | A |
4944584 | Maeda et al. | Jul 1990 | A |
4945242 | Berger et al. | Jul 1990 | A |
4952048 | Frieder et al. | Aug 1990 | A |
4952788 | Berger et al. | Aug 1990 | A |
4955712 | Barth et al. | Sep 1990 | A |
4958907 | Davis | Sep 1990 | A |
4961639 | Lazarus | Oct 1990 | A |
4968127 | Russell et al. | Nov 1990 | A |
4981342 | Fiala | Jan 1991 | A |
4991951 | Mizuno et al. | Feb 1991 | A |
5015086 | Okaue et al. | May 1991 | A |
5030882 | Solero | Jul 1991 | A |
5050981 | Roffman | Sep 1991 | A |
5066301 | Wiley | Nov 1991 | A |
5067795 | Senatore | Nov 1991 | A |
5073021 | Marron | Dec 1991 | A |
5076665 | Petersen | Dec 1991 | A |
5089023 | Swanson | Feb 1992 | A |
5091801 | Ebstein | Feb 1992 | A |
5108169 | Mandell | Apr 1992 | A |
5114628 | Hofer et al. | May 1992 | A |
5130856 | Tichenor et al. | Jul 1992 | A |
5142411 | Fiala | Aug 1992 | A |
5147585 | Blum | Sep 1992 | A |
5150234 | Takahashi et al. | Sep 1992 | A |
5171266 | Wiley et al. | Dec 1992 | A |
5178800 | Blum | Jan 1993 | A |
5182585 | Stoner | Jan 1993 | A |
5184156 | Black et al. | Feb 1993 | A |
5200859 | Payner et al. | Apr 1993 | A |
5208688 | Fergason et al. | May 1993 | A |
5219497 | Blum | Jun 1993 | A |
5229797 | Futhey et al. | Jul 1993 | A |
5229885 | Quaglia | Jul 1993 | A |
5231430 | Kohayakawa | Jul 1993 | A |
5239412 | Naka et al. | Aug 1993 | A |
D342063 | Howitt et al. | Dec 1993 | S |
5305028 | Okano | Apr 1994 | A |
5306926 | Yonemoto | Apr 1994 | A |
5324930 | Jech, Jr. | Jun 1994 | A |
D350342 | Sack | Sep 1994 | S |
5352886 | Kane | Oct 1994 | A |
5359444 | Piosenka et al. | Oct 1994 | A |
5375006 | Haas | Dec 1994 | A |
5382986 | Black et al. | Jan 1995 | A |
5386308 | Michel et al. | Jan 1995 | A |
5424927 | Schaller et al. | Jun 1995 | A |
5440357 | Quaglia | Aug 1995 | A |
5443506 | Garabet | Aug 1995 | A |
5451766 | Van Berkel | Sep 1995 | A |
5488439 | Weltmann | Jan 1996 | A |
5512371 | Gupta et al. | Apr 1996 | A |
5522323 | Richard | Jun 1996 | A |
5552841 | Gallorini et al. | Sep 1996 | A |
5608567 | Grupp | Mar 1997 | A |
5615588 | Gottschald | Apr 1997 | A |
5654786 | Bylander | Aug 1997 | A |
5668620 | Kurtin et al. | Sep 1997 | A |
5682223 | Menezes et al. | Oct 1997 | A |
5683457 | Gupta et al. | Nov 1997 | A |
RE35691 | Theirl et al. | Dec 1997 | E |
5702819 | Gupta et al. | Dec 1997 | A |
5712721 | Large | Jan 1998 | A |
5728155 | Anello et al. | Mar 1998 | A |
5739959 | Quaglia | Apr 1998 | A |
5777719 | Williams et al. | Jul 1998 | A |
5815233 | Morokawa et al. | Sep 1998 | A |
5815239 | Chapman et al. | Sep 1998 | A |
5859685 | Gupta et al. | Jan 1999 | A |
5861934 | Blum et al. | Jan 1999 | A |
5861936 | Sorensen | Jan 1999 | A |
5877876 | Birdwell | Mar 1999 | A |
5900720 | Kallman et al. | May 1999 | A |
5949521 | Williams et al. | Sep 1999 | A |
5953098 | Lieberman et al. | Sep 1999 | A |
5956183 | Epstein et al. | Sep 1999 | A |
5963300 | Horwitz | Oct 1999 | A |
5971540 | Ofner | Oct 1999 | A |
5980037 | Conway | Nov 1999 | A |
5999328 | Kurtin et al. | Dec 1999 | A |
6040947 | Kurtin et al. | Mar 2000 | A |
6050687 | Bille et al. | Apr 2000 | A |
6069742 | Silver | May 2000 | A |
6086203 | Blum et al. | Jul 2000 | A |
6086204 | Magnante | Jul 2000 | A |
6095651 | Williams et al. | Aug 2000 | A |
6099117 | Gregory | Aug 2000 | A |
6115177 | Vossler | Sep 2000 | A |
6139148 | Menezes | Oct 2000 | A |
6145987 | Baude et al. | Nov 2000 | A |
6188525 | Silver | Feb 2001 | B1 |
6191881 | Tajima | Feb 2001 | B1 |
6199984 | Menezes | Mar 2001 | B1 |
6213602 | Smarto | Apr 2001 | B1 |
6270220 | Keren | Aug 2001 | B1 |
6271915 | Frey et al. | Aug 2001 | B1 |
6305802 | Roffman et al. | Oct 2001 | B1 |
6325508 | Decreton et al. | Dec 2001 | B1 |
6350031 | Lashkari et al. | Feb 2002 | B1 |
6390623 | Kokonaski et al. | May 2002 | B1 |
6396622 | Alden | May 2002 | B1 |
6437762 | Birdwell | Aug 2002 | B1 |
6437925 | Nishioka | Aug 2002 | B1 |
6464363 | Nishioka et al. | Oct 2002 | B1 |
2002346 | Stantz et al. | Dec 2002 | A1 |
6491394 | Blum et al. | Dec 2002 | B1 |
6501443 | McMahon | Dec 2002 | B1 |
6554425 | Roffman et al. | Apr 2003 | B1 |
6609794 | Levine | Aug 2003 | B2 |
6614408 | Mann | Sep 2003 | B1 |
6616275 | Dick et al. | Sep 2003 | B1 |
6616279 | Davis et al. | Sep 2003 | B1 |
6618208 | Silver | Sep 2003 | B1 |
6626532 | Nishioka et al. | Sep 2003 | B1 |
6631001 | Kuiseko | Oct 2003 | B2 |
6652096 | Morris et al. | Nov 2003 | B1 |
6682195 | Dreher | Jan 2004 | B2 |
6709105 | Menezes | Mar 2004 | B2 |
6709107 | Jiang et al. | Mar 2004 | B2 |
6709108 | Levine et al. | Mar 2004 | B2 |
6738199 | Nishioka | May 2004 | B2 |
6768536 | Okuwaki et al. | Jul 2004 | B2 |
6774871 | Birdwell | Aug 2004 | B2 |
6778246 | Sun et al. | Aug 2004 | B2 |
6793340 | Morris et al. | Sep 2004 | B1 |
6833938 | Nishioka | Dec 2004 | B2 |
6840619 | Dreher | Jan 2005 | B2 |
6851805 | Blum et al. | Feb 2005 | B2 |
6859333 | Ren et al. | Feb 2005 | B1 |
6883916 | Menezes | Apr 2005 | B2 |
6886938 | Menezes | May 2005 | B1 |
6893124 | Kurtin | May 2005 | B1 |
6902271 | Perrott et al. | Jun 2005 | B2 |
6918670 | Blum et al. | Jul 2005 | B2 |
6948818 | Williams et al. | Sep 2005 | B2 |
6951391 | Morris et al. | Oct 2005 | B2 |
6955433 | Wooley et al. | Oct 2005 | B1 |
6956682 | Wooley | Oct 2005 | B2 |
6986579 | Blum et al. | Jan 2006 | B2 |
7008054 | Kurtin et al. | Mar 2006 | B1 |
7009757 | Nishioka et al. | Mar 2006 | B2 |
7019890 | Meredith et al. | Mar 2006 | B2 |
7041133 | Azar | May 2006 | B1 |
7085065 | Silver | Aug 2006 | B2 |
7133172 | Nishioka | Nov 2006 | B2 |
7159981 | Kato | Jan 2007 | B2 |
7159983 | Menezes et al. | Jan 2007 | B2 |
7209097 | Suyama | Apr 2007 | B2 |
7229173 | Menezes et al. | Jun 2007 | B2 |
7883206 | Blum | Feb 2011 | B2 |
7883207 | Iyer et al. | Feb 2011 | B2 |
8197063 | Iyer et al. | Jun 2012 | B2 |
20010055094 | Zhang | Dec 2001 | A1 |
20020140899 | Blum et al. | Oct 2002 | A1 |
20020149739 | Perrott et al. | Oct 2002 | A1 |
20030018383 | Azar | Jan 2003 | A1 |
20030151721 | Lai | Aug 2003 | A1 |
20030210377 | Blum et al. | Nov 2003 | A1 |
20040008319 | Lai et al. | Jan 2004 | A1 |
20040046931 | Legerton et al. | Mar 2004 | A1 |
20040108971 | Waldern et al. | Jun 2004 | A1 |
20040117011 | Aharoni et al. | Jun 2004 | A1 |
20040130677 | Liang et al. | Jul 2004 | A1 |
20040179280 | Nishioka | Sep 2004 | A1 |
20040196435 | Dick et al. | Oct 2004 | A1 |
20040246440 | Andino et al. | Dec 2004 | A1 |
20050073739 | Meredith | Apr 2005 | A1 |
20050124983 | Frey et al. | Jun 2005 | A1 |
20050140924 | Blum et al. | Jun 2005 | A1 |
20050152039 | Grier et al. | Jul 2005 | A1 |
20060044510 | Williams et al. | Mar 2006 | A1 |
20060066808 | Blum et al. | Mar 2006 | A1 |
20060126698 | Blum et al. | Jun 2006 | A1 |
20060164593 | Peyghambarian | Jul 2006 | A1 |
20060170861 | Lindacher et al. | Aug 2006 | A1 |
20070188700 | Piers et al. | Aug 2007 | A1 |
20070216862 | Blum et al. | Sep 2007 | A1 |
20080273167 | Clarke | Nov 2008 | A1 |
20080273169 | Blum | Nov 2008 | A1 |
20080278681 | Blum et al. | Nov 2008 | A1 |
20090046349 | Haddock et al. | Feb 2009 | A1 |
20090091818 | Haddock | Apr 2009 | A1 |
20090096981 | Clarke et al. | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
ROC89113088 | Oct 2001 | CN |
4223395 | Jan 1994 | DE |
0154962 | Sep 1985 | EP |
0233104 | Aug 1987 | EP |
0237365 | Sep 1987 | EP |
0 578 833 | Jan 1994 | EP |
0578833 | Jan 1994 | EP |
0649044 | Apr 1995 | EP |
2170613 | Aug 1986 | GB |
2169417 | Jul 1987 | GB |
55-076323 | Jun 1980 | JP |
61 156227 | Jul 1986 | JP |
1237610 | Sep 1989 | JP |
05-100201 | Apr 1993 | JP |
7-28002 | Jan 1995 | JP |
11352445 | Dec 1998 | JP |
2007-323062 | Dec 2007 | JP |
WO 9201417 | Feb 1992 | WO |
WO 9321010 | Oct 1993 | WO |
WO 9827863 | Jul 1998 | WO |
WO 9927334 | Jun 1999 | WO |
WO 03050472 | Jun 2003 | WO |
WO 03068059 | Aug 2003 | WO |
WO 2004008189 | Jan 2004 | WO |
WO 2004015481 | Feb 2004 | WO |
WO 2004034095 | Apr 2004 | WO |
WO 2004072687 | Aug 2004 | WO |
Entry |
---|
Electronic Spectacles for the 21st Century by Larry N. Thibos, Ph.D., and Donald T. Miller, PhD., Indiana Journal of Optometry, Spring 1999 vol. 2, No. 1 pp. 5-10. |
Fowler et al., “Liquid crystal lens review”, Ophthal. Physiol. Opt., 1990, vol. 10, pp. 186-194. |
Kowel, Stephen T., et. al; Focusing by electrical modulation of refraction in a liquid crystal cell; Applied Optics; Jan. 15, 1984; vol. 23, No. 2. |
Thibos, Larry N., et. al.; Vision through a liquid-crystal spatial light modulator; Adaptive Optics Conference; 1999; Durham, UK. |
Thibos, Larry N., et. al.; Use of Liquid-Crystal Adaptive-Optics to Alter the Refractive State of the Eye; Optometry and Vision Science; Jul. 1997; vol. 74, No. 7; American Academy of Optometry. |
Thibos, Larry N., et. al.; Electronic Spectacles for the 21st Century, Indian Journal of Optometry, Spring 1999; vol. 2, No. 1. |
Bradley, Arthur; Profile: Larry N. Thibos, PhD., and Donald T. Miller, PhD.; Indiana Journal of Optometry; Spring 1999; vol. 2, No. 1, p. 1 only. |
Naumov, A.F.; Control Optimization of Spherical Modal Liquid Crystal Lenses; Optics Express, Apr. 26, 1999; vol. 4, No. 9; Optical Society of America. |
Naumov, A.F.; Liquid Crystal Adaptive Lenses with Modal Control; Optics Letters, Jul. 1, 1998, vol. 23, No. 13; Optical Society of America. |
Liquid Lenses Eye Commercial Breakthrough; Opto & Laser Europe, Nov. 2003. |
Anderson, M.; Adaptive Optics: Liquid Crystals Lower the Cost of Adaptive Optics; Laser Focus World, Dec. 1999. |
Davis, Robert A.; Computer Vision Syndrome—The Eyestrain Epidemic; Review of Optometry, Sep. 15, 1997. |
Lazarus, Stuart M.; The Use of Yoked Base-Up and Base-In Prism for Reducing Eye Strain at the Computer; Journal of the American Optometric Association, Apr. 1996. |
Eyecare Business, Oct. 1997. |
International Search Report for International Application No. PCT/US2008/86463, dated Feb. 9, 2009. |
U.S. Appl. No. 61/013,822, filed Dec. 14, 2007. |
U.S. Appl. No. 61/030,789, filed Feb. 22, 2008. |
U.S. Appl. No. 61/038,811, filed Mar. 24, 2008. |
U.S. Appl. No. 60/970,024, filed Sep. 5, 2007. |
U.S. Appl. No. 60/956,813, filed Aug. 20, 2007. |
U.S. Appl. No. 60/935,573, filed Aug. 20, 2007. |
U.S. Appl. No. 60/935,492, filed Aug. 16, 2007. |
U.S. Appl. No. 60/935,226, filed Aug. 1, 2007. |
U.S. Appl. No. 60/924,975, filed Jun. 7, 2007. |
U.S. Appl. No. 60/907,367, filed Mar. 29, 2007. |
U.S. Appl. No. 60/978,776, filed Oct. 10, 2007. |
U.S. Appl. No. 60/960,606, filed Oct. 5, 2007. |
U.S. Appl. No. 60/960,607, filed Oct. 5, 2007. |
U.S. Appl. No. 60/907,097, filed Mar. 21, 2007. |
U.S. Appl. No. 60/905,304, filed Mar. 7, 2007. |
Number | Date | Country | |
---|---|---|---|
20130003014 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
61013822 | Dec 2007 | US | |
61030789 | Feb 2008 | US | |
61038811 | Mar 2008 | US | |
60970024 | Sep 2007 | US | |
60956813 | Aug 2007 | US | |
60935573 | Aug 2007 | US | |
60935492 | Aug 2007 | US | |
60935226 | Aug 2007 | US | |
60924975 | Jun 2007 | US | |
60907367 | Mar 2007 | US | |
60978776 | Oct 2007 | US | |
60960606 | Oct 2007 | US | |
60960607 | Oct 2007 | US | |
60907097 | Mar 2007 | US | |
60905304 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13005876 | Jan 2011 | US |
Child | 13487572 | US | |
Parent | 12270116 | Nov 2008 | US |
Child | 13005876 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12059908 | Mar 2008 | US |
Child | 12270116 | US | |
Parent | 11964030 | Dec 2007 | US |
Child | 12059908 | US | |
Parent | 12238932 | Sep 2008 | US |
Child | 12270116 | US |