REFRACTORY METAL MATRIX-CERAMIC COMPOUND MULTI-COMPONENT COMPOSITE MATERIAL WITH SUPER-HIGH MELTING POINT

Abstract
A refractory metal matrix-ceramic compound multi-component composite material with the super-high melting point is disclosed. At least one ceramic compound A and at least one refractory bonding metal B are fused together by the smelting process to make the multi-component composite material. The fused ingredients of the multi-component composite material are mAnB, and (m+n)max=13. The positive integer m is the number of the kinds of the ceramic components A, and the positive integer n is the number of the kinds of the refractory bonding metals B. The absolute value of the combining enthalpy of the ceramic compound A is larger than the absolute value of the combining enthalpy between the ceramic compound A and the refractory bonding metal B. The multi-component composite material has the properties including over 3000° C. melting point, high stability, hardness, ductility, and fusibility in high or low temperature, fast production, and low cost.
Description

The current application claims a foreign priority to the patent application of Taiwan No. 102122225 filed on Jun. 21, 2013.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present disclosure relates to a refractory metal matrix-ceramic compound multi-component composite material with super-high melting point; in particular, to a multi-component composite material (metal matrix composite material) which is made of ceramic compound “A” fused in refractory bonding metal “B”. The multi-component composite material has the properties with high melting point, high hardness, high strength, and good ductility.


2. Description of Related Art


Presently, all kinds of the cemented carbides are manufactured by using sintering process, and the microstructure of the sintered product is mainly of the fine particle of the carbides (such as tungsten carbide, WC) and the cemented metal (such as cobalt, Co). When using 1600 degrees Celsius for sintering the fine particles of tungsten carbide WC and cobalt Co, the hardness and strength thereof may be relatively high, but the porosity thereof is not zero and the ductility thereof remains to be improved. On the other hand, when using arc smelting process with 3500 degrees Celsius, the porosity thereof is eliminated and the ductility thereof increases, the microstructure may be relatively large, therefore may lower the hardness and the strength.


Although the products manufactured using a sintering process have relatively high hardness and strength, the processes of sintering are exquisite and complicated, and the ductility of the product needs further improvement. Comparing with the sintering process, smelting process is relatively simple and fast, and the microstructure of the product manufactured by a smelting process is classical dendrite-interdendrite microstructure, which has zero porosity and relatively good ductility. However, if a refractory metal is used as cemented metal to replace the conventional cemented metals, such as Co and Ni, in sintering process, the refractory metal could not be in its liquid state, increasing the difficulty of using the refractory metal in the sintering process. Therefore, if a refractory metal is used as cemented metal, a smelting process is necessary for cementing the compounds with the refractory metals. In addition to having high melting points, the multi-component composite materials manufactured by the smelting process may also have the properties with high strength, high hardness, and high ductility.


SUMMARY OF THE INVENTION

The present disclosure provides a refractory metal matrix-ceramic compound multi-component composite material with a super-high melting point. In the present disclosure, both the ceramic compound A and the refractory bonding metal B are fused together by a smelting process to form multi-component composite materials. The manufactured multi-component composite materials have the properties with high melting point, high hardness, high strength, and high ductility.


As previously mentioned, the mentioned refractory metal matrix-ceramic compound multi-component composite material with the super-high melting point is made by fusing at least one ceramic compound A and at least one refractory bonding metal B through a smelting process. The fused ingredients of the multi-component composite material are mAnB, (m+n)max=13, m is the number of the kinds of the ceramic compounds A, n is the number of the kinds of the refractory bonding metals B, and m and n are positive integers. In addition, the absolute value of the combining enthalpy of the ceramic compound A is larger than the absolute value of the combining enthalpy between the ceramic compound A and the refractory bonding metal B. As such, the ingredients after the conclusion of the smelting processes are not changed.


Specifically, the ceramic compound A is a carbide, a nitride, a boride, or a silicide.


Specifically, the carbide is titanium carbide (TiC), tantalum carbide (TaC), hafnium carbide (HfC), tungsten carbide (WC), zirconium carbide (ZrC), niobium carbide (NbC), vanadium carbide (VC), chromium carbide (Cr2C3), or molybdenum carbide (Mo2C).


Specifically, the nitride is titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), tantalum nitride (TaN), vanadium nitride (VN), or niobium nitride (NbN).


Specifically, the boride is titanium boride (TiB2), zirconium boride (ZrB2), hafnium boride (HfB2), tantalum boride (TaB2), tungsten boride (WB), chromium boride (Cr3B2), molybdenum boride (MoB2), or tungsten boride (W2B).


Specifically, the silicide is tantalum silicide (TaSi2), titanium silicide (Ti5Si3), zirconium silicide (Zr6Si5), niobium silicide (NbSi2), molybdenum silicide (MoSi2), or tungsten silicide (WSi2).


Specifically, the refractory bonding metal is tungsten (W), rhenium (Re), rhodium (Rh), ruthenium (Ru), tantalum (Ta), niobium (Nb), molybdenum (Mo), hafnium (Hf), zirconium (Zr), or osmium (Os), or sometimes including iron (Fe), cobalt (Co), or nickel (Ni).


Specifically, a maximum mixture proportion and a minimum mixture proportion of each of the main ingredients of the multi-component composite material are 93 wt % and 7 wt %, respectively.


Specifically, the melting points of the ceramic compound A and the refractory bonding metal B are approximately the same.


Specifically, the refractory bonding metal B is soluble with respect to the ceramic compound A, for increasing the fusing capacity or the wettability between the A and the B.


Specifically, a plurality of minor elements can be added into the fused ingredients of the multi-component composite material.


Specifically, the multi-component composite material can be processed by a coating process.


Specifically, the material of the coating process is MCrAlY, CoCrAlY, or MCrAlY.


For further understanding of the present disclosure, reference is made to the following detailed description illustrating the embodiments and examples of the present disclosure. The description is only for illustrating the present disclosure, not for limiting the scope of the claim.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings included herein provide further understanding of the present disclosure. A brief introduction of the drawings is as follows:



FIG. 1 shows a schematic diagram of a manufacturing process of a refractory metal matrix-ceramic compound multi-component composite material with super-high melting point according to one embodiment of the present disclosure;



FIG. 2A shows a metal phase schematic diagram of a refractory metal matrix-ceramic compound multi-component composite material with super-high melting point according to one embodiment of the present disclosure;



FIG. 2B shows microstructure of a refractory metal matrix-ceramic compound multi-component composite material with super-high melting point according to one embodiment of the present disclosure;



FIG. 3 shows an X-ray diffraction pattern of a refractory metal matrix-ceramic compound multi-component composite material with super-high melting point according to one embodiment of the present disclosure;



FIG. 4A shows an enlarged photo of the surface of a turning tool of a refractory metal matrix-ceramic compound multi-component composite material with super-high melting point according to one embodiment of the present disclosure;



FIG. 4B shows an enlarged photo of the surface of a turning tool of a refractory metal-matrix ceramic compound multi-component composite material with super-high melting point according to one embodiment of the present disclosure; and



FIG. 5 shows an enlarged photo of the appearance of a turning tool of a refractory metal matrix-ceramic compound multi-component composite material with super-high melting point according to one embodiment of the present disclosure.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The technical content, features, and efficacies of the present disclosure will be clearly shown in the following descriptions of the preferred embodiments along with the drawings.


Refer to FIG. 1 which shows a manufacturing process diagram of a refractory metal matrix-ceramic compound multi-component composite material with super-high melting point according to one embodiment of the present disclosure. The multi-component composite material (3) is made by fusing at least one ceramic compound A (1) and at least one refractory bonding metal B (2) together through the smelting processes. The fused ingredients of the multi-component composite material (3) are mAnB, (m+n)max=13, and m and n are positive integers. Thus the fused ingredients may include at least one or more than one ceramic compounds A (1) and at least one or more than one refractory bonding metals B (2) (for example, if only one kind of the ceramic compound A (1) is used, the fused ingredients can be 1A1B, 1A2B, . . . , and 1Al2B; in other words, there may be at most 12 refractory metals B (2) used to collocate with the ceramic compound A (1)). The maximum mixture proportion and the minimum mixture proportion of each of the main ingredients of the multi-component composite material (3) are respectively 93 wt % and 7 wt %. That is, if only one kind of ceramic compound A (1) is used, the weight percentage thereof should be at least 7% and not exceed 93% in terms of the weight percentage.


The ceramic compound A is a carbide, a nitride, a boride, or a silicide. When the smelting process is used for fusing the carbide and the refractory bonding metal, the generated multi-component composite material is a fused-refractory metal-cemented ceramic composite material or the so-called fused-refractory metal-cemented ceramics. The generated multi-component composite material is different from the composite material made by the sintering process, which is a sintered refractory metal-cemented ceramic composite material or a sintered refractory metal-cemented ceramics.


For increasing the melting point of the multi-component composite material, the refractory bonding metal replaces the common metal for serving as the cement. In addition, for fusing durable products of composite materials, the ceramic compounds A (such as the carbide, the nitride, the boride, or the silicide) and the refractory bonding metals B need to be wetting, and the better wettability ensures that the refractory bonding metals B to form the carbide, the nitride, the boride, and the silicide respectively with the carbon, the nitrogen, the boron, and the silicon without too much hardship, which may be associated with the smaller wetting angle.


The absolute value of the combining enthalpy of the ceramic compound A is larger than the absolute value of the combining enthalpy between the ceramic compound A and the refractory bonding metal B. Under this situation, when the ceramic compound A and the refractory bonding metal B are fused together, the refractory bonding metal B will not take the carbon, nitrogen, boride, and silicon of the metal elements in the ceramic compound A. Moreover, the refractory bonding metals B are able to be oxidized into compounds, and the metal elements in the ceramic compounds A are able to be reduced into the metal elements.


For example, when the ceramic compound A (TiC) is combined with the refractory bonding metal B (W), if the carbon C in TiC is taken by tungsten W, the products will easily be Ti and WC after TiC and W is combined. At the moment, although the melting points of TiC and W are respectively 3160° C. and 3410° C., the melting points of Ti and WC (which are generated after the reaction) could be lowered to 1668° C. and 2870° C., respectively. However, because the absolute value of the negative combining enthalpy of the two elements in TiC is much greater than the absolute value of the negative combining enthalpy of the two elements in WC, the above mentioned condition about the reduction at the melting point will not occur.


In addition, because the melting points of the ceramic compound A and the refractory bonding metal B are very close, the performance of the smelting process could be easier. When the ceramic compound A is at the low temperature environment, because the ceramic compound A is not a good electrical conductor at ambient temperature, the pre-heating may be necessary. Moreover, because the refractory bonding metal B is soluble with respect to the ceramic compound A, the refractory bonding metal B could be strengthened to further improve the hardness of the whole product.


In addition, after the multi-component composite material is formed using the smelting processes, the multi-component composite material may further receive thermal treatments (such as annealing and homogenizing), for improvement of its microstructure. Moreover, the multi-component composite material may further be processed by a coating process, for anti-oxidation and anti-corrosion. The usual materials used in the coating process are selected from the group includes Co, Ni, Fe, Cr, Al, Y, and Mo, and the frequently used materials are MCrAlY, CoCrAlY, and MCrAlY.


The high-temperature refractory bonding metal B used in the present disclosure is, for example, tungsten (W), rhenium (Re), rhodium (Rh), ruthenium (Ru), tantalum (Ta), niobium (Nb), molybdenum (Mo), hafnium (Hf), zirconium (Zr), or osmium (Os). However, the middle-temperature refractory metal B such as iron (Fe), cobalt (Co), or nickel (Ni) can also be used.


The ceramic compound A used in the present disclosure is, for example, a carbide, and the available high-temperature carbide may be titanium carbide (TiC), tantalum carbide (TaC), hafnium carbide (HfC), tungsten carbide (WC), zirconium carbide (ZrC), or niobium carbide (NbC). In addition, the moderately high-temperature carbide, such as vanadium carbide (VC), chromium carbide (Cr2C3), or molybdenum carbide (Mo2C), may also be used.


The ceramic compound A used in the present disclosure is, for example, a nitride, and the available high-temperature nitride may be titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), or tantalum nitride (TaN). In addition, the moderately high-temperature nitride, such as vanadium nitride (VN) or niobium nitride (NbN), can also be used.


The ceramic compound A used in the present disclosure is, for example, a boride, and the available high-temperature boride may be titanium boride (TiB2), zirconium boride (ZrB2), hafnium boride (HfB2), or tantalum boride (TaB2). In addition, the moderately high-temperature boride, such as tungsten boride (WB), chromium boride (Cr3B2), molybdenum boride (MoB2), or tungsten boride (W2B), can also be used.


The ceramic compound A in the present disclosure is, for example, a silicide, and the available high-temperature silicide may be tantalum silicide (TaSi2). In addition, the moderately high-temperature silicide, such titanium silicide (Ti5Si3), zirconium silicide (Zr6Si5), niobium silicide (NbSi2), molybdenum silicide (MoSi2), or tungsten silicide (WSi2), can also be used.


The present embodiment of the disclosure takes titanium carbide (TiC) and tungsten (W) for example. Titanium carbide (TiC) and tungsten (W) are fused together by a smelting process into a multi-component composite material. The metal phase of the multi-component composite material is shown as FIG. 2A. The pure white color phase is tungsten, the white color fingerprint phase is the eutectic phase of tungsten and titanium carbide, the black color phase is the solid solution phase of titanium carbide and tungsten, and the dark black dot phase is the pure titanium carbide phase. FIG. 2B is the enlarged photo of FIG. 2A where the above-mentioned four phases are further illustrated.



FIG. 3 shows an X-ray diffraction pattern of a multi-component composite material according to one embodiment of the present disclosure. FIG. 3 shows that the four phases in FIG. 2A and FIG. 2B are all formed by TiC and the solid solution TiXW1-X. Thus, the peaks 1, 2, 5, and 7 in FIG. 5 are the diffraction peaks of the component TiC, and the peaks 3, 4, 6, and 8 are the diffraction peaks of the component TiXW1-X.



FIG. 4A and FIG. 4B show the enlarged photos of the surfaces of the turning tools made of the multi-component composite material according to one embodiment of the present disclosure. FIG. 4A shows the photo after the linear cutting, and FIG. 4B shows the photo after being used in turning 304 stainless steel by 8 mm. As shown in the figures, the turning tool that is prepared with the linear cutting though not going through the smoothing processes (such as polishing processes) is still good at cutting.



FIG. 5 shows an enlarged photo of the surface of the commercial turning tool made of the multi-component composite material according to one embodiment of the present disclosure. As shown in FIG. 5, the surface is smooth despite only suited for cutting 3 mm every single pass.


Comparing with the conventional techniques, the refractory metal-matrix ceramic compound multi-component composite material with the super-high melting point has the advantages as follows:


1. For increasing the melting point of the composite material, the refractory bonding metal in this disclosure replaces the common metal for serving as the cement agent. Additionally, because of the use of the refractory bonding metal as the cement metal, the high-temperature smelting processes for fusing the compounds and the refractory bonding metals may be employed. The generated product not only has the property of the high melting point, but also has the advantages of high hardness, high strength, and high ductility.


2. Also because of the use of the refractory bonding metal for replacing the common metal for serving as the cement agent, the smelting process rather than the sintering process could be used for manufacturing, resulting in the simplified manufacturing process and reduced manufacturing costs.


Some modifications of these examples, as well as other possibilities will, on reading or having read this description, or having comprehended these examples, will occur to those skilled in the art. Such modifications and variations are comprehended within this disclosure as described here and claimed below. The description above illustrates only a relative few specific embodiments and examples of the present disclosure. The present disclosure, indeed, does include various modifications and variations made to the structures and operations described herein, which still fall within the scope of the present disclosure as defined in the following claims.

Claims
  • 1. A refractory metal-matrix ceramic compound multi-component composite material with a super-high melting point, in which at least one ceramic compound A and at least one refractory bonding metal B are fused together by a smelting process to make the multi-component composite material, wherein fused ingredients of the multi-component composite material are mAnB, (m+n)max=13, m is a number of the added ceramic compounds, n is a number of the added refractory bonding metal B, m and n are positive integers, and an absolute value of a combining enthalpy of the ceramic compound A is larger than an absolute value of a combining enthalpy between the ceramic compound A and the refractory bonding metal B.
  • 2. The refractory metal-matrix ceramic compound multi-component composite material with super-high melting point according to claim 1, wherein the ceramic compound A is selected from the group consisting of a carbide, a nitride, a boride, and a silicide.
  • 3. The refractory metal-matrix ceramic compound multi-component composite material with the super-high melting point according to claim 2, wherein the carbide is titanium carbide (TiC), tantalum carbide (TaC), hafnium carbide (HfC), tungsten carbide (WC), zirconium carbide (ZrC), niobium carbide (NbC), vanadium carbide (VC), chromium carbide (Cr2C3), or molybdenum carbide (Mo2C).
  • 4. The refractory metal-matrix ceramic compound multi-component composite material with the super-high melting point according to claim 2, wherein the nitride is titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), tantalum nitride (TaN), vanadium nitride (VN), or niobium nitride (NbN).
  • 5. The refractory metal-matrix ceramic compound multi-component composite material with the super-high melting point according to claim 2, wherein the boride is titanium boride (TiB2), zirconium boride (ZrB2), hafnium boride (HfB2), tantalum boride (TaB2), tungsten boride (WB), chromium boride (Cr3B2), molybdenum boride (MoB2), or tungsten boride (W2B).
  • 6. The refractory metal-matrix ceramic compound multi-component composite material with the super-high melting point according to claim 2, wherein the silicide is tantalum silicide (TaSi2), titanium silicide (Ti5Si3), zirconium silicide (Zr6Si5), niobium silicide (NbSi2), molybdenum silicide (MoSi2), or tungsten silicide (WSi2).
  • 7. The refractory metal-matrix ceramic compound multi-component composite material with the super-high melting point according to claim 1, wherein the refractory bonding metal is tungsten (W), rhenium (Re), rhodium (Rh), ruthenium (Ru), tantalum (Ta), niobium (Nb), molybdenum (Mo), hafnium (Hf), zirconium (Zr), or osmium (Os), or sometimes iron (Fe), cobalt (Co), or nickel (Ni).
  • 8. The refractory metal matrix-ceramic compound multi-component composite material with the super-high melting point according to claim 1, wherein a maximum mixture proportion and a minimum mixture proportion of each of the main ingredients of the multi-component composite material are respectively 93 wt % and 7 wt %.
  • 9. The refractory metal matrix-ceramic compound multi-component composite material with the super-high melting point according to claim 1, wherein melting points of the ceramic compound A and the refractory bonding metal B are approximately the same.
  • 10. The refractory metal-matrix ceramic compound multi-component composite material with the super-high melting point according to claim 1, wherein the refractory bonding metal B is soluble with respect to the ceramic compound A.
  • 11. The refractory metal matrix-ceramic compound multi-component composite material with the super-high melting point according to claim 1, wherein a plurality of minor elements are added into the fused ingredients of the multi-component composite material.
  • 12. The refractory metal matrix-ceramic compound multi-component composite material with the super-high melting point according to claim 1, wherein the multi-component composite material is processed by a coating process.
  • 13. The refractory metal matrix-ceramic compound multi-component composite material with the super-high melting point according to claim 12, wherein a material of the coating process is MCrAlY, CoCrAlY, or MCrAlY.
Priority Claims (1)
Number Date Country Kind
102122225 Jun 2013 TW national