The present invention is directed to refractory linings for ladles and other vessels that hold molten metal or other high temperature liquid materials. Refractory linings typically are provided in a two-layer format, with an outer refractory lining positioned adjacent to the wall of the ladle, and an inner refractory lining located inside the outer refractory lining. In use, the inner refractory lining is exposed to the molten metal, and experiences more wear than the outer refractory lining. Thus, the inner refractory lining typically requires replacement more frequently than the outer refractory lining. The inner refractory lining may be referred to as the “working” or “replaceable” lining, whereas the outer refractory lining might be referred to as the “permanent,” “backup” or “safety” lining. While the outer lining is sometimes referred to as being “permanent,” it can require periodic repair or replacement.
The process of installing an inner refractory lining—whether new or as a replacement—can be laborious. In a typical case, the inner refractory lining is assembled inside the ladle from individual bricks, which requires one or more workers to enter the ladle with the bricks to perform the assembly. This results in an ergonomically-unfriendly environment, and a potential injury hazard from the heavy load of movable bricks. Such installations are also time-consuming and it can be difficult to perform quality control on the final assembly.
It has been suggested to preassemble portions of the inner refractory lining into rings, which are then installed inside the ladle. For example, U.S. Pat. No. 9,126,265, which is incorporated by reference herein, describes forming monolithic rings of refractory material having cutouts along the lower surface or in the inner face of the ring, and inserting a lifting device into these cutouts to lower the ring into the ladle. However, the inventors have determined that the state of the art of preassembled refractory rings can still be improved.
In a first exemplary aspect, there is provided a unitary refractory ring comprising: a sidewall forming a continuous closed loop about a center axis extending in an axial direction, the sidewall being spaced from the center axis in a radial direction that is perpendicular to the axial direction, and having an inner face facing towards the center axis, and an outer face facing away from the center axis, the inner face and the outer face extending in the axial direction between a lower axial face at a bottom of the sidewall, and an upper axial face at a top of the sidewall; and one or more lifting lugs distributed around the center axis and extending from the inner face towards the center axis at respective locations along the axial direction between the lower axial face and the upper axial face, each of the one or more lifting lugs comprising a lower lug face extending radially towards the center axis from the inner face, and a backing structure extending upwards along the axial direction from the lower lug face towards the upper axial face.
In some exemplary aspects, the closed loop forms a circle as viewed along the axial direction.
In some exemplary aspects, at least a portion of the inner face or the outer face extends parallel to the axial direction to form a cylindrical shape.
In some exemplary aspects, at least a portion of the inner face or the outer face extends at an angle to the axial direction to form a frustoconical shape.
In some exemplary aspects, the outer face is dimensioned and shaped to match the size and shape of a corresponding outer liner of a ladle refractory lining.
In some exemplary aspects, the outer face is dimensioned and shaped to match the size and shape of a corresponding outer liner of a ladle refractory lining with a predetermined gap between the outer face and the outer liner.
In some exemplary aspects, each lower lug face extends orthogonally to the axial direction.
In some exemplary aspects, each lower lug face extends perpendicular to a portion of the inner face adjacent to the respective lower lug face.
In some exemplary aspects, the one or more lifting lugs comprises two or more lifting lugs.
In some exemplary aspects, the one or more lifting lugs comprises three or more lifting lugs.
In some exemplary aspects, the one or more lifting lugs comprises four or more lifting lugs.
In some exemplary aspects, the one or more lifting lugs comprises a plurality of lifting lugs distributed equidistantly around the center axis.
In some exemplary aspects, the backing structure of at least one lifting lug comprises a first portion adjacent to the lower lug face that extends a first distance from the inner surface, and a second portion between the first portion and the upper axial face that extends a second distance from the inner surface, the second distance being less than the first distance.
In some exemplary aspects, the first portion and the second portion extend parallel to a portion of the inner surface that is adjacent to the at least one lifting lug to thereby form a stepped structure.
In some exemplary aspects, the first portion comprises at least one first refractory brick partially embedded in the sidewall, and the second portion comprises at least one second refractory brick partially embedded in the sidewall.
In some exemplary aspects, at least one lifting lug comprises at least one first refractory brick that extends in the radial direction from a respective embedded end that is embedded in the sidewall to a respective cantilevered end that extends a first distance from an adjacent portion of the inner face of the sidewall to form the backing structure.
In some exemplary aspects, the embedded end of the refractory brick extends to and is flush with the outer face of the sidewall.
In some exemplary aspects, the lower lug face comprises a lower surface of the cantilevered end.
In some exemplary aspects, the sidewall comprises a monolithic structure to which the at least one first refractory brick is attached.
In some exemplary aspects, the sidewall comprises a plurality of second refractory bricks to which the at least one first refractory brick is attached.
In some exemplary aspects, the at least one refractory brick comprises a different refractory composition than the plurality of second refractory bricks.
In some exemplary aspects, at least one lifting lug comprises: one or more lower lug bricks extending a first distance from the inner surface; and one or more upper lug bricks located between the one or more lower lug bricks and the upper axial face, extending a second distance from the inner surface, with the one or more upper lug bricks being in contact with at least one of the one or more lower lug bricks.
In some exemplary aspects, the second distance is less than the first distance.
In some exemplary aspects, the one or more lower lug bricks comprises two lower lug bricks, and the one or more upper lug bricks comprises three upper lug bricks.
In some exemplary aspects, the sidewall and the one or more lifting lugs comprise a plurality of connected refractory bricks.
In some exemplary aspects, at least one lifting lug is monolithically formed with the sidewall.
In another exemplary aspect, there is provided a unitary refractory ring formed by interconnected refractory bricks, the unitary refractory ring comprising: a lower brick layer defined by a ring of lower bricks arranged at a first distance from a center axis; a lifting brick layer located above the lower brick layer with respect to an axial direction parallel to the center axis, the lifting brick layer being defined by: one or more lifting layer sidewall bricks arranged in one or more groups at a second distance from the center axis, and one or more lug bricks arranged in one or more groups at a third distance from the center axis, wherein the third distance is less than the second distance and the first distance, and wherein each of the one or more groups of lug bricks is located adjacent to a respective one of the one or more groups of lifting layer sidewall bricks; and an upper brick layer located above the lifting brick layer with respect to the axial direction, the upper brick layer being defined by a ring of upper bricks arranged at a fourth distance from a center axis.
In some exemplary aspects, the first distance is less than the second distance, and the second distance is less than the fourth distance.
In some exemplary aspects, the unitary refractory ring further comprises a backing brick layer located between the lifting brick layer and the upper brick layer, the backing brick layer being defined by: one or more backing layer sidewall bricks arranged in one or more groups at a fifth distance from the center axis; and one or more backing bricks arranged in one or more groups at a sixth distance from the center axis; wherein the sixth distance is less than the fifth distance, and greater than the third distance; and wherein each of the one or more groups of backing bricks are located adjacent to a respective one of the one or more groups of backing layer sidewall bricks and in direct contact with at least one of the one or more lug bricks.
In some exemplary aspects, the one or more lifting layer sidewall bricks comprises a plurality of lifting layer sidewall bricks arranged in two or more groups at the second distance from the center axis, the one or more lug bricks comprises a plurality of lug bricks arranged in two or more groups at the third distance from the center axis, and each of the two or more groups of lug bricks is located between a respective two of the two or more groups of lifting layer sidewall bricks.
In some exemplary aspects, the unitary refractory ring further comprises a backing brick layer located between the lifting brick layer and the upper brick layer, the backing brick layer being defined by: a plurality of backing layer sidewall bricks arranged in two or more groups at a fifth distance from the center axis; and a plurality of backing bricks arranged in two or more groups at a sixth distance from the center axis; wherein the sixth distance is less than the fifth distance, and greater than the third distance; and wherein each of the two or more groups of backing bricks are located between a respective two of the two or more groups of backing layer sidewall bricks and in direct contact with at least one of the plurality of lug bricks.
In some exemplary aspects, the lower bricks have a first thickness as measured along a radial direction that is orthogonal to the center axis, and the refractory ring further comprises: a bottom brick layer defined by a ring of bottom bricks arranged below and connected to the lower brick layer, wherein the bottom bricks have a second thickness as measured along the radial direction, the second thickness being greater than the first thickness.
In some exemplary aspects, the upper bricks have a third thickness as measured along a radial direction that is orthogonal to the center axis, and the refractory ring further comprises: a top brick layer defined by a ring of top bricks arranged above and connected to the upper brick layer, wherein the top bricks have a fourth thickness as measured along the radial direction, the fourth thickness being greater than the third thickness.
In another exemplary aspect, there is provided a method for assembling a unitary refractory ring, the method comprising: forming a lower brick layer defined by a ring of lower bricks arranged at a first distance from a center axis; forming a lifting brick layer located above the lower brick layer with respect to an axial direction parallel to the center axis, the lifting brick layer being defined by: one or more lifting layer sidewall bricks arranged in one or more groups at a second distance from the center axis, and one or more lug bricks arranged in one or more groups at a third distance from the center axis, wherein the third distance is less than the second distance and the first distance, and wherein each of the one or more groups of lug bricks is located adjacent to a respective one of the one or more groups of lifting layer sidewall bricks; forming an upper brick layer located above the lifting brick layer with respect to the axial direction, the upper brick layer being defined by a ring of upper bricks arranged at a fourth distance from a center axis; and joining the lower bricks, lifting layer sidewall bricks, lug bricks and upper bricks together to form a unitary structure.
In some exemplary aspects, the first distance is less than the second distance, and the second distance is less than the fourth distance.
In some exemplary aspects, each group of lug bricks comprises at least two refractory bricks.
In some exemplary aspects, forming the lower brick layer comprises individually laying each lower brick at a respective location; forming the lifting brick layer comprises individually laying each lifting layer sidewall brick and lug brick at a respective location; forming the upper brick layer comprises individually laying each upper brick at a respective location; and joining the lower bricks, lifting layer sidewall bricks, lug bricks and upper bricks comprises joining each individual one of the lower bricks, lifting layer sidewall bricks, lug bricks and upper bricks to one or more adjacent ones of the lower bricks, lifting layer sidewall bricks, lug bricks and upper bricks during individual laying of each of the lower bricks, lifting layer sidewall bricks, lug bricks and upper bricks at their respective location.
In some exemplary aspects, forming the lower brick layer comprises placing one or more groups comprising at least one of the lower bricks at a respective location and joining the lower bricks to form a unitary lower brick layer; forming the lifting brick layer comprises placing one or more groups comprising at least one of the lifting layer sidewall bricks and lug bricks at a respective location and joining the lifting layer sidewall bricks and lug bricks to form a unitary lifting brick layer; forming the upper brick layer comprises placing one or more groups comprising at least one of the upper bricks at a respective location and joining the upper bricks to form a unitary upper brick layer; and joining the lower brick layer, lifting brick layer and upper brick layer to form the unitary refractory ring.
In some exemplary aspects, the method further comprises: forming a backing brick layer located between the lifting brick layer and the upper brick layer, the backing brick layer being defined by: one or more backing layer sidewall bricks arranged in one or more groups at a fifth distance from the center axis, and one or more backing bricks arranged in one or more groups at a sixth distance from the center axis, wherein the sixth distance is less than the fifth distance, and greater than the third distance, and wherein each of the one or more groups of backing bricks are located adjacent to a respective group of backing layer sidewall bricks and in direct contact with at least one of the one or more lug bricks; and joining the backing bricks and backing layer sidewall bricks to one or more of the lower bricks, lifting layer sidewall bricks, lug bricks and upper bricks together to form a unitary structure.
In another exemplary aspect, there is provided a refractory ring system comprising: a first unitary refractory ring comprising: a first sidewall having a first inner face forming a continuous closed loop about a first center axis, the first sidewall being spaced from the first center axis and extending along the first center axis from a first sidewall lower edge to a first sidewall upper edge, wherein the first sidewall upper edge lies in a respective flat plane that is orthogonal to the first center axis, and a first group of one or more first lifting lugs distributed around the first center axis and extending from the first inner face towards the first center axis; a second unitary refractory ring comprising: a second sidewall having a second inner face forming a continuous closed loop about a second center axis, the second sidewall being spaced from the second center axis and extending along the second center axis from a second sidewall lower edge to a second sidewall upper edge, wherein the second sidewall lower edge lies in a respective flat plane that is orthogonal to the second center axis, and a second group of one or more second lifting lugs distributed around the second center axis and extending from the second inner face towards the second center axis; wherein the second sidewall lower edge is configured to mate with the first sidewall upper edge to form a first closed seam there between, with the second inner face flush with the first inner face at the first closed seam.
In some exemplary aspects, the first sidewall terminates at an upper surface that lies in the respective flat plane of the first sidewall upper edge, the second sidewall terminates at a lower surface that lies in the respective flat plane of the second sidewall lower edge, and the upper surface abuts the lower surface to form the first closed seam.
In some exemplary aspects, the first sidewall comprises at an upper radially-tapered surface that terminates at the first sidewall upper edge, the second sidewall comprises a lower radially-tapered surface that terminates at the second sidewall lower edge, and the upper radially-tapered surface abuts the lower radially-tapered surface to form the first closed seam.
In some exemplary aspects, each of the second lifting lugs comprises a respective lower lug face located between the second sidewall lower edge and the second sidewall upper edge.
In some exemplary aspects, each of the first lifting lugs comprises a respective lower lug face located between the first sidewall lower edge and the first sidewall upper edge.
In some exemplary aspects, the first sidewall lower edge lies in a respective flat plane that is orthogonal to the first center axis.
In some exemplary aspects, the first sidewall lower edge is configured to rest on a flat upper surface of a refractory ladle bottom.
In some exemplary aspects, the second sidewall upper edge lies in a respective flat plane that is orthogonal to the second center axis.
In some exemplary aspects, the refractory ring system further comprises: a third unitary refractory ring comprising: a third sidewall having a third inner face forming a continuous closed loop about a third center axis, the third sidewall being spaced from the third center axis and extending along the third center axis from a third sidewall lower edge to a third sidewall upper edge, wherein the third sidewall upper edge lies in a respective flat plane that is orthogonal to the third center axis, and a third group of one or more third lifting lugs distributed around the third center axis and extending from the third inner face towards the third center axis; wherein the third sidewall lower edge is configured to mate with the second sidewall upper edge to form a second closed seam therebetween, with the third inner face flush with the second inner face at the second closed seam.
In some exemplary aspects, the first sidewall is cylindrical and the second sidewall is cylindrical, and the first sidewall and the second sidewall have identical radial dimension.
In some exemplary aspects, the first sidewall tapers away from the first center axis from the first sidewall lower edge to the first sidewall upper edge, and the second sidewall tapers away from the second center axis from the second sidewall lower edge to the second sidewall upper edge.
In some exemplary aspects, at least one of: the one or more first lifting lugs comprises a first plurality of groups of one or more first lifting lugs; and the one or more second lifting lugs comprises a second plurality of groups of one or more second lifting lugs.
In another exemplary aspect, there is provided a method for assembling a refractory ring system, the method comprising: providing a first refractory ring comprising: a first sidewall having a first inner face forming a continuous closed loop about a first center axis, the first sidewall being spaced from the first center axis and extending along the first center axis from a first sidewall lower edge to a first sidewall upper edge, wherein the first sidewall upper edge lies in a respective flat plane that is orthogonal to the first center axis, and one or more first lifting lugs distributed around the first center axis and extending from the first inner face towards the first center axis; providing a second refractory ring comprising: a second sidewall having a second inner face forming a continuous closed loop about a second center axis, the second sidewall being spaced from the second center axis and extending along the second center axis from a second sidewall lower edge to a second sidewall upper edge, wherein the second sidewall lower edge lies in a respective flat plane that is orthogonal to the second center axis, and one or more second lifting lugs distributed around the second center axis and extending from the second inner face towards the second center axis, wherein the second sidewall lower edge is configured to mate with the first sidewall upper edge to form a first closed seam therebetween, with the second inner face flush with the first inner face at the first closed seam; placing the first refractory ring into a refractory ladle using the first plurality of lifting lugs; and placing the second refractory ring on top of the first refractory ring with the second sidewall lower edge in contact with the first sidewall upper edge to form the first closed seam.
In some exemplary aspects, placing the second refractory ring on top of the first refractory ring is performed with the second refractory ring at an arbitrary angular orientation about the second center axis.
In some exemplary aspects, the second sidewall upper edge lies in a respective flat plane that is orthogonal to the second center axis, and the method further comprises: providing a third refractory ring comprising: a third sidewall having a third inner face forming a continuous closed loop about a third center axis, the third sidewall being spaced from the third center axis and extending along the third center axis from a third sidewall lower edge to a third sidewall upper edge, wherein the third sidewall upper edge lies in a respective flat plane that is orthogonal to the third center axis, and one or more third lifting lugs distributed around the third center axis and extending from the third inner face towards the third center axis, wherein the third sidewall lower edge is configured to mate with the second sidewall upper edge to form a second closed seam therebetween, with the third inner face flush with the second inner face at the second closed seam; and placing the third refractory ring on top of the second refractory ring with the third sidewall lower edge in contact with the second sidewall upper edge to form the second closed seam.
In some exemplary aspects, placing the third refractory ring on top of the second refractory ring is performed with the third refractory ring at an arbitrary angular orientation about the third center axis.
In some exemplary aspects, at least one of: the one or more first lifting lugs comprises a first plurality of groups of one or more first lifting lugs; the one or more second lifting lugs comprises a second plurality of groups of one or more second lifting lugs; and the one or more third lifting lugs comprises a third plurality of groups of one or more third lifting lugs.
The following drawings are provided to help explain embodiments described herein, and are not intended to limit the scope of the appended claims. Like reference numbers refer to like features.
Embodiments described herein provide examples of inventions relating to refractory rings, refractory ring systems, and methods for making and assembling the same. It will be understood that these examples are not intended to limit what is claimed, and modifications may be made to these examples without departing from the scope of the appended claims.
A first exemplary embodiment of a unitary refractory ring 100 is illustrated in
The refractory ring 100 has a sidewall 102 that forms a continuous closed loop about a center axis 104 that extends in an axial direction A. The sidewall 102 is spaced from the center axis 104 in a radial direction that is perpendicular to the axial direction A. The sidewall 102 has an inner face 106 that faces towards the center axis 104, and an outer face 108 that faces away from the center axis 104. The inner face 106 and the outer face 108 extend along the axial direction between a lower axial face 110 at the bottom of the sidewall 102, and an upper axial face 112 at the top of the sidewall 102. In the shown embodiment, the lower axial face 110 and upper axial face 112 are flat surfaces extending orthogonally to the center axis 104. While this is preferred, other embodiments of upper axial faces 112 and lower axial faces 110 may include other shapes, such as helical starter ramps for aligning helical rows of bricks.
As shown in
The inner face 106 and outer face 108 also may have any operable shape with respect to the axial direction A. In the example of
In a typical case, the outer face 108 of the refractory ring 100 preferably is dimensioned and shaped to fit within a corresponding outer refractory liner of a ladle to form a conventional two-layer ladle lining. The outer face 108 may be dimensioned and shaped to contact the outer refractory liner at one or more locations, or it may be dimensioned and shaped to be spaced from the outer refractory liner, with a predetermined gap between the outer face 108 and the outer refractory liner. The provision of such a gap permits an intermediate material (e.g. bonding or packing material, intermediate insulating material, and so on) to be placed between the refractory ring 100 and the outer refractory liner. The gap also helps assure that the ring 100 can be properly fit within the outer refractory liner if the dimensions of the outer refractory liner are outside expected specifications.
The refractory ring 100 also includes lifting lugs 114 distributed around the center axis 104, which are used for lifting and moving the refractory ring 100. Each lifting lug 114 extends from the inner face 106 towards the center axis 104, and has a lower lug face 116 and a backing structure 118 extending upwards along the axial direction A from the lower lug face 116 towards the upper axial face 112. As best shown in
As shown in
In the example of
As best shown in
Exemplary geometric relationships between the different bricks in the different layers are illustrated in
As shown in
The particular geometry of the lower lug face 116 may be selected as necessary to engage an associated lifting device. For example, each lower lug face 116 may be flat and lie in a plane that extends orthogonally to the axial direction A. In the embodiment of
The embedded end 120′ of the lug brick 120 may extend to be flush with the outer face 108 of the sidewall 102, such as shown in
The first distance R1, second distance R2 and fourth distance R4 may be selected to provide different ring profile shapes. In the example of
The exemplary backing brick layer C is located between the lifting brick layer B and the lowermost upper brick layer D. The backing brick layer C is defined by a plurality of backing layer sidewall bricks 130 arranged in two or more groups at a fifth distance R5 from the center axis 104, and a plurality of backing bricks 122 arranged in two or more groups at a sixth distance R6 from the center axis 104. Each group of backing bricks 122 is located between a respective two groups of backing layer sidewall bricks 130. The backing bricks 122 are in direct contact with at least one of the plurality of lug bricks (i.e., brick-to-brick contact or contact via an adhesive or bonding layer). Thus, the backing bricks 122 buttress the lug bricks 120 against vertical loads.
The sixth distance R6 is less than the fifth distance R5, and greater than the third distance R3. Thus, each backing brick 122 extends radially inward from the adjacent backing layer sidewall bricks 130, but does not extend inward as far as the lug bricks 120. In this configuration, each lug 114 is formed by a connected group of lug bricks 120 and backing bricks 122. The lug bricks 120 form a lower portion of the lug backing structure 118. This lower portion extends upwards from the lower lug face 116, and inwards a first distance (R3-R1) from a lower adjacent portion of the inner surface 106. The backing bricks 122 form an upper portion of the lug backing structure 118, and this second portion extends a second distance from the inner surface, with the second distance being less than the first distance. The radially-innermost portions of the first portion formed by the lug bricks 120 and the second portion formed by the backing bricks 122 are parallel to adjacent portions of the inner surface 106, to thereby form a backing structure 118 having a stepped shape, as shown in
The configuration of lug bricks 120 and backing bricks 122 may be selected to enhance the load-bearing capacity of the lug 114. For example, in the shown embodiment, each group of backing bricks 122 is centered on the adjacent group of lug bricks 120, and subtends a larger angle, as viewed along the axial direction A, than the adjacent group of lug bricks 120. Such an arrangement can be readily formed by, for example, positioning three backing bricks 122 over two lug bricks 120, with each lug brick 120 contacting two adjacent backing bricks 122. Thus, the backing bricks 122 are positioned to distribute vertical forces applied to the lower lug face 116 both vertically and laterally to spread such loads across a greater number of upper layer bricks 130. In other cases, multiple backing brick layers C may be vertically stacked, with the respective backing bricks 122 of each layer being positioned to buttress the backing bricks 122 of the lower layer against vertical loads. Other alternatives and variations will be apparent to persons of ordinary skill in the art in view of the present disclosure.
The embodiment of
Two further variations on unitary refractory rings 100 are illustrated in
In the embodiment of
In the example of
Referring now to
It will be appreciated that all of the foregoing variations may be used in any suitable combination with each other. For example, a ring 100 formed of laid bricks, such as shown in of
Refractory rings 100 as discussed herein may be used in place of all or a portion of a conventional inner refractory lining formed by assembling individual bricks in place within the ladle itself. This allows more convenient, and potentially safer, assembly of the inner refractory liner, and can increase the replacement and repair speed. It is anticipated that multiple refractory rings 100 may be used in a single ladle. Such refractory rings 100 may be identical to each other, or have different constructions.
An example of a ladle 138 having multiple refractory rings 100a, 100b, 100c is shown in
Each refractory ring 100 comprises a unitary structure having a respective sidewall 102 with a respective inner face 106 forming a continuous closed loop about a center axis 104. Each sidewall 102 is spaced from a center axis 104 and extends along the respective center axis 104 from a respective lower edge 110 to a respective upper edge 112. Each refractory ring 100 also includes a respective plurality of lifting lugs 114 distributed around the center axis 104 and extending from the respective inner face 106 towards the center axis 104.
The upper edge 112a of the first refractory ring 100a is configured to abut the lower edge 110b of the second refractory ring 100b to form a closed seam 146. Where a third refractory ring 100c is provided, the upper edge 112b of the second refractory ring 100b may be configured to abut the lower edge 110c of the third refractory ring 100c to form another closed seam 148. The closed seams 146, 148 may be filled with an epoxy adhesive or mortar to secure the first refractory ring 100a to the second refractory ring 100b, but this is not strictly required.
Similarly, the lower edge 110a of the first refractory ring 100a may rest directly on an upper surface 150 the refractory ladle bottom 144, and the upper edge 112c of the third refractory ring 100c (or the upper edge 112b of the second refractory ring 100b, if there is no third refractory ring 100c) may be configured to abut the stack of slag line bricks 152. The slag line bricks 152 may be provided as another unitary refractory ring, but more preferably are laid in place after the final refractory ring 100 is installed, due to the fact that incorporating protruding lifting lugs 114 into the slag line region could negatively affect fluid flow and might degrade rapidly during use.
The refractory rings 100 preferably are configured such that they can be connected to each other, and optionally also with the ladle bottom 144 and slag line bricks 152, in any relative angular orientation. For example, the upper edges 112 and lower edges 110 may lie in respective flat planes that are orthogonal to the center axis 104, such as shown in
An alternative arrangement is shown in
The embodiment of
Refractory ring systems, such as shown in
During assembly, one or more of the first refractory ring 100a, second refractory ring 100b, and third refractory ring 100c may be installed at an arbitrary angular orientation about the center axis 104, thus simplifying and accelerating the installation process.
Embodiments of refractory rings 100 may be constructed using any suitable methods. For example, the refractory ring 100 of
The bricks may comprise any suitable refractory materials, provided the materials, as assembled, have sufficient integrity to hold the refractory ring 100 in a unitary state during lifting and movement of the refractory ring 100 by the lugs 114. Similarly, the bricks forming the lugs 114 may include any refractory material having a modulus of rupture sufficient to prevent the material, as assembled, from breaking during lifting. The bricks also may comprise combinations of different refractory materials, such as by using one type of material for the lugs 114, and another type of material for the remaining bricks. A variety of different refractory materials are known in the art, and the selection of an appropriate material will be within the skill of the person of ordinary skill in the art without undue experimentation.
The bricks may be connected using any suitable adhesive, epoxy, mortar or the like, provided the connection has sufficient strength to allow the entire refractory ring 100 to be lifted and moved by the lugs 114. Such bonding materials are known in the art, and need not be described in detail herein. In one embodiment, the epoxy or other bonding material has shear strength that is equal to or greater than the shear strength of the bricks. The brick connecting process may be selected according to the bonding material. For example, when mortar is used, each brick may be dipped in a bath of the mortar or brushed with mortar prior to laying. As another example, when an epoxy bonding material is used, the epoxy may be injected in place on each brick as it is laid, and/or on previously-laid bricks to which the next brick is going to be placed. Other alternatives and variations will be apparent to persons of ordinary skill in the art in view of the present disclosure.
In one preferred embodiment, the bricks all have a similar truncated wedge-shaped construction, with the two converging sides of the wedge shape being oriented along lines that converge at a predetermined distance from the brick. Thus, the bricks can be laid with their converging sides adjacent each other to form a ring of a predetermined size. The ring size can be modified by changing the orientation of the wedge angle, or by laying the bricks with slight gaps between them to change the overall diameter of the ring. As shown in
It is expected that embodiments as described herein will provide significant benefits in facilitating the assembly of unitary refractory rings, and the installation of unitary refractory rings into a ladle. When manufactured from individual bricks, the shape and size of the refractory ring 100 can be readily adjusted as necessary to fit different installation requirements. The use of individual bricks also allows the use of different bricks in different locations, as needed to address different operating conditions (e.g., different bricks at the slag line or as the lug bricks). The use of lifting lugs that project radially inwards removes the need for creating openings in the sidewall to receive a lifting mechanism, and this helps reduce the generation of stress in the sidewall and avoids creating pockets of inhibited flow where molten metal can recirculate in isolation from the remaining contents of the ladle. Other benefits will be apparent from this disclosure and practice of embodiments.
The present disclosure provides examples of embodiments of unitary refractory rings and methods for making them and assembling them into ladles. It will be appreciated that embodiments may be modified in various ways, such as described herein or as might otherwise be determined during practice, and such modifications are intended to be included within the scope of this disclosure. Features of any given embodiment described herein may be used in isolation from other features of that embodiment, or in combination with features of other embodiments. Other alternatives and variations will be apparent to persons of ordinary skill in the art in view of the present disclosure.
Number | Date | Country | |
---|---|---|---|
63121582 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17534708 | Nov 2021 | US |
Child | 18140766 | US |