The present invention relates to a refrigerating apparatus, particularly a household refrigerator, having a liquid-supply system.
Certain refrigerating apparatuses, and in particular some types of household refrigerators, are equipped with a dispenser of a generic consumable product with a liquid base, such as a beverage, water or ice cubes.
In the case of a dispenser of liquid products, the supply means typically comprise a tank for the liquid itself, from which there branches off a pipe that terminates in a dispenser with nozzle, the latter projecting in the top part of a compartment made in a door of the refrigerator. Also the tank is typically located in the door of the refrigerator, so as to find itself in a position corresponding to one of its compartments, so that the liquid accumulated may be constantly kept at a relatively low temperature. Along the aforesaid pipe, provided between the tank and the nozzle dispenser is a valve of a normally-closed type, which may be controlled via a suitable control means, such as a lever or a push-button set within or in the proximity of the aforesaid compartment. In order to deliver the liquid product, a user positions a container within the aforesaid compartment, underneath the nozzle, and actuates the control means, which thus enables opening of the delivery valve.
The tank can be conceived for manual or else automatic topping-up. In the first case, the tank is equipped with an opening for filling, possibly provided with a plug, through which the user has the possibility of periodically pouring of the new water or other liquid into the tank. In the second case, the tank is instead equipped with a respective supply pipe, connected to a domestic water system. Provided along the aforesaid supply pipe is a solenoid valve, and operatively associated to the tank is a level sensor, for example, of the floating type. In said embodiment, when the sensor detects the reduction in the level of the water in the tank below a minimum threshold, the control system of the refrigerator enables opening of the solenoid valve, in order to allow fresh water to come into the tank, through the supply pipe. The solenoid valve is then brought back into a closed condition when the level of the water in the tank rises beyond a maximum threshold, detected by means of the aforesaid sensor.
Also some ice dispensers for refrigerators are equipped with a container for accumulating water, which can be topped up manually or connected to the domestic water system, said container forming part of a device for the formation of ice. In some cases, the system further comprises delivery means for dispensing the ice cubes formed in the aforesaid device, said system being set in an area where the ice cubes can be taken out.
The main purpose of the present invention is to provide a refrigerating apparatus, particularly a household refrigerator, comprising a liquid-supply system, which is of increased operativeness and safety as compared to the prior art of the sector.
The above and other purposes still, which will emerge clearly hereinafter, are achieved according to the present invention by a refrigerating apparatus, particularly a household refrigerator, having the characteristics referred to specifically in the annexed claims, which form an integral part of the descriptive content of the present patent application.
The characteristics and advantages of the present invention will emerge clearly from the ensuing detailed description and from the annexed plate of drawings, which are provided purely by way of explanatory and non-limiting example, and in which:
In the figures, the reference number 1 designates as a whole a refrigerating apparatus provided according to the invention. In the case exemplified, the apparatus in question is a domestic refrigerator of a combined type with double door.
The refrigerator 1 comprises a cabinet 2, defining an upper compartment 3, for example, for conservation of fresh foodstuffs, and a lower compartment 4, for example, for freezing foodstuffs. Hinged in a known way to the cabinet 2 are an upper door 5 and a lower door 6, respectively for the upper compartment 3 and lower compartment 4. The structure of the cabinet 2 is of a generally known type, and hence will not be described in detail in what follows. It should also be noted that in the figures just the elements of the refrigerator 1 strictly necessary for an understanding of the invention are represented. For this reason, for example, in
The refrigerator 1 comprises an arrangement for dispensing beverages, part of which is designated as a whole by 7 in
With the door 5 closed, the tank 12 is in a position corresponding to the compartment 3, so that the water contained in the tank itself may be kept cool, i.e., at a relatively low temperature. For the purposes of delivery, a user must position a container, such as a glass, in the compartment 8 and shift the lever 10, with the consequent opening of the valve of the dispenser 9 and hence outlet of water from its nozzle. In said step, the tray 11 has the function of collecting any water that may overflow from the aforesaid container or that occasionally does not reach it after being delivered from the nozzle. The tray 11 may possibly be removable in order to enable manual emptying-out, for example, into a sink, of the water possibly collected thereby, and/or for periodic cleaning.
In the case exemplified, the refrigerator 1 is connected to a line for external water supply, in order to enable topping-up of the tank 12 with water. For this purpose, connected to a tap or generic attachment 13 of the domestic drinking-water system, is a supply device, designated as a whole by 20. According to an important aspect of the present example of embodiment of the invention, the aforesaid device 20 is configured to form part of a system of protection against flooding of the refrigerator 1, aimed at preventing possible damage deriving from malfunctioning or failure of the liquid-supply system or of the aforesaid dispenser arrangement.
Designated by 25 is a corrugated outer tube, which encloses the tube 24 and has the function of collecting the leakage water in the case of failure of the tube 24. In the gap 26 formed between the tubes 24 and 25 there moreover extend electrical conductors, one of which designated by 27, for supply of the valve 21. In the example illustrated in
Illustrated schematically in
The refrigerator 1 is equipped with a refrigerating unit of a type in itself known, comprising an evaporator, represented schematically in
Provided according to an example of the invention is a basin or intermediate tray, designated by 32, having a side portion shaped to provide a first seat 32a, positioned within which is the open end of the corrugated outer tube 25 of the device 20 (the other end of the tube 25 is closed in a sealed way, with respect to the coating 22 of the device). The inner tube 24 of the device 20 proceeds instead beyond the aforesaid open end of the outer tube 25 and is connected, via a connector in itself known, to a tubing 24a, preferably integrated in the refrigerator 1, where the aforementioned connector and at least part of the tubing 24a extend above the tray 32 (see, for example,
Provided in a position corresponding to the stretch that extends between the cabinet 2 and the door 5 is a device in itself known for protection and guiding of the tubing 24a, for example, of the bellows type or else of the type integrated in a hinge of the door 5 (see, for example, EP-A-1 191 289). At least in a position corresponding to said device, the tubing 24a may be flexible. Preferably, said protection and guide elements for the tube are shaped for collecting or conveying any possible leakage of the liquid in said area.
From
Positioned underneath the tank 12 is a tray 33, equipped with a respective union 33a for the first end of a tubing 34. Also said union 33a can possibly be inserted in a separable way, so as to enable removal of the tray 33. Part of the tubing 34 extends within the door 5, and then passes into the cabinet 2, via a protection and guide device similar to the one provided for the tubing 24a, and finally drops as far as the tray 32. For this purpose, the latter is equipped with a third side portion, shaped to provide a seat 32c for positioning the terminal stretch of the tubing 34, which opens onto the tray itself.
In the example of embodiment of
As emerges from
From the above figures, it may be moreover noted how the tray 31 is equipped with a respective discharge tube 31a that terminates within the bottom tray 36.
Operating within the intermediate tray 32 is a detector device, comprising a sensor means for detecting the presence of liquid, with a respective control means. In the case exemplified, the sensor means comprises a float element 37, operative for producing switching of a microswitch 38, which embodies the aforesaid control means and is an active part of the control system of the refrigerator 1. The detection device including the float 37 and the microswitch 38 is calibrated for detecting the presence, within the tray 32, of a volume of liquid considered potentially dangerous, as will emerge hereinafter.
The trays 32, 36 are positioned in a base of the cabinet 2, arranged for the purpose, or underneath the compartment 4.
Once again in
In the aforesaid figures, as likewise in the subsequent ones, the wiring for electrical connection of the various elements to the control system of the refrigerator 1 have not been represented for requirements of greater clarity and in so far as they are of a type in itself known.
As already explained, for the purposes of delivery of cool water, a user positions a glass or other container in the compartment 8, underneath the nozzle of the dispenser 9, and then displaces the control lever 10. This brings about opening of the valve of the dispenser so that the refrigerated water can come out of the respective nozzle. The tank 12 is equipped with a level controller (for example, governed by a float with a magnet and reed sensor, or else of an optical type, or again of a pressure-switch type, etc.), arranged for controlling topping-up of the water in the tank itself. In particular, the aforesaid controller is arranged for detecting dropping of the level of the water in the tank 12 below a predetermined minimum threshold, so that the control system of the refrigerator 1 will consequently enable opening of the valve 21 of the supply device 20. In this way, water coming from the water system can reach the tank 12, via the tube 24 and the tubing 24a, in order to enable it to be topped up. Next, the controller detects that the level of water in the tank 12 exceeds a predetermined maximum threshold, and the control system consequently issues a command for closing of the valve 21 of the supply device 20.
The condensate, for example produced by heating of the evaporator 30 during a defrosting cycle of the refrigerator 1, can be collected by the tray 31. The amount of said liquid is typically modest and can usually evaporate in a relatively short time. For this purpose, the tray 31 can conveniently be positioned at least in part on a compressor of the refrigerating system, which normally generates heat, in order to facilitate the aforesaid evaporation. In such a perspective, the discharge tube 31a of the tray 31 can function as overflow pipe. In other words, the inlet of the tube 31a can be positioned to determine a pre-defined maximum level of filling of the tray 31, upon overstepping of which the excess of condensate that drops back into the tray 31 can pass to the bottom tray 36. It may be noted that said condition must, on the other hand, be considered extremely rare, considering that the volume of condensate that may be generated and accumulate in the course of operation of a refrigerator is very modest. In this regard, it is also pointed out that, in a possible variant, the tray 31 can be omitted in order to exploit the tray 32 and/or the tray 36 directly for collecting the condensate liquid.
Also the water possibly collected in the small tray 11 of the arrangement for dispensing beverages 7 is conveyed, via the tubing 35, into the bottom tray 36. Also said amount of liquid is normally very modest in so far as it is basically due to occasional minor overflow of water from the containers that are each time set in the compartment 8 of
The tray 33 has the function of collecting any possible leakage of water from the tank 12, due, for example, to failure or malfunctioning thereof or of its connectors 12a, 12b. The tank 12 and the tray 33 are moreover arranged for collecting any outflow of water in the case of any failure or malfunctioning of the level controller of the tank itself, or else of the supply device 20. Suppose, for example, that at the end of topping-up with water, carried out with the previously described modalities, a malfunctioning of the level controller of the tank 12 were to occur, with consequent absence of control of closing of the valve 21 of the supply device 20. In said eventuality, the supply-system water would continue to flow into the tank 12, well beyond its normal threshold of filling, with subsequent overflowing and flooding of the inside of the refrigerator 1. Similar consequences would be encountered in the case where the valve 21 of the device 20 were to remain blocked in the opening condition. For said types of failure, according to the invention, the tank 12 can be equipped with an overflow outlet, designated as a whole by 12d in
Irrespective of the reasons for leakage or outflowing of water from the tank 12, the water is collected by the tray 33 and conveyed therefrom, via the tubing 34, within the intermediate tray 32. The detection device constituted by the float 37 and the microswitch 38 is arranged so that, in the case where the amount of leakage water collected in the tray 32 exceeds a predetermined level, the control system of the refrigerator 1 brings about closing of the solenoid valve 21 of the device 20 and possibly opening of the solenoid valve 41 and start-up of the discharge pump 40.
In a first possible embodiment, the detection device 37, 38 can be calibrated for detecting a minimum level of leakage liquid, activating immediately closing of the valve 21 of the device 20 to prevent inflow of further water into the tank 12. In the case of malfunctioning of said valve 20, or of its failure to close, the further leakage water collected in the tray 32 overflows from the latter to the tray 36, where additional detection means can be provided, conceptually similar to the ones designated by 37 and 38, which bring about opening of the solenoid valve 41 and start-up of the discharge pump 40. In this way, the water can be evacuated from the tray 36 via the discharge pipe 39, towards the sewage system.
In a second possible embodiment, the detection device 37, 38 can be calibrated for detecting the level of overflowing of the water from the intermediate tray 32 to the bottom tray 36. In this way, the water that overflows from the tray 32 to the tray 36 can be immediately evacuated from the latter via the discharge pipe 39, towards the sewage system. At the same time, closing of the valve 21 of the device 20 is aimed at preventing inflow of further water into the tank 12.
It should be pointed out that in embodiments alternative to the one exemplified, the pump 40 and the solenoid valve 41 may not necessarily both be present. For example, in the case where the tray 36 is located at a greater height than the connector of the sewage system, the pipe 39 can be used for discharging by gravity the leakage liquid present in the tray itself, and hence without the aid of the pump 40, simply by opening the solenoid valve 41. The pump 40 is necessary in order to enable forced discharge via the tube 39 when the connector to the sewage system is located at a greater height than the tray 36.
In order to reduce further the risks deriving from possible malfunctioning of the valve 21, the device 20 can integrate also a similar additional safety valve, driven in closing following upon switching of the microswitch 38, actuated by the float 37. For preventing also flooding due to possible faults of the corresponding electronic control circuit, at least one of the valve 21 and the aforesaid additional safety valve could be connected directly to the detection and/or switching means 37, 38.
The protection system of the refrigerator 1 is moreover conceived for preventing possible flooding due to malfunctioning or failure of the supply device 20. In particular, the possible leakage water due to a failure of the tube 24 is conveyed, via the respective outer tube 25, in the intermediate tray 32, with the detection device 37-38 that operates in the same way just described above in order to activate, if necessary, the solenoid valve 41 and the discharge pump 40, as well as the valve 21 and/or the further safety valve provided in the device 20.
In accordance with a preferred variant embodiment, also the tubing 24a that supplies the tank 12 and/or the other tubings of the system can be enclosed in a respective channelling for collection and protection, for example, of conception similar to the corrugated outer tube 25 of the device 20 or in the form of a channel. In said variant, then, the possible leakage water due to a failure of at least one of said tubings, such as the tubing 24a, is conveyed by the respective outer channelling into the tray 32, or other seat for collecting designed for the purpose, with an operation similar to the one described above. The aforesaid channelling for collection and protection could also be constituted at least in part by a shaped or box-like part of the structure of the refrigerator 1, such as, for example, a bent metal plate, which likewise should then be discharged in a purposely provided accumulation seat, such as the tray 32 and/or the tray 36. The channelling for collection and protection could also be provided by a sort of prolongation of the seats 32b, 32c, or else by other seats having a similar shape, which extend along the walls of the refrigerator 1 and in which the tubings are housed.
It should be emphasized that the provision of both of the trays 32 and 36 described previously is to be considered optional, in so far as the functions thereof could be obtained just via the tray 36, equipping the latter with respective positioning seats similar to the ones designated by 32a, 32b, 32c—for the tubes 24, 25 and the tubings 24a and 34—and positioning therein the detection device 37-38, calibrated for detecting exceeding of a predetermined level of liquid, for the purposes of control of the solenoid valve 41 and/or of the discharge pump 40, as well as of the valve or valves provided in the device 21. The aforesaid pre-set level will be preferably higher than the typical level of the condensate water that can reach the tray 36 from the tray 31.
As may be seen, in particular, in
As may be seen particularly in
In
The body of the connector 45 has an inner cavity, designated as a whole by 47, with a bottom wall 48 having a passage, in a position corresponding to which is formed a hollow projection 49, projecting outwards. Fixed in a known way, for example, via clinching of a metal ring 50, on said projection 49 is the end of a tubing 24a for supply of a tank 12 (see for reference
Branching off moreover from the wall 48 towards the inner cavity of the body part 45b, is a cylindrical wall 51, defining a cylindrical seat 52, which communicates with the cavity 49a of the projection 49. Radial reliefs 53 extend between the cylindrical wall 51 and the outer cylindrical wall of the body portion 45b.
The cavity part of the connector 45 that surrounds the wall 51, designated by 47a in
The male connector 46 has a main body made of insulating material having a substantially prismatic part 46a and a substantially cylindrical part 46b (visible just in
The body portion 46b has a cylindrical peripheral wall 61, equipped on the outer side with at least one gasket 62 designed to co-operate in a sealed way with the inner surface of the body portion 45b of the female connector 45. Formed on the inner side of the wall 61, in the terminal stretch thereof, are ribbings or reliefs 63 with inclined ends. Once again formed on the inner side of the wall 61, in an intermediate stretch, are engagement tabs 64 (see
After fixing of the tube 24, the insert 65 is fitted by snap action within the body portion 46b of the connector 46, so that the inclined front surface of the radial tabs 66 comes to bear upon the inclined homologous surface of the ribbings or reliefs 63, said insertion thus also bringing about elastic engagement of the engagement tabs 64 on the step or engagement seat 65c of the insert itself. The insert 65 is then blocked in position within the body portion 46b of the connector 46, so that between the insert 65 with the tube 24 and the cylindrical wall 61 of the body portion 46b there is formed a gap 69.
It may be noted that between said cylindrical wall 61 and insert 65 there are in any case defined longitudinal passages, one of which is designated by 70 in
Formed in the portion 46a of the body of the male connector 46 is a cavity 71, which communicates directly with the gap 69. Terminating within the cavity 71 is the outer tube 25 of the device 20, on which an elastic element 72 is fitted, for example, made of rubber. Said elastic element 72 operates in a sealed way, on one side, on the tube 25 and, on the other side, with respect to surfaces that delimit the cavity 71, in particular on the internal surface of the portion 46a. The seal element 72 is then equipped with one or more auxiliary passages for the cable or the conductors 27 that traverse the inside of the gap 26 formed between the tubes 24 and 25 of the device 20. Each auxiliary passage has a size and/or shape such as to obtain an elastic grip on the respective cable or conductor 27; for example, it may be shaped like a hole with a diameter smaller than the diameter of said cable or conductor. As may be noted in
The connector 46 is completed with a closing lid 74, fitted on the open end of the body portion 46a.
For the purposes of coupling, the male connector 46 is inserted in the female connector 45, so that:
The mechanical fixing between the parts can be further improved by providing, between the male and female connectors 45, 46, appropriate means of engagement/release of a type in itself known (for example, elastic tabs with teeth for engagement on one connector, and respective seats for engagement on the other connector), designed to guarantee mutual coupling of the connectors themselves, for example, such as to withstand the force exerted by the pressure of the water or accidental tensile forces exerted on the tube 25.
The arrangement is such that, in the coupled condition of the connectors 45-46;
As may be seen, then, the system of connectors described is such as to guarantee the presence of two distinct hydraulic pipes, one provided for flow of the normal water for direct supply to the refrigerator 1, and the other provided for collection and conveyance of possible water leaking from the tube for supply 24.
As has been said, the conductors 57 associated to the terminals 56 are connected to an electrical supply circuit, of a type in itself known, governed by the control system of the refrigerator 1 for the purpose of providing, when required, a supply voltage, via the conductors 27 of the device 20, to the solenoid valve 21 of the latter. It may be noted that the connectors 45, 46 can, if need be, comprise terminals in addition to the ones for supply and/or control of the device 20, such as terminals connected to other wires or cables coming under sensors, associated to the device 20 and connected to the circuit for control of the refrigerator. In such a perspective, for example, the device 20 can comprise a turbine flow sensor, designated by 21a in
In the case where it is becomes necessary to top up the tank 12, the control system of the refrigerator 1 enables supply of the solenoid valve 21 of the device 20, via the conductors 57, 27 and in the ways and times necessary (see the foregoing description), with the water coming from the tube 24 that can reach just the tubing 24a for supply of the tank 12. On the other hand, in the case of failure of the tube 24 of the device 20, the leakage water collected by the outer tube 25 may reach just the tube T, for being conveyed thereby within the tray 32 of
From what has been described with reference to
In a further possible embodiment, the means used for detecting the level of liquid collected within at least one of the trays of the system of protection against flooding of the apparatus can be at least partially integrated in the tray itself. For this purpose,
In
Made in the front wall of the tray 33 is a hollow housing, designated as a whole by 80, positioned within which is a sensor device, designated as a whole by 90. The housing 80 can advantageously be made of a single piece with the rest of the tray 33, preferably during moulding of a single piece, or else be configured as a distinct component, assembled on the tray, or again as a part overmoulded on the tray. Irrespective of the type of embodiment, at least part of the housing 80 is made of transparent material.
As may be seen in
Projecting from each wall 81, within the housing 80, are longitudinal reliefs 84, so as to form one or more positioning grooves 85.
The body 92 is conveniently equipped with means for positioning or for fast coupling with respect to the circuit 91, said means being designated by 96 in
For the purposes of operation of the detection system, the radiation in the form of light emitted by the emitter 93 reaches the wall 83a and traverses it. In the absence of water within the tray 33, or in the presence of a water level lower than the position of the components 93, 94, the radiation is reflected, substantially at right angles, from the wall 83a to the wall 83b, and then again reflected, once again at right angles, from the wall 83b as far as the receiver 94. Said reflection is due to the different index of refraction of the material constituting the prism-like portion 83 and of the medium that is located within the tray 33, i.e., air. It may be noted that the prism-like portion 83 and the sensor 90 are designed in a specific way so that, in the aforesaid condition (absence of water in the tray 33 at a level higher than the diodes 93, 94), the aforesaid reflection of radiation occurs as far as the receiver 94. In the condition described, then, the continuity of the signal detected by the receiver 94 represents, for the control system of the apparatus 1, the absence of a water-leakage level or a level that could be potentially harmful within the tray 33. Instead, in the presence of water in the tray 33 at a level higher than the position of the components 93, 94, at the interface between the water and the wall 83a there does not occur reflection at 90° of the radiation emitted by the diode 93, or such as to produce excitation of the photo-diode 94. In other words, supposing, for example, that the index of refraction of the material constituting the prism 83 is identical to that of water, the radiation emitted will proceed within the tray 33, through the water. In the case of non-identical indices of refraction between said material and water, the radiation may possibly be reflected, but in any case not in such a way as to enable excitation of the receiver 94.
The positioning in height of the sensor 90 within the respective housing 80 will be chosen as a function of the level considered critical. For this purpose, there could be provided a number of housings 80 in one and the same tray, or else a number of seats or positioning points at different heights within one and the same housing 80, to enable better pre-definition of an adjustment of the working position of the sensor, particularly in the stage of production or assembly of the device. In such a perspective, the printed circuit 91 can be appropriately shaped, for example, with side reliefs 91b (see
Also sensor means of a different type or of an optical type having a configuration different from the one exemplified in
Of course, sensor means of an optical type of the types described above or of some other type could be associated to the tray 32 or 36 of the refrigerator according to the invention, instead of the float detector 37, 38.
The system of protection against flooding referred to in the example of embodiment of
From the above description, it emerges how the invention enables prevention of any risk of flooding deriving from possible malfunctioning of a liquid-supply system that equips a refrigerating apparatus, particularly forming part of an arrangement for dispensing a liquid-based consumable product, such as a beverage, water, or ice cubes. On the other hand, according to an independent innovative aspect of the invention, the protection system described may be used to advantage in other apparatus having doors or hatches in which liquids are made to pass or are accumulated.
Other aspects of the invention that may be subject to independent protection are the integration of at least one part of an optical sensor (in particular an optical prism) in a tray or a basin for collecting leakage liquid of a system for protection against flooding, irrespective of the type of apparatus on which the latter is used, as well as a system of connectors for a refrigerating apparatus integrating a respective part of anti-flooding safety means.
The level sensor means associated to one or more of the trays of the protection system can also be of a type different from the one described previously. For example, in addition to a float/microswitch one or one of an optical type, the sensor means can be of the float/magnetic sensor type, or again of the type that uses, as detection means, element made of anhydrous-sponge, of soluble material or of other material that can vary in volume when it comes into contact with a liquid, to bring about consequent switching of an electrical microswitch.
Also the trays or means for collecting the leakage of the liquid may, if need be, have shapes and/or arrangements different from the ones described by way of example.
The variation in volume of an anhydrous-sponge element or other material can be used also to bring about mechanical switching of an accumulator of mechanical or pneumatic energy, such as a spring actuator, which may exert a thrust or else a tensile force with respect to a controlled element, which could in particular be a mechanical valve, instead of an electrical one. In such a perspective, then, the interconnection means 45, 46 described previously could be configured for this purpose, including, for example, means of pneumatic connection or means of mechanical transmission, designed to transfer a command or movement of a type different from the electrical one.
In a possible variant (not represented), the solenoid valve 21 responsible for managing topping-up of the tank 12 with water can be located within the refrigerator, instead of integrated in the supply device 20. In such a variant, the supply device 20 can in any case be equipped with a mechanical safety valve, actuated in closing following upon detection of leakage within the refrigerator. The system for detection of leakage may in this case comprise an anhydrous-sponge element, variation of volume of which, following upon contact with leakage water, brings about switching of the aforementioned mechanical actuator, which is connected to the valve via a suitable transmission means. The element made of sponge and the mechanical actuator can be positioned directly in the tray 32, 33 or 36, and the transmission means, for example, a Bowden cable or the like, can extend within the gap 26 of the device 20, or else also outside its tube 25, to be connected to the mechanical valve. The detection of water performed by the sponge element brings about actuation of the mechanical actuator, with consequent closing of the mechanical safety valve associated to the supply device 20.
In the embodiments previously exemplified, the arrangement for dispensing beverages is associated to a door or hatch of the respective apparatus 1. It is, however, clear that in other embodiments, said arrangement could be associated either totally or in part to the fixed structure of the apparatus itself, i.e., to its cabinet 2.
In accordance with a further variant, one or more compartments 3, 4 of the refrigerator have a respective bottom wall, which is slightly funnel-shaped, with a corresponding discharge hole connected to a tubing, which is in turn connected, either directly or indirectly, to a tray of the type previously designated by 36. The aforesaid hole is normally occluded by a plug, which is manually removable in the event of operations of cleaning or washing of the compartment that are periodically carried out by the user. In this way, the water used for washing can be made to converge in the aforesaid tray, and from there be evacuated via the discharge tube 39 and the pump 40 and/or the solenoid valve 34a, 41. The refrigerator 1 can for this purpose be equipped with a control means, such as a push-button or a switch, for controlling the pump 40 and/or the solenoid valve 34a, 41, irrespective of the operating condition of the detection device 37, 38.
As already mentioned, possible intermediate joints and/or connectors of the various pipings described extend preferably above basins or collection trays, which are envisaged by the anti-flooding safety system according to the invention, or else are positioned within conveying channels having a function substantially similar to that of the outer tube 25 of the device 20.
The safety system according to the invention can also be conceived to enable alternative execution of discharge of the leakage water in a forced way, via a pump of the type like the one previously designated by 40, or else just by gravity, according to the position in height of the collection trays with respect to the connector to the sewage system. In such a case, the system can advantageously envisage means of selection of the mode of discharge to be adopted, said means possibly being of a type that can be set manually in the stage of installation of the apparatus 1, or else comprises automatic detection means (such as a flow sensor in the discharge pipe, designed to detect any outflow by gravity of leakage liquid).
The end region of the slider 147, in which the slit 147b is present, may be set between an emitter and a receiver of electromagnetic or optical radiation, designated respectively by 149a and 149b, provided, for example, by an emitter diode and by a receiver photo-diode or photo-transistor forming part of an optical detector 149.
As may be seen in
Finally,
The detector 149 could be of a type different from the optical one, for example, of a magnetic type, in which a permanent magnet is associated to the slider 147 or to the projection 150, said magnet being designed to excite a respective magnetic sensor, such as a Hall sensor or a magnetic contact or reed, at the moment in which proper engagement occurs between the two connectors 145 and 146. The connection system according to the variant of
The system for checking the hydraulic-mechanical connection (but, of course, it could also be a connection of an electrical type and/or of some other type), described and illustrated with reference to
Number | Date | Country | Kind |
---|---|---|---|
TO2005A000164 | Mar 2005 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2006/000617 | 3/13/2006 | WO | 00 | 9/14/2007 |