In a supercritical Rankine cycle system and the like that uses CO2 as a refrigerant, a pressurizing device, namely a mechanical liquid pump, is used to pressurize the refrigerant, which has been liquefied in a condenser, to a supercritical pressure. The mechanical pump is driven by an external power source or part of the power obtained from the system. See for example, Japanese Laid-Open Patent Application Nos. 2003-232226 and 2004-36942, where a mechanical pump is used to pressurize and feed the refrigerant in the Rankine cycle system.
Mechanical pumps, however, induce mechanical loss resulting in a lowered cycle efficiency. Further, as mechanical pumps have moving components, reliability of the system is reduced, as well as requiring regular replacement of components. Replacing such devices operating at a high pressure accompanies great difficulties, increasing the maintenance cost. Furthermore, increased pumping power is needed to raise pressure of working fluid up to the critical pressure.
Accordingly, there remains a need for a way of pressurizing and transferring a refrigerant, such as in a Rankine cycle system, with a lower power consumption in comparison with mechanical pump, while increasing reliability thereof by using non-moving components, resulting in absence of mechanical loss. The present invention addresses this need.
The present invention relates to a refrigerant circulating pump, a refrigerant circulating pump system, a method of pumping refrigerant without using a mechanical pump, and a Rankine cycle system.
One aspect of the present invention is a refrigerant circulating pump. The refrigerant circulating pump can include a pressure vessel or expansion tank, a refrigerant introduction path connected to the vessel at a lower part of the vessel, a valve disposed in the refrigerant introduction path, a refrigerant discharge path connected to the vessel at an upper part of the vessel, a pressure regulating valve disposed in the refrigerant discharge path that opens at a predetermined pressure, and a temperature regulating device for heating and cooling a refrigerant into the pressure vessel.
The temperature regulating device can include a cooling apparatus disposed inside the pressure vessel in the upper region of the pressure vessel and a heating apparatus disposed inside the pressure vessel in the lower region of the pressure vessel. Alternatively, the temperature regulating device can regulate or switch flow of a hot fluid medium and a cold fluid medium through the pressure vessel to heat or cool the refrigerant in the vessel.
A conduit can connect to the refrigerant discharge path or to the upper part of the pressure vessel. A valve for decreasing the pressure in the pressure vessel and allowing introduction of the refrigerant into the pressure vessel can be provided in the conduit.
A liquid reservoir can be connected to the refrigerant introduction path and disposed such that the surface level of the liquid refrigerant in the pressure vessel is lower than that of the liquid refrigerant in the liquid reservoir. Introduction of liquid refrigerant into the pressure vessel can be made easier by the liquid pressure corresponding to the difference in liquid levels between the liquid refrigerant in the liquid reservoir and that in the pressure vessel.
Another aspect of the present invention is a refrigerant circulating pump system comprising a plurality of the above-described refrigerant circulating pumps connected in parallel. The plurality of refrigerant circulating pumps allow cooling and heating of the refrigerant in the pressure vessel by operating the refrigerant circulating pumps in a timed sequence so that the total flow of refrigerant vapor discharged from the discharge from the refrigerant circulating pumps is run smoothly.
Another aspect of the present invention is a method of pumping refrigerant. The method includes providing the pressure vessel, the refrigerant introducing path at the lower part of the vessel, the open/close valve in the refrigerant introduction path, the refrigerant discharge path at the upper part of the vessel, the pressure regulating valve in the refrigerant discharge path that opens at a predetermined pressure, and the temperature regulating device for heating and cooling the refrigerant in the pressure vessel. The liquid refrigerant is introduced into the pressure vessel through the refrigerant introduction path by reducing the pressure inside the pressure vessel. This is achieved by cooling the refrigerant in the pressure vessel to below its saturation temperature. The refrigerant in the pressure vessel is discharged through the refrigerant discharge path when the pressure in the pressure vessel reaches the predetermined pressure. This is achieved by vaporizing the refrigerant in the pressure vessel by heating the same. The vapor refrigerant in the pressure vessel is discharged through the pressure-regulating valve, which opens at a specified pressure to be supplied to a device in the downstream zone, such as a heat collecting device.
After the vapor refrigerant is discharged from the pressure vessel, the refrigerant remaining in the pressure vessel is cooled to lower the pressure in the pressure vessel, which results in the liquid refrigerant being introduced into the pressure vessel through the refrigerant introduction path.
Another aspect of the present invention is a Rankine cycle system that uses the above-described refrigerant circulating pump. The system includes a condenser, the refrigerant circulating pump connected to the condenser, a heat collecting device connected to the refrigerant circulating pump, and an expansion turbine connected to the heat collecting device and the condenser so that a refrigerant is introduced from the heat collecting device to the turbine to allow the turbine to output work. The refrigerant introduction path is connected to the vessel and the condenser. The refrigerant discharge path is connected to the vessel and the heating device.
When introducing liquid refrigerant from the condenser to the pressure vessel, the open/close valve is opened to allow the condenser to be communicated with the pressure vessel and equalize pressure in the condenser and the pressure vessel, by which the refrigerant in the condenser is introduced into the pressure vessel, and then the refrigerant in the pressure vessel is cooled and decreased in pressure, thereby further sucking the refrigerant in the condenser into the pressure vessel.
A gas phase zone in the condenser is communicable with a gas phase zone in the pressure vessel when the open/close valve is opened.
The above-described refrigerant circulating pump system can be used to smooth the total flow of refrigerant discharged from the refrigerant circulating pumps.
The invention will be described with reference to certain preferred embodiments thereof and the accompanying figures, wherein:
Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings. It is intended, however, that unless particularly specified, dimensions, materials, relative positions and so forth of the constituent parts in the embodiments are to be interpreted as illustrative only, not as limiting the scope of the present invention.
The system also includes a heat collecting device (heating device) 5 that absorbs heat from outside, such as a solar heat collector and a steam boiler, and is connected to an expansion turbine 7 through an open/close valve 6. The system also includes a condenser 8 for receiving vapor refrigerant exhausting from the expansion turbine 7 and cooling the vapor refrigerant by a cooling apparatus 9 to liquefy the refrigerant. The expansion tank 2 and the condenser 8 are disposed such that the level of liquid refrigerant in the expansion tank 2 is lower than that in the condenser 8. The upper part of the expansion tank 2 is connected to the upper part, i.e., a vapor zone K as shown in
In the above system, CO2 refrigerant exists in the expansion tank 2 in two phases, i.e., liquid and vapor phases, at a temperature of about 25° C. and a pressure of about 6 MPa (P1 in
By heating the CO2 refrigerant in the expansion tank 2, the CO2 refrigerant reaches at a state (2) in the supercritical zone or region over the critical point K passing the critical point K of 31.1° C. and 7.38 MPa. In the supercritical region, CO2 is in a state of gas of high density and phase change does not occur. At this time, the open/close valve a1, the pressure regulating valve a2, and the electromagnetic valve s are all closed. It is also possible to allow the refrigerant to reach a state (2′) in
The refrigerant vapor in the heat collection device 5 existing in the state (3) in the supercritical region is sent to the expansion turbine 7 to rotate the turbine 7 to do work W to outside, for example to rotate an electric generator. The CO2 refrigerant vapor comes to a state (4) in the p-h diagram of
When the amount of vapor refrigerant decreases in the expansion tank 2, operation of cooling the refrigerant in the expansion tank 2 is started, and at the same time the pressure regulating valve a2, the open/close valve a1, and the electromagnetic valve s are opened. Opening the electromagnetic valve s, equalizes the pressure of the expansion tank 2 and the condenser 8, and the pressure corresponding to the difference of liquid level of liquid refrigerant between both the liquid levels in the expansion tank 2 and in the condenser 8 is applied to the expansion tank 2, since the expansion tank 2 and condenser are disposed such that the liquid level in the expansion tank 2 is lower than that in the condenser 8.
The pressure decreases in the expansion tank 2 as the refrigerant in the expansion tank 2 is cooled by the cooling apparatus C, and the liquid refrigerant in the condenser 8 is sucked into the expansion tank 2. The CO2 refrigerant in the expansion tank 2 come to the state (1) in
A heat source from the Rankine cycle system or an outside heat source can be used as a heat source for the heating apparatus H in the expansion tank 2. For example, it is possible to use part of the heat extracted from the heat collection device 5 or part of the heat source for operating the cycle or part of electric power generated by an electric generator driven by the expansion turbine.
A cold source from the Rankine cycle system or an outside cold source can be used as a cold source for the cooling apparatus C in the expansion tank 2. For example, it is possible to use part of a cold fluid medium of an outside refrigerating cycle or part of the cold fluid medium used for the cooling apparatus 9 in the condenser 8. Part of the cold fluid medium used for cooling the refrigerant in the condenser 8 can be used as a cold source for the cooling apparatus.
By adopting the refrigerant circulating pump 1, means for pressurizing and transferring refrigerant vapor can be provided without using any mechanical moving components, resulting in no mechanical loss in contrast to conventional mechanical pumps. As the refrigerant circulating pump 1 has no moving parts and is compact in structure, it advantageously has no mechanical loss to increase the system efficiency without any need for maintenance work. This increases the reliability.
As the upper part of the expansion tank 2 is connected to the upper part of the condenser 8 via the electromagnetic valve s, inside pressure of the expansion tank 2 can be decreased rapidly to the pressure in the condenser by opening the electromagnetic valve s. As a result, suction of liquid refrigerant into the expansion tank 2 can be made easy. Thus, the pressure in the pressure vessel can be decreased rapidly when introducing liquid refrigerant to the pressure vessel. The pressure in the vessel is further decreased by cooling the refrigerant in the vessel so that the liquid refrigerant is introduced to the vessel with ease.
Further, as the level of liquid refrigerant in the expansion tank 2 is lower than that of the liquid refrigerant in the condenser, liquid pressure corresponding to the difference of liquid level between the liquid levels in the expansion tank 2 and condenser 8 is applied to the expansion tank 2, and suction of liquid refrigerant into the expansion tank 2 is made easy.
A liquid reservoir 30 can be provided in a zone downstream from the condenser 8 in the refrigerant introducing path as shown in
By disposing a plurality of the refrigerant circulating pumps 1 in parallel as shown in
In the embodiment of
In the embodiment of
According to the present invention, a pumping function can be realized without using moving components, and therefore without any mechanical loss associated therewith, with a compact construction and a high system efficiency, and further with a high reliability without requiring maintenance work.
Operation of the refrigerant circulating pump is possible even when the pressure vessel is fully filled with a refrigerant in liquid state.
When the amount (mass) of refrigerant filled in the vessel is the same for both the liquid refrigerant and the vapor refrigerant, the liquid refrigerant is advantageous because the pumping efficiency is higher (charging rate of liquid refrigerant is 100%) and the amount of discharge of refrigerant per batch discharge is larger. Nonetheless, a problem arises when a super cooled liquid refrigerant is discharged from the vessel at the start of discharge while it is being further heated in the downstream zone due to accumulation of liquid refrigerant and load variation. On the other hand, when the refrigerant is in a vapor state in the vessel, pumping efficiency is lower (charging rate of liquid refrigerant is several dozen %), but no problem results from discharging a super critical refrigerant vapor from the vessel.
The vessel is filled with the refrigerant in liquid state and pressurized in normal temperatures. The pressure vessel can be a storage tank or gas bomb used under normal temperatures. For example, in a CO2 bomb, 90% is liquid at 15° C., 100% is liquid at 22° C. The pressure in the bomb rises steeply until 31° C., and it reaches 12 MPa at 35° C., which pressure is determined as the maximum permissible pressure. This can be thought to be a criterion for safety of a storage tank used under normal temperatures. A relief valve that opens when the pressure in the pressure vessel exceeds a specified pressure during heating operation in the case the pressure vessel is fully filled with liquid refrigerant can be provided for safety.
According to the present invention, means for pressurizing and transferring a refrigerant, i.e., a pump, has no moving parts. Thus, it induces no mechanical loss that appears in conventional mechanical pumps. The pumping function can be achieved by cooling refrigerant in a pressure vessel to below its saturation temperature to lower the pressure in the pressure vessel to suck additional refrigerant into the pressure vessel through the introduction path by virtue of pressure difference between the source of refrigerant and the pressure vessel. Thereafter, the refrigerant in the pressure vessel is heated and vaporized. When the pressure vessel reaches a predetermined pressure, the vapor refrigerant is discharged to a heat collecting device for example.
A heat source among heat sources inside or outside of the Rankine cycle system can be used as a heat source. As heat sources inside the Rankine cycle system, part of heat obtained in the heating device, such as a solar heat collecting device or steam boiler can be used, or part of work obtained by the expansion turbine can be used, for example. It is possible to utilize a cold source among cold sources inside or outside of the Rankine cycle system. It is also suitable to use part of cold source for condensing refrigerant vapor in the condenser as a cold source needed inside the Ranking cycle system.
By connecting the upper part of the pressure vessel to a line via an open/close valve so that pressure in the pressure vessel can be decreased by opening the open/close valve to a pressure at which liquid refrigerant can be introduced into the pressure vessel through the refrigerant introduction path, the suction of liquid refrigerant into the pressure vessel can be made easy, liquid refrigerant remaining in the pressure vessel can be let out without delay, and further cooling load in the pressure vessel can be reduced. When the present refrigerant circulating pump is used in the Ranking cycle system, the vapor zone in its condenser can be communicated to the vapor zone in the pressure vessel by the open/close valve. The refrigerant circulating pump can feed the refrigerant by vaporizing the refrigerant that has been liquefied in the condenser to raise the pressure. A plurality of refrigerant circulating pumps can be operated in a timed sequence.
While the present invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form and details can be made therein without departing from the spirit and scope of the present invention.
All modifications and equivalents attainable by one versed in the art from the present disclosure within the scope and spirit of the present invention are to be included as further embodiments of the present invention. The scope of the present invention accordingly is to be defined as set forth in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2004-272597 | Sep 2004 | JP | national |
This application is a continuation-in-part application of and claims priority from U.S. patent application Ser. No. 11/686,857, filed Mar. 15, 2007, which in turn is a continuation of and claims priority from International Application PCT/JP2005/016834 (published as WO 2006/030779) having an international filing date of 13 Sep. 2005, which in turn claims priority from JP 2004-272597 filed 17 Sep. 2004, the disclosure of which, in its entirety, including the drawings, claims, and the specification thereof, is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3368364 | Norton et al. | Feb 1968 | A |
3878683 | Imai | Apr 1975 | A |
4103493 | Schoenfelder | Aug 1978 | A |
4197716 | Nussbaum | Apr 1980 | A |
4224801 | Tyree, Jr. | Sep 1980 | A |
4281969 | Doub, Jr. | Aug 1981 | A |
4301662 | Whitnah | Nov 1981 | A |
4347711 | Noe et al. | Sep 1982 | A |
4359329 | Willeitner | Nov 1982 | A |
5050400 | Lammert | Sep 1991 | A |
5056327 | Lammert | Oct 1991 | A |
5452580 | Smith | Sep 1995 | A |
5542266 | Suzuki et al. | Aug 1996 | A |
6619057 | Williamson et al. | Sep 2003 | B2 |
6718781 | Freund et al. | Apr 2004 | B2 |
6820434 | Gutheim et al. | Nov 2004 | B1 |
6945062 | Chen et al. | Sep 2005 | B2 |
20040139757 | Kuehl et al. | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
2003-232226 | Aug 2003 | JP |
2004-036942 | Feb 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20090277198 A1 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11686857 | US | |
Child | 12431495 | US |