Refrigerant compositions

Information

  • Patent Grant
  • 7713434
  • Patent Number
    7,713,434
  • Date Filed
    Friday, July 11, 2008
    17 years ago
  • Date Issued
    Tuesday, May 11, 2010
    15 years ago
Abstract
Disclosed is a non-flammable refrigerant composition consisting of pentafluoroethane in an amount from 62% to 67% based on the weight of the composition; a second component selected from 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, and mixtures thereof in an amount from 26% to 36% by weight based on the weight of the composition; and an ethylenically unsaturated or saturated hydrocarbon compound that is at least 80% isobutane in an amount of from 3% to 4% by weight of the composition. Optionally, the composition may include at least one lubricant, at least one additive or combinations thereof.
Description

This invention relates to refrigerant compositions, particularly compositions which can be used for chillers. In particular, these are devices for producing chilled water or aqueous solutions at temperatures typically from 1 to 10° C.


Chillers require large amounts of cooling. Recently R22 (CHClF2) has been used for this purpose. However, there is the need for an alternative refrigerant, since R22 is an ozone depleter that will be phased out over the next decade, in accordance with the Montreal protocol.


Therefore, there is a requirement for a refrigerant that has similar properties to R22, but is not an ozone depleter. Of particular concern is that the temperature/vapour pressure relationship for such a refrigerant should be sufficiently similar to R22 that it can be used in R22 equipment without having to change the control systems which are usually programmed in the factory making the chiller.


This is of particular concern for systems that have sensitive control devices, which rely on both the inlet pressure to the expansion valve and the outlet pressure. These control systems are based on R22 properties. Therefore, if an R22 substitute does not have a temperature/vapour pressure behaviour similar to R22, the system will not operate correctly.


By similar we mean that the vapour pressure of the substitute should not differ by more than ±12% and preferably not more than ±6% at any given mean evaporating temperature between −40° C. to +10° C.


It is also important that any such refrigerant has a similar capacity and efficiency as R22.


By similar capacity we mean a capacity that is no more than 20% lower than R22 and preferably not more than 10% lower than R22 at mean evaporating temperatures between −35° C. to −28° C. By similar efficiency we mean not more than 10% lower and preferably not more than 5% lower at mean evaporating temperatures between −35° to −28° C.


According to the present invention there is provided a refrigerant composition which comprises:


(a) pentafluoroethane, trifluoromethoxydifluoromethane or hexafluoro-cyclopropane, or a mixture of two or more thereof, in an amount of from 60 to 70% by weight based on the weight of the composition,


(b) 1,1,1,2- or 1,1,2,2-tetrafluoroethane, trifluoromethoxypentafluoroethane, 1,1,1,2,3,3-heptafluoropropane or a mixture of two or more thereof, in an amount of from 26 to 36% by weight based on the weight of the composition and


(c) an ethylenically unsaturated or saturated hydrocarbon, optionally containing one or more oxygen atoms, with a boiling point from −12° C. to +10° C., or a mixture thereof, or a mixture of one or more said hydrocarbons with one or more other hydrocarbons, said mixture having a bubble point from −12° C. to +10° C., in an amount from 1% to 4% by weight based on the weight of the composition. It has surprisingly been found that these particular formulations have the condition of properties which enable them to be used as a “drop in” replacement for R22.


The percentages quoted above refer, in particular, to the liquid phase. The corresponding ranges for the vapour phase are as follows:


(a) 75 to 87% (b) 10-28% and (c) 0.9-4.1%, all by weight based on the weight of the composition. These percentages preferably apply both in the liquid and vapor phases.


The present invention also provides a process for producing refrigeration which comprises condensing a composition of the present invention and thereafter evaporating the composition in the vicinity of a body to be cooled. The invention also provides a refrigeration apparatus containing, as refrigerant, a composition of the present invention.


Component (a) is present in an amount from 60 to 70% by weight based on the weight of the composition. Preferably, the concentration is 62 to 67%, especially above 64% and up to 66%, by weight. Preferably, component (a) is R125 (pentafluoroethane) or a mixture containing at least an half, especially at least three quarters (by mass) of R125. Most preferably component (a) is R125 (alone).


Component (b) is present in the composition in an amount from 26 to 36%, especially 28 to 32%, by weight based on the weight of the composition. Component (b) is preferably a mixture containing at least an half, especially at least three quarters (by mass) of R134a (1,1,1,2-tetrafluoroethane). Most preferably component (b) is R134a (alone).


The weight ratio of component (a): component (b) is desirably at least 1.5:1, preferably 1.5:1 to 3:1 and especially 1.8:1 to 2.2:1.


Component (c) is a saturated or ethylenically unsaturated hydrocarbon, optionally containing one or more oxygen atoms, in particular one oxygen atom, with a boiling point from −12° C. to +10° C., especially −12° C. to −5° C. or a mixture thereof. Preferred hydrocarbons which can be used possess three to five carbon atoms. They can be acyclic or cyclic. Acyclic hydrocarbons which can be used include one or more of propane, n-butane, isobutane, and ethylmethyl ether. Cyclic hydrocarbons which can be used include methyl cyclopropane. Preferred hydrocarbons include n-butane and/or isobutane. Component (c) can also be a mixture of such a hydrocarbon with one or more other hydrocarbons, said mixture having a bubble point from −12° C. to +10° C., especially −12° C. to −5° C. Other hydrocarbons which can be used in such mixtures include pentane and isopentane, propene, dimethyl ether, cyclobutane, cyclopropane and oxetan.


The presence of at least one further component in the composition is not excluded. Thus although, typically, the composition will comprise the three essential components, a fourth component, at least, can also be present. Typical further components include other fluorocarbons and, in particular, hydrofluorocarbons, such as those having a boiling point at atmospheric pressure of at most −40° C., preferably at most −49° C., especially those where the F/H ratio in the molecule is at least 1, preferably R23, trifluoromethane and, most preferably, R32, difluoromethane. In general, the maximum concentration of these other ingredients does not exceed 10% and especially not exceeding 5% and more especially not exceeding 2%, by weight, based on the sum of the weights of components (a), (b) and (c). The presence of hydrofluorocarbons generally has a neutral effect on the desired properties of the formulation. Desirably one or more butanes, especially n-butane or iso-butane, represents at least 70%, preferably at least 80% and more preferably at least 90%, by weight of the total weight of hydrocarbons in the composition. It will be appreciated that it is preferable to avoid perhalocarbons so as to minimise any greenhouse effect and to avoid hydrohalogenocarbons with one or more halogens heavier than fluorine. The total amount of such halocarbons should advantageously not exceed 2%, especially 1% and more preferably 0.5%, by weight.


According to a preferred embodiment, the composition comprises, as component (a) 62 to 67% based on the weight of the composition of pentafluoroethane, as component (b) 3 to 35% by weight based on the weight of the composition of 1,1,1,2-tetrafluoroethane and, as component (c), butane and/or isobutane or a said mixture of hydrocarbons comprising butane and/or isobutane. When component (c) is a mixture the concentration of butane and/or isobutane in the mixture is preferably at least 50% by weight especially at least 70% by weight, more preferably at least 80% by weight and even more preferably at least 90% by weight, based on the weight of the composition. The other component of the mixture is preferably pentane.


Component (c) is present in an amount from 3 to 4% by weight based on the weight of the composition.


It has been found that the compositions of the present invention are highly compatible with the mineral oil lubricants which have been conventionally, used with CFC refrigerants. Accordingly the compositions of the present invention can be used not only with fully synthetic lubricants such as polyol esters (POE), polyalkyleneglycols (PAG) and polyoxypropylene glycols or with fluorinated oil as disclosed in EP-A-399817 but also with mineral oil and alkyl benzene lubricants including naphthenic oils, paraffin oils and silicone oils and mixtures of such oils and lubricants with fully synthetic lubricants and fluorinated oil.


The usual additives can be used including “extreme pressure” and antiwear additives, oxidation and thermal stability improvers, corrosion inhibitors, viscosity index improvers, pour point depressants, detergents, anti-foaming agents and viscosity adjusters. Examples of suitable additives are included in Table D in U.S. Pat. No. 4,755,316.


The following Examples further illustrate the present invention.







EXAMPLES

The samples used for testing are detailed below:


















Butane (3.5%) blend:
R125/134a/600 (65.0/31.5/3.5)



Isobutane (3.5%) blend:
R125/134a/600a (64.9/31.7/3.4)











Equipment and Experimental


The samples, each approximately 600 g, used for the determination of the vapour pressures were prepared in aluminium disposable cans (Drukenbehalter—product 3469), which were then fully submerged in a thermostatically controlled water bath. For each determination the can was charged with about 600 g. A maximum of two samples could be processed at any one time. The bath temperature was measured using a calibrated platinum resistance thermometer (152777/1B) connected to a calibrated Isotech TTI1 indicator. Pressure readings were taken using the two calibrated Druck pressure transducers, DR1 and DR2.


The temperature of the bath was set to the lowest temperature required and it was then left until it had cooled. When the temperature and pressure had remained constant for at least a quarter of an hour they were then recorded. Further temperature and pressure readings were taken in increments of 5° C. to a maximum of 50° C., each time ensuring that they were steady for at least a quarter of an hour before recording them.


The data obtained does not give the dew point and as such does not give the glide. An approximate evaluation of the glide can be obtained by using the REFPROP 6 program. The relationship of the glide to the bubble point can be represented by a polynomial equation. This equation can now be used to give an approximate glide for the experimentally determined bubble points. This is effectively a normalisation of the calculated glide to the experimentally determined data. The dew point pressures can then be approximated by subtracting the temperature glide from the temperature in the bubble point equation.


These equations are then used to obtain vapour/pressure tables. The experimental equation derived for the bubble points and the glide equation from REFPROP 6 are shown in Table 1.


Notes:




  • 1. In this equation x=1/T, where T is the bubble point in Kelvin: y=ln(p), where p is the saturated vapour pressure in psia. To convert psia to MPa absolute pressure, multiply by 0.006895.

  • 2. In this equation x=t, where t is liquid temperature (bubble point) in degree C. and y=glide in degree C. at the bubble point temperature.

  • 3. The vapour pressures for R22 were obtained from the Ashrae handbook by interpolation.


    Determination of the Performance of the Refrigerants on the Low Temperature (LT) Calorimeter.


    Equipment and General Operating Conditions



The performance of the refrigerants was determined on the low temperature (LT) calorimeter. The LT calorimeter is fitted with a Bitzer semi-hermetic condensing unit containing Shell SD oil. The hot vapour passes out of the compressor, through an oil separator and into the condenser. The discharge pressure at the exit of the compressor is kept constant by the means of a packed gland shut-off valve. This inevitably has an effect on the condensing pressure/temperature—the system is actually condensing at a temperature below 40° C. The refrigerant then travels along the liquid line to the evaporator.


The evaporator is constructed from 15 mm Cu tubing coiled around the edges of a well-insulated 32-liter SS bath. The bath is filled with 50:50 glycol:water solution and heat is supplied to it by 3×1 kW heaters controlled by a PID controller. A stirrer with a large paddle ensures that the heat is evenly distributed. The evaporating pressure is controlled by an automatic expansion valve.


The refrigerant vapour returns to the compressor through a suction line heat exchanger.


Twelve temperature readings, five pressure readings, compressor power and heat input are all recorded automatically using Dasylab.


The tests were run at a condensing temperature of 40° C. and an evaporator superheat of 8° C. (±0.5° C.).


For R22 the temperature at the end of the evaporator was maintained at 8° C. above the temperature equivalent to the evaporating pressure (bubble point).


For the other refrigerants the temperature at the end of the evaporator was maintained at 8° C. above the temperature equivalent to the evaporating pressure (Dew point)


The mean evaporator temperature for these refrigerants was calculated by taking the temperature equivalent to the evaporator pressure from the bubble point table and adding to that half the glide at that temperature.


When running the calorimeter the evaporating and condensing pressures are initially set to an approximate value along with the temperature of the bath. The calorimeter is then allowed time for the conditions to stabilise. During this period coarse adjustments can be carried out and it must also be monitored in order to make sure that sufficient heat is being put into the bath to avoid any liquid getting back to the compressor. When the system is virtually steady fine adjustments of pressure and temperature are made until the calorimeter has stabilised at the required evaporating pressure with a condensing pressure equivalent to 40° C. and an evaporator superheat of 8° C. (Note—the superheat is measured from the third evaporator outlet)


The run is then commenced and run for a period of one hour, during which time no adjustments are made to the system, except for possibly minor changes to the condensing pressure to compensate for fluctuations in the ambient temperature.


Specific Experimental Details for Each Refrigerant


R22: The calorimeter was charged with R22 (3.5 kg into the liquid receiver). Ten data points were obtained between the evaporating temperatures of −38° C. and −22° C.


Butane (3.5%) blend: Approximately 3.55 kg were charged into the liquid receiver and five data points were obtained between the mean evaporating temperatures of −38° C. and −22° C.


Isobutane (3.5%) blend: Approximately 3.48 kg of the blend were charged into the liquid receiver of the LT-calorimeter. Five data points between the mean evaporating temperatures of −38° C. and −22° C. were obtained.


Results


The results obtained are summarised in Tables 2-4. Mean Ev. Temp=Mean evaporation temperature; Air on condenser temperature of the air blowing over the condenser; Press=pressure.


Comments and Discussion on the Experimental Results


BRIEF DESCRIPTION OF THE FIGURES.


FIG. 1 is a graph comparing the saturated vapour pressure of selected blends with that of R22.



FIG. 2 is a graph comparing the capacity of selected blends with that of R22 at a mean evaporating temperature of −30° C.



FIG. 3 is a graph comparing the percentage deviation in COP of selected blends with that of R22 at a mean evaporating temperature of −30° C.



FIG. 4 is a graph comparing the COPs at a constant capacity (fixed for R22) for selected blends at the evaporating temperature of −30° C.



FIG. 5 is a graph showing the capacity of selected hydrocarbon blends relative to R22.



FIG. 6 is a graph showing the percentage deviation in COP of selected blends relative to R22 over a range of evaporating temperatures.


The results obtained are shown graphically in Graphs 1 to 6. Graph 1 shows the saturated vapour pressures for the blends investigated along with that for R22. The graph shows that the vapour pressures of the blends are only slightly higher than that for R22.


Graph 2 shows a comparison of the capacities with respect to R22 at a mean evaporating temperature of −30° C. —a typical temperature at which these blends would be expected to operate. At this temperature the butane blend is only 4% down on capacity against R22, whereas the capacity of isobutane blend is slightly inferior, being 5.5% down on R22.


The COP results obtained are shown in Graph 3. This graph shows that at a mean evaporating temperature of −30° C. the COP values of both the hydrocarbon blends are less than 1% down on R22.


In Graph 4, the capacity is fixed to that of R22 at the evaporating temperature of −30° C. The COPs at this constant capacity for the different refrigerants can now be compared. The graph shows that both the butane blend (by 2.5%) and the isobutane blend (by 3.0%) are more efficient than R22 for this given capacity.


The capacity of the hydrocarbon blends relative to R22 is shown in Graph 5. The lines for the two blends are parallel to one another and the capacities are similar with that of the isobutane blend being slightly inferior.


Graph 6 shows the COP of the RX blends relative to R22. The COP of R22 and that of the two blends is shown to be similar. The lines of the hydrocarbons blends cross over one another (and R22) at a mean evaporating temperature of −32° C. showing the increase in the relative COP of R22 and the decrease in the relative COP of the isobutane blend. As before though the differences are only minimal.









TABLE 1







Results of the experimental SVP measurements


and the glide from REFPROP 6










SVP Equation
Glide equation


Description
(see note 1)
(see note 2)





Butane (3.5%) blend
y = −2347.46820x +
y = −0.02618x +


R125/134a/600
12.96325
3.51740


(65.0/31.5/3.5)
R2 = 0.99999
R2 = 0.99790


Isobutane (3.5%) blend
y = −2356.045324x +
y = −000001x3


R125/134a/600a
12999729
0.000012x2


(64.9/31.7/3.4)
R2 = 0.999956
0.028998x +




3.628716


R22
(see note 3)
Not applicable
















TABLE 2







R22 CONDENSING AT 40° C. IN LT-CALORIMETER



















Dis-

Discharge
Con-
Evaporator
Evap
Evap

Capacity

Evap.


Mean Ev.
charge
Air On
absolute
densing
Inlet
Temp
Temp
Com-
Heat

Super-


Temp
Temp
Condenser
Press
Temp
Press
BUBBLE
DEW
pressor
Input

heat


° C.
° C.
° C.
Mpa
° C.
MPa
° C.
° C.
Power kwh
kwh
C.O.P.
° C.





−37.6
149.9
20.8
1.439
40.1
0.016
−37.6
−37.6
1.161
0.614
0.53
8.3


−35.9
154.5
22.3
1.425
39.8
0.025
−35.9
−35.9
1.208
0.846
0.70
8.5


−34.0
156.1
22.2
1.433
40.0
0.036
−34.0
−34.0
1.283
1.031
0.80
8.3


−31.6
156.3
22.9
1.438
40.1
0.051
−31.6
−31.6
1.375
1.282
0.93
8.3


−29.5
155.7
23.4
1.450
40.4
0.065
−29.5
−29.5
1.388
1.412
1.02
7.8


−28.8
152.8
22.0
1.447
40.4
0.071
−28.8
−28.8
1.418
1.508
1.06
8.1


−28.1
154.7
23.9
1.430
39.9
0.076
−28.1
−28.1
1.457
1.586
1.09
8.4


−25.4
152.7
22.7
1.449
40.4
0.096
−25.4
−25.4
1.593
1.992
1.25
8.0


−24.0
152.8
23.8
1.446
40.3
0.108
−24.0
−24.0
1.646
2.167
1.32
8.6


−22.1
149.6
23.8
1.450
40.4
0.124
−22.1
−22.1
1.688
2.387
1.41
8.4
















TABLE 3







BUTANE (3.5%) CONDENSING AT 40° C. IN LT-CALORIMETER



















Mean
Dis-


Con-
Evaporator
Evap
Evap
Com-
Capacity

Evap.
Total


Ev.
charge
Air On
Discharge
densing
Inlet
Temp
Temp
pressor
Heat

Super-
Super-


Temp
Temp
Condenser
absolute
Temp
absolute
BUBBLE
DEW
Power
Input

heat
heat


° C.
° C.
° C.
Press MPa
° C.
press MPa
° C.
° C.
kwh
kwh
C.O.P.
° C.
° C.





−37.4
114.1
20.8
1.528
39.9
0.025
−39.7
−35.1
1.094
0.629
0.58
7.7
47.0


−34.2
115.8
21.6
1.529
39.9
0.044
−36.4
−31.9
1.237
0.976
0.79
7.9
43.5


−30.4
112.1
21.1
1.539
40.2
0.068
−32.6
−28.3
1.336
1.317
0.99
7.8
39.7


−25.9
108.9
21.4
1.540
40.2
0.102
−28.0
−23.8
1.459
1.729
1.18
8.0
36.7


−22.5
106.8
22.6
1.543
40.3
0.132
−24.6
−20.4
1.592
2.161
1.36
8.3
35.5
















TABLE 4







ISOBUTANE BLEND (3.5%) CONDENSING AT 40° C. IN LT-CALORIMETER



















Mean
Dis-


Con-
Evaporator
Evap
Evap
Com-
Capacity

Evap.
Total


Ev.
charge
Air On
Discharge
densing
Inlet
Temp
Temp
pressor
Heat

Super-
Super


Temp
Temp
Condenser
absolute
Temp
absolute
BUBBLE
DEW
Power
Input

heat
heat


° C.
° C.
° C.
Press Mpa
° C.
press. Mpa
° C.
° C.
kwh
kwh
C.O.P.
° C.
° C.





−37.7
114.6
23.1
1.544
40.0
0.023
−40.1
−35.3
1.033
0.596
0.58
8.0
49.0


−34.3
116.2
23.2
1.544
39.9
0.043
−36.6
−31.9
1.194
0.950
0.80
8.3
44.8


−29.8
113.1
22.2
1.544
40.0
0.072
−32.1
−27.5
1.353
1.361
1.01
8.5
40.1


−26.2
109.7
22.4
1.538
39.8
0.100
−28.4
−23.9
1.440
1.682
1.17
8.6
37.7


−21.5
106.4
24.2
1.562
40.4
0.140
−23.6
−19.3
1.622
2.252
1.39
8.2
35.4








Claims
  • 1. A nonflammable refrigerant composition consisting of: (a) pentafluoroethane in an amount from 62% to 67% by weight based on the weight of the composition;(b) a second component selected from the group consisting of 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, and mixtures thereof in an amount from 26% to 36% by weight based on the weight of the composition; and(c) isobutane in an amount of from 1% to 4% by weight based on the weight of the composition.
  • 2. A nonflammable composition consisting of: (a) pentafluoroethane in an amount from 62% to 67% by weight based on the weight of the composition;(b) a second component selected from the group consisting of 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, and mixtures thereof in an amount from 26% to 36% by weight based on the weight of the composition;(c) isobutane in an amount of from 1% to 4% by weight based on the weight of the composition; and(d) at least one lubricant.
  • 3. A nonflammable composition consisting of: (a) pentafluoroethane in an amount of from 62% to 67% by weight based on the weight of the composition;(b) a second component selected from the group consisting of 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, and mixtures thereof in an amount from 26% to 36% by weight based on the weight of the composition;(c) isobutane in an amount of from 1% to 4% by weight based on the weight of the composition;(d) at least one lubricant; and(e) at least one additive selected from the group consisting of extreme pressure additives, antiwear additives, oxidation and thermal stability improvers, corrosion inhibitors, viscosity index improvers, pour point depressants, detergents, anti-foaming agents, and viscosity adjusters.
  • 4. The composition according to claims 2 or 3, wherein at least one lubricant is selected from the group consisting of mineral oils, alkylbenzene lubricants, synthetic lubricants, and fluorinated oils and mixtures thereof.
  • 5. The composition according to claim 1, 2 or 3 in which component (b) is present in an amount about 28% to about 32% by weight based on the weight of the composition.
  • 6. A nonflammable composition consisting of: (a) pentafluoroethane in an amount from 62% to 67% by weight based on the weight of the composition;(b) a second component selected from the group consisting of 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, and mixtures thereof in an amount from 26% to 36% by weight based on the weight of the composition;(c) isobutane in an amount of from 1% to 4% by weight based on the weight of the composition; and(d) at least one additive selected from the group consisting of extreme pressure additives, antiwear additives, oxidation and thermal stability improvers, corrosion inhibitors, viscosity index improvers, pour point depressants, detergents, anti-foaming agents, and viscosity adjusters.
  • 7. The composition according to claim 1, 2, 3 or 6, in which component (b) is 1,1,2,2-tetrafluoroethane.
  • 8. A refrigeration apparatus containing, as refrigerant, a composition as claimed in either claim 1, 2, 3, or 6.
Priority Claims (2)
Number Date Country Kind
0227891.9 Nov 2002 GB national
0228306.7 Dec 2002 GB national
Parent Case Info

This application is a divisional application of U.S. application Ser. No. 11/831,308 filed Jul. 31, 2007, (now abandoned), which is a divisional application of Ser. No. 10/536,987 filed Nov. 4, 2005 (now abandoned), which is the United States national phase application of PCT/GB/03/05227, filed Dec. 1, 2003, which is based upon Great Britain Applications No. GB 0227891.9, filed Nov. 29, 2002, and GB 0228306.7, filed Dec. 4, 2002. The contents of all the above applications are incorporated herein by reference in their entirety.

US Referenced Citations (40)
Number Name Date Kind
3779842 Grunwald et al. Dec 1973 A
3869401 Ernst Mar 1975 A
3986970 Shiga Oct 1976 A
4297436 Kubotera et al. Oct 1981 A
4349411 Okinaka Sep 1982 A
4755316 Magid et al. Jul 1988 A
4849124 Backus Jul 1989 A
5032306 Cripps Jul 1991 A
5091600 Moore et al. Feb 1992 A
5225034 Yu et al. Jul 1993 A
5259979 Condra et al. Nov 1993 A
5342501 Okabayashi Aug 1994 A
5520833 Kaneko May 1996 A
5688432 Pearson Nov 1997 A
5705086 Ardito et al. Jan 1998 A
5866030 Reyes-Gavilan et al. Feb 1999 A
5954995 Goble Sep 1999 A
5958288 Mueller et al. Sep 1999 A
6000230 Kanno et al. Dec 1999 A
6065305 Arman et al. May 2000 A
6076372 Acharva et al. Jun 2000 A
6207071 Takigawa et al. Mar 2001 B1
6222136 Appelt et al. Apr 2001 B1
6230519 Arman et al. May 2001 B1
6251300 Takigawa et al. Jun 2001 B1
6253577 Arman et al. Jul 2001 B1
6363741 Takemasa Apr 2002 B2
6428720 Roberts Aug 2002 B1
6511610 Caron et al. Jan 2003 B2
6521141 Roberts et al. Feb 2003 B1
6526764 Singh et al. Mar 2003 B1
6606868 Powell et al. Aug 2003 B1
6629419 Powell et al. Oct 2003 B1
6655140 Oka et al. Dec 2003 B2
6655160 Roberts Dec 2003 B2
6695973 Musso et al. Feb 2004 B1
6783691 Bivens et al. Aug 2004 B1
7258813 Roberts et al. Aug 2007 B2
7276176 Roberts et al. Oct 2007 B2
20020050583 Caron et al. May 2002 A1
Foreign Referenced Citations (54)
Number Date Country
1183451 Jun 1998 CN
1280166 Jan 2001 CN
0399817 Nov 1990 EP
0430131 Nov 1990 EP
0427604 Apr 1993 EP
0539952 May 1993 EP
0659862 Jun 1995 EP
0565265 Dec 1995 EP
0779352 Dec 1996 EP
1184438 Mar 2002 EP
1193305 Apr 2002 EP
0856571 Apr 2003 EP
2247462 Apr 1992 GB
2250514 Jun 1992 GB
2291884 Jul 1995 GB
2327427 Jan 1999 GB
9923088.0 Sep 1999 GB
0005043.5 Mar 2000 GB
0010171.7 Apr 2000 GB
2356867 Jun 2001 GB
01139675 Jun 1989 JP
01139678 Jun 1989 JP
4018484 Jan 1992 JP
08157809 Jun 1996 JP
2576161 Jan 1997 JP
2576162 Jan 1997 JP
2584337 Feb 1997 JP
1997059611 Mar 1997 JP
09125052 May 1997 JP
01108291 Oct 1997 JP
11181414 Jul 1999 JP
3127138 Jan 2001 JP
2002-228307 Aug 2002 JP
3754198 Dec 2005 JP
1997-022058 May 1997 KR
2072382 Jan 1997 RU
2135541 Aug 1999 RU
2161637 Oct 2001 RU
9301152 Jan 1993 WO
9315163 Aug 1993 WO
9200529 Jan 1994 WO
9508602 Mar 1995 WO
9603473 Feb 1996 WO
9615205 May 1996 WO
9734961 Sep 1997 WO
9802370 Jan 1998 WO
0056834 Sep 2000 WO
0123491 Apr 2001 WO
0123493 Apr 2001 WO
0223492 Apr 2001 WO
0224829 Mar 2002 WO
0226912 Apr 2002 WO
0226913 Apr 2002 WO
2004050787 Jun 2004 WO
Related Publications (1)
Number Date Country
20080265204 A1 Oct 2008 US
Divisions (2)
Number Date Country
Parent 11831308 Jul 2007 US
Child 12171749 US
Parent 10536987 US
Child 11831308 US