The present invention relates to a refrigerant compressor comprising a hermetically sealed housing and a drive unit disposed in the interior of the housing,
wherein at least one damping element for damping and limiting a deflection of the drive unit is provided in the interior of the housing,
wherein the damping element is connected to the drive unit,
wherein the damping element has at least one first contact area,
wherein in a basic state of the drive unit the at least one first contact area has a distance to a corresponding inner surface area of the housing,
wherein in a first deflected state of the drive unit a first contact area is in contact with a corresponding first inner surface area of the housing,
wherein the surface of the first inner surface area is parallel to the outer surface of this first area of the housing.
There can be one or more damping elements which are connected to the drive unit. That the surface of the first inner surface area is parallel to the outer surface of this first area of the housing means that the housing has a wall which wall is deformed so that the wall thickness basically stays the same and the deformed inside and outside surface in this area is still basically parallel to each other. In other words the wall of the housing has an inner surface and an outer surface. In a first area of the housing the inner surface is called first inner surface area and the outer surface is called outer surface of this first area. The housing is normally produced from metal sheet by deep drawing or hydroforming.
The drive unit normally comprises a piston/cylinder unit for cyclical compression of a refrigerant, and an electric motor for drive of the piston/cylinder unit. In the basic state of the drive unit the at least one contact area has a distance to the inner wall of the housing.
In the case of refrigerant compressors that comprise a hermetically sealed housing and a drive unit disposed in the interior of the housing, relatively great forces occur, particularly during start and stop procedures, which forces lead to correspondingly relatively great deflections of the drive unit in the housing. In this regard, the drive unit, usually at its bottom side, is connected to the bottom of the housing for vibration damping, usually by way of spring elements, which permit deflection of the drive unit. Particularly in the case of refrigerant compressors having a variable speed of rotation, or refrigerant compressors having constant but lower speed, for example refrigerant compressors in mobile applications with fixed speed at about 2000 rpm, the spring elements must be designed in relatively soft manner because of the low speeds of rotation that occur during operation, and this in turn results in greater deflections of the drive unit. A damping apparatus is provided in order to prevent contact of the drive unit with the housing in this connection, especially with the top part of the housing. The top part of the housing is the part which faces upward when the compressor is in use.
Such damping apparatus according to the state of the art for example have a cap as an extra component, which is not part of the shape of the housing wall itself, disposed in the housing interior and rigidly connected with the housing—typically welded to the housing—which cap defines a movement volume, see e.g. WO 2016/166320 A1. A metal bolt is disposed in a clear cross-section of the cap, which bolt is rigidly connected with the drive unit (and not part of the drive unit) and the damping element which encloses the metal bolt is made of rubber. This damps and limits the deflection of the drive unit. However, such caps must be fixed additionally onto the housing. In FIG. 9 of WO 2016/166320 A1 there is no cap, instead the housing wall is suitably shaped, in order to limit the movement volume at least in certain sections. The housing wall as shown, however, does only give a defined limitation in vertical direction but no defined limitation in horizontal direction. Some embodiments of WO 2016/166320 A1 suggest a rotationally symmetric cap.
This is not enough for compressors which are used for mobile applications, like for cooling applications in vehicles, since there the drive unit of the compressor during its operation also experiences accelerations and retardations within its housing when the vehicle accelerates and breaks. Additionally, the inclination of the—operating—compressor changes when the vehicle ascends or descends a hill.
It is therefore the object of the invention to provide a refrigerant compressor that is suitable for use in mobile applications. In particular, the refrigerant compressor according to the invention is supposed to prevent or at least minimize disruptive noise development in connection with acceleration and retardation and inclination of the vehicle the refrigerant compressor is mounted to.
It is the core of the invention to further improve the damping properties and, in this regard, to particularly prevent metallic noises, in that a damping element composed of a polymer material or of vulcanized rubber is provided.
In this regard, a polymer material is understood to mean a material or plastic in accordance with DIN 7724, which comprises duroplastics, elastomers, thermoplastics and thermoplastic elastomers. From what has been said, it is evident that rubber, which can be produced both from a natural material and from a synthetic material, is a possible material for the damping element.
The invention relates to a refrigerant compressor according to claim 1. Accordingly, a refrigerant compressor is claimed comprising a hermetically sealed housing and a drive unit disposed in the interior of the housing,
wherein at least one damping element for damping and limiting a deflection of the drive unit is provided in the interior of the housing,
wherein the damping element is connected to the drive unit,
wherein the damping element has at least one first contact area,
wherein in a basic state of the drive unit the at least one first contact area has a distance to a corresponding inner surface area of the housing,
wherein in a first deflected state of the drive unit a first contact area is in contact with a corresponding first inner surface area of the housing,
wherein the surface of the first inner surface area is parallel to the outer surface of this first area of the housing.
According to the invention it is provided that
whereas the surface of the third inner surface area is parallel to the outer surface of this third area of the housing, whereas the third direction of movement from the basic state to the third deflected state is perpendicular to the second direction of movement from the basic state to the second deflected state and to the first direction of movement from the basic state to the first deflected state,
One benefit of having three different contact regions which can contact in different situations is that the drive unit has more freedom to move without touching during start/stop, that is more freedom for rotation movement, especially rotation in a horizontal plane.
According to the present invention the housing is formed such that it delimits the movement of the damping element (and thus of the drive unit) also in both lateral directions, i.e. in two distinct directions perpendicular to the vertical direction. In that first contact area, second contact area and third contact area are separated from each other by at least one edge, one contact area is separated from every other contact area. This allows defined characteristics of the damping element in one vertical and two lateral directions, whereas according to the state of the art, WO 2016/166320 A1, FIG. 1-8, a rotationally symmetric cap is suggested which treats all lateral directions the same. In FIG. 9 of WO 2016/166320 A1 the damping element again is rotationally symmetric and has the same properties in all lateral directions. In other words, this damping element has two contact areas, one on top and one in the form of the outer wall 31, the outer wall having constant curvature in circumferential direction. There is just one circular edge between the contact area on top and the outer wall 31.
An edge in connection with the present invention here is understood as an area of greater curvature than the neighboring contact areas. As a consequence of the edges of the damping element the inner surface areas of the housing normally are also separated by edges. Preferably the contact areas of the damping element are arranged adjacent to each other and separated from each other by one edge.
First, second or third deflected state of the drive unit each is an extreme state which describes 100% deflection in a certain direction. Such extreme state will hardly be reached during normal operation. During normal operation the drive unit will be in a superposition state of deflection with less than 100% deflection in all three directions.
One status of the damping element according to the invention can be that the first contact area is in contact with the corresponding first inner surface area of the housing and at the same time the second contact area is in contact with the corresponding second inner surface area of the housing. Another status of the damping element according to the invention can be that the first contact area is in contact with the corresponding first inner surface area of the housing and at the same time the third contact area is in contact with the corresponding third inner surface area of the housing. Another status of the damping element according to the invention can be that the second contact area is in contact with the corresponding second inner surface area of the housing and at the same time the third contact area is in contact with the corresponding third inner surface area of the housing.
Another status of the damping element according to the invention can be that the first contact area is in contact with the corresponding first inner surface area of the housing and at the same time the second contact area is in contact with the corresponding second inner surface area of the housing and at the same time the third contact area is in contact with the corresponding third inner surface area of the housing.
The housing, in particular the top part, generally has a continuous convex form which means that, in any cross section, the curve of the housing wall is continuously differentiable, there is no step or bend or edge. For forming the necessary inner surface areas the housing needs to deviate from this continuous convex form. So there can be convexities reaching above the original continuous convex form and there can be indentations, notches, concavities going below the original continuous convex form. From the viewpoint of the damping elements the three inner surface areas, which can be contacted, will constitute a bulge, irrespective if they are realised as convexities and/or as concavities of the continuous convex form of the housing. Bulges containing mainly convexities are bulges 18a,b in
In a second area of the housing the inner surface is called second inner surface area and the outer surface is called outer surface of this second area. In a third area of the housing the inner surface is called third inner surface area and the outer surface is called outer surface of this third area.
One embodiment of the invention consists in that the surface form of the first contact area of the damping element corresponds to the surface form of the first inner surface area of the housing, and/or the surface form of a second contact area of the damping element corresponds to the surface form of a second inner surface area of the housing, and/or the surface form of a third contact area of the damping element corresponds to the surface form of a third inner surface area of the housing. Correspondence here means that the surface form of the contact area of the damping element and the surface form of the related inner surface area of the housing are the same. So there is at least one status of form fit between this contact area of the damping element and the related inner surface area of the housing. For example, the surface form of the contact area of the damping element is a plane and the surface form of the related inner surface area of the housing also is a plane. Or in another example the surface form of the contact area of the damping element has a certain curvature and the surface form of the related inner surface area of the housing has the same curvature. Normally the surface of the contact area of the damping element and the surface of the related inner surface area of the housing are parallel in the basic state of the drive unit.
In a preferred embodiment of the refrigerant compressor according to the invention, at least two contact areas of the damping element are planar and oriented perpendicular to each other. A planar surface gives a defined stop in the direction perpendicular to the plane of the contact area. Accordingly, in this case the corresponding inner surface areas of the housing preferably will also be planar and oriented perpendicular to each other.
A preferred embodiment of the invention consists in that a third contact area of the damping element is planar and oriented perpendicular to the other two contact areas. This yields a defined stop in three directions of movement, perpendicular to the planes of the contact areas. Accordingly, in this case the three corresponding inner surface areas of the housing will preferably also be planar and oriented perpendicular to each other.
According to a preferred embodiment of the invention the damping element covers at least one protruding part of the drive unit in an amount of more than 180°, preferably more than 250°. Since the protruding part of the drive unit is a part of the drive unit itself, the protruding part and the drive unit are one-part, they are machined from one piece or molded as one piece. This solution is different from the bolts of the state of the art which have to be connected to the drive unit. The drive unit according to this embodiment of the invention can contain a so called block which itself contains e.g. the cylinder housing, and/or which contains the crankshaft bearing, and this block can have at least one protruding part.
Since the damping element in this case encompasses (in the sense of embraces) one protruding part of the drive unit in an amount of more than 180°, preferably more than 250°, this leads to a good connection with this part of the drive unit. The amount of degree can be measured if one places an axis through this protruding part and measures circumferentially from the beginning to the end of the damping element relative to this axis.
According to a preferred embodiment of the invention the protruding part of the drive unit has at least two, preferably three, planar surface areas which are covered by the damping element, which are oriented perpendicular to each other and which are oriented parallel to two, preferably three, planar contact areas of the damping element. In other words, the damping element then has constant thickness in each of the contact areas which supports a uniform damping effect for one contact area in the direction perpendicular to the respective contact area. The at least two, preferably three, planar surface areas of the protruding part are preferably adjacent to each other.
Given a certain rigidity of the damping element, the damping element can be snap-fit onto a, favorably protruding, part of the drive unit.
In an alternative embodiment of the invention the damping element can be injection molded to a part of the drive unit. This yields a very strong bond between damping element and the part of the drive unit.
In one embodiment of the invention, for one damping element, in a fourth deflected state of the drive unit a fourth contact area is in contact with a corresponding fourth inner surface area of the housing,
whereas the surface of the fourth inner surface area is parallel to the outer surface of this fourth area of the housing, whereas the fourth direction of movement from the basic state to the fourth deflected state is antiparallel to the direction of movement from the basic state to the second deflected state.
This means that one damping element provides for an additional limitation in a fourth direction which fourth direction is antiparallel to one of the necessary first, second and third directions. So the damping element has two contact areas opposite to each other, especially parallel to each other, one acting e.g. in positive direction of an axis and the other acting in negative direction of the same axis. Assuming that first, second and third direction of movement from the basic state to first, second and third deflected state is along positive x-axis, positive y-axis and positive z-axis of an orthogonal coordinate system, then this damping element additionally provides for a defined limitation in the direction of e.g. the negative y-axis. See
Starting from this embodiment (with four contact areas per damping element) one further embodiment consists in that there are two such damping elements whereas the directions of movement from the basic state to the third deflected state are antiparallel. Assuming that first, second and third direction of movement from the basic state to first, second and third deflected state is along positive x-axis, positive y-axis and positive z-axis of an orthogonal coordinate system, and fourth direction of movement from the basic state to fourth deflected state is along the negative y-axis, then the two damping elements together additionally allow for a defined limitation in the direction of e.g. the negative x-axis. See
In another embodiment of the invention, there is a first and a second damping element, whereas the first direction of movement from the basic state to the first deflected state and the third direction of movement from the basic state to the third deflected state is the same for both damping elements, and the directions of movement from the basic state to the second deflected state are antiparallel. Assuming that first, second and third direction of movement from the basic state to first, second and third deflected state is along positive x-axis, positive y-axis and positive z-axis of an orthogonal coordinate system, then these two damping elements together provide for a defined limitation in the direction of e.g. positive x-axis, positive y-axis, positive z-axis and negative y-axis. See
Starting from this embodiment, one further embodiment consists in that there are a third and a fourth damping element, whereas the first direction of movement from the basic state to the first deflected state is the same for all four damping elements, whereas the direction of movement from the basic state to the second deflected state is antiparallel to each other and whereas the direction of movement from the basic state to the third deflected state is antiparallel to the first and second damping element. These four damping elements together provide for a defined limitation in the direction of e.g. positive x-axis, positive y-axis, positive z-axis, negative y-axis and negative x-axis. See
In order to provide different movement characteristics in different directions, one embodiment of the invention consists in that in a basic state of the drive unit the first contact area has a first distance to the corresponding first inner surface area of the housing, the second contact area has a second distance to the corresponding second inner surface area of the housing and the third contact area has a third distance to the corresponding third inner surface area of the housing, and in that one of these distances is different from another of these distances. So the gaps between damping element and housing can be adapted to the clearing which is needed along the three different orthogonal axes. If the drive unit shall be allowed a greater movement in a first direction then in the basic state the distance between the first contact area of the damping element and the first inner surface area of the housing is greater than for other directions.
Another embodiment of the invention to provide different movement characteristics in different directions consists in that there is a first thickness of the damping element measured at the first contact area, a second thickness of the damping element measured at the second contact area and a third thickness of the damping element measured at the third contact area, and in that one of these thicknesses is different from another of these thicknesses. The thickness of a damping element can also be used to adjust the distance (gap) between a certain contact area of the damping element and the corresponding inner surface area of the housing. If, for certain applications of the same compressor, a higher deflection of the drive unit in a certain direction shall be allowed then the gap for movement in this direction can be increased by using a damping element with less thickness in that certain direction. So based on the same drive unit, especially with the same protruding parts, a series of compressors can be realized by using damping elements with different thicknesses for at least one contact area. A change from one such compressor type to another compressor type then is very easy when the damping elements are only snap-fit onto the (protruding parts of) the drive unit.
In order to provide movement of the drive unit to some extent without limitation, one embodiment of the invention consists in that for a certain damping element the dimensions of first, second and third inner surface area of the housing are dimensioned so that until a certain partly deflected state of the drive unit the drive unit can move without contacting first, second and third inner surface area. See
It is also possible to have damping elements according to the invention mounted on the drive unit in the bottom part of the housing, i.e. the bottom part of the drive unit then has at least three respective inner surface areas which are parallel to the outer surface of this area of the housing. Such damping elements are not so effective like damping elements in the top part of the housing because they are too close to the usually provided springs for connecting the drive unit with the bottom part of the housing.
The invention will now be explained in greater detail using exemplary embodiments. The drawings are meant as examples and are supposed to present the idea of the invention, but by no means to restrict it or to reproduce it in final manner.
In this regard, the figures show:
A first embodiment of a refrigerant compressor according to the invention is shown in
The drive unit 6 is connected to the bottom part 15 of the housing 5 by means of spring elements, not shown, for vibration damping, so that deflections of the drive unit 6 can come about, particularly during start and stop procedures.
Two bracket-formed damping elements 8a,b are provided on the drive unit 6, namely on the upper side of block 19 which, beside other functions, acts as the cylinder housing. Damping elements 8a,b prevent the drive unit 6 from making contact with the top part 16 of the housing 5. Every movement or deflection of the drive unit 6 brings about a corresponding deflection of the damping elements 8a,b. The damping element 8a,b can move in a certain extent without touching the top part 16 housing 5. In normal operation, this makes a certain deflection of the drive unit 6 possible. At very big deflections, such as they occur, in particular, during start and stop procedures of the compressor, the damping element 8a,b touches the housing 5, thereby causing the damping element 8a,b to be elastically deformed and pressed against the housing 5. This damps and limits the deflection of the drive unit 6, and at the same time does not result in undesirable noise development.
For easier reference the following directions and orthogonal axes are defined:
Damping element 8a is mounted surrounding partially block 19 at the cylinder housing. So damping element 8a is situated nearer to the side of the compressor where the cylinder cover 21 and/or the valve plate is situated. Damping element 8b is situated nearer to the opposite side of the compressor. Both damping elements 8a,b have the form of a bracket and are symmetric to a plane defined by the cylinder axis or piston axis (=x-axis) and z-axis. Both lateral ends (parallel to the y-axis) of the damping elements 8a,b each form three contact areas 1,2,3 or 1,3,4.
Referring to
Damping element 8a on its far end in
So damping element 8a is able to limit movement of the drive unit 6 in the positive z-, y- and x-direction as well as in negative y-direction.
Referring to
Damping element 8b on its far end in
So damping element 8b is able to limit movement of the drive unit 6 in the positive z- and y-direction as well as in negative x- and y-direction. The third contact areas 3 on the far and near end here form in fact one common plane surface.
Both damping elements 8a,b together limit movement of the drive unit 6 in the positive z-direction, in positive and negative y-direction as well as in in positive and negative x-direction. Damping elements 8a,b are not able to limit movement of the drive unit 6 in negative z-direction.
The top part 16 of a housing 5 generally has a continuous convex form which means that, in any cross section, the curve of the housing wall is continuously differentiable, there is no step or bend. Now the top part 16 according to the invention has one bulge 18a and two bulges 18b. Each bulge 18a,b has three surfaces which are oriented orthogonally to each other. Bulge 18a has two planar surfaces which are orthogonal to the y-axis and one planar surface which is orthogonal to the x-axis. The surface which is orthogonal to the z-axis is slightly curved (smaller than 20°, favourably smaller than 10°) so that in the region where the damping element 8a touches the bulge 18a the surface is almost plane. First contact area 1 of bulge 18a can follow the curved surface form of bulge 18a. All bulges 18b have one planar surface which is orthogonal to the z-axis, one planar surface which is orthogonal to the y-axis and one planar surface which is orthogonal to the x-axis. So bulge 18a covers the whole length of damping element 8a. Damping element 8b is limited by two bulges 18b which are separated from another by another area of top part 16.
A second embodiment of a refrigerant compressor according to the invention is shown in
Four cap-formed damping elements 7a,b,c,d are provided on the drive unit 6, namely on the upper side of block 19 which, beside other functions, acts as the cylinder housing. Damping elements 7a,b,c,d prevent the drive unit 6 from making contact with the top part 16 of the housing 5. Every movement or deflection of the drive unit 6 brings about a corresponding deflection of the damping elements 7a,b,c,d. The damping element 7a,b,c,d can move in a certain extent without touching the top part 16 of housing 5. In normal operation, this makes a certain deflection of the drive unit 6 possible. At very great deflections, such as they occur, in particular, during start and stop procedures or during transport, e.g. the vehicle containing the compressor is moving, climbing or descending a hill, thus causing an inclination of the compressor, the damping element 7a,b,c,d touches the top part 16 of the housing 5, thereby causing the damping element 7a,b,c,d to be elastically deformed and pressed against the housing 5. This damps and limits the deflection of the drive unit 6, and at the same time does not result in undesirable noise development.
Damping elements 7a,b,c,d basically have the same form whereas damping element 7a is oriented symmetrical to damping element 7b and damping element 7c is oriented symmetrical to damping elements 7d, always with relation to a vertical symmetry plane through the axis of the cylinder and/or to the crankshaft. In this example the cylinder axis plane is not exactly the same as the crankshaft bearing plane, so damping elements 7a,b are symmetric to the cylinder axis plane and damping elements 7c,d are symmetric to the crankshaft bearing plane. In other examples the cylinder axis plane may be the same as the crankshaft bearing plane.
For easier reference the same directions and orthogonal axes as in
Damping elements 7a,b are mounted surrounding a protruding part 20 of block 19 protruding from the cylinder housing. So damping elements 7a,b are situated nearer to the side of the compressor where the cylinder cover 21 and/or the valve plate is situated. Damping elements 7c,d are situated nearer to the opposite side of the compressor. All damping elements 7a,b,c,d form three contact areas 1-3 which are in use. Each contact area 1-3 contains, here is, an even surface and the three surfaces are oriented orthogonally to each other. In fact every damping element 7a,b,c,d forms four contact areas including two third contact areas 3, however, from the two third contact areas acting in direction of the x-axis only one contact area is in use.
Referring to
Damping element 7b features one first contact area 1 on the top. This first contact area 1, here in the form of an even surface, is intended to limit movement of the drive unit 6 along the positive z-axis by contacting the inside of top part 16 of the housing 5 on its top. The top part 16 adjacent to the corresponding bulge 17a for this reason has been made parallel to the axis of the cylinder. Damping element 7b features one second contact area 2, here in the form of an even surface, facing towards the negative y-axis. This second contact area 2 is intended to limit movement of the drive unit 6 along the negative y-axis by contacting the inside of corresponding bulge 17a on its respective side wall. Damping element 7b features one third contact area 3, here in the form of an even surface, facing towards the positive x-axis. This third contact area 3 is intended to limit movement of the drive unit 6 along the positive x-axis by contacting the inside of corresponding bulge 17a on its respective side wall.
Damping element 7c features one first contact area 1 on the top. This first contact area 1, here in the form of an even surface, is intended to limit movement of the drive unit 6 along the positive z-axis by contacting the inside of bulge 17b on its top. Damping element 7c features one second contact area 2, here in the form of an even surface, facing towards the positive y-axis. This second contact area 2 is intended to limit movement of the drive unit 6 along the positive y-axis by contacting the inside of corresponding bulge 17b on its respective side wall. Damping element 7c features one third contact area 3, here in the form of an even surface, facing towards the negative x-axis. This third contact area 3 is intended to limit movement of the drive unit 6 along the negative x-axis by contacting the inside of corresponding bulge 17b on its respective side wall.
Damping element 7d features one first contact area 1 on the top. This first contact area 1, here in the form of an even surface, is intended to limit movement of the drive unit 6 along the positive z-axis by contacting the inside of bulge 17b on its top. Damping element 7d features one second contact area 2, here in the form of an even surface, facing towards the negative y-axis. This second contact area 2 is intended to limit movement of the drive unit 6 along the negative y-axis by contacting the inside of corresponding bulge 17b on its respective side wall. Damping element 7d features one third contact area 3, here in the form of an even surface, facing towards the negative x-axis. This third contact area 3 is intended to limit movement of the drive unit 6 along the negative x-axis by contacting the inside of corresponding bulge 17b on its respective side wall.
All four damping elements 7a,b,c,d together limit movement of the drive unit 6 in the positive z-direction, in positive and negative y-direction as well as in in positive and negative x-direction. Damping elements 7a,b,c,d are not able to limit movement of the drive unit 6 in negative z-direction.
The top part 16 according to this second embodiment of the invention has one bulge 17a for damping elements 7a,b and two bulges 17b, one for damping element 7c and one for damping element 7d. Each bulge 17b has three surfaces which are oriented orthogonally to each other. Bulge 17a has two surfaces 12,13 which are oriented orthogonally to each other, the first inner surface area 11 is curved. All bulges 17b have one plane surface which is orthogonal to the z-axis, one plane surface which is orthogonal to the y-axis and one plane surface which is orthogonal to the x-axis. Bulge 17a has one plane surface which is orthogonal to the y-axis and one plane surface which is orthogonal to the x-axis. The surface which is orthogonal to the z-axis is slightly curved (smaller than 20°, favourably smaller than 10°) so that in the limited region where the damping elements 7a,b touch the bulge 17a the surface is almost plane. Accordingly, the first inner surface areas 11 still realize a defined stop for the plane first contact areas 1 of damping elements 7a,b.
The housing 5 has a wall which wall is deformed so that the wall thickness basically stays the same and the deformed inside and outside surface in this area is still basically parallel to each other. Of course, due to the deformation the thickness, especially in areas with a high curvature, may be reduced, but this is still understood as the wall thickness basically staying the same before and after deformation according to the invention.
When the thickness of the damping elements 7a-d under first contact area 1 is bigger than for the other contact areas 2,3 this generally can enhance the stiffness of this central part of the damping element and this can help to avoid an unintended slip-off of the damping element from the protruding part 20,23 if the damping element is snap-fit to the protruding part 20,23. Basically, the thickness of the damping elements 7a-d,8a,b can be chosen freely, keeping a minimum amount of material that will avoid cracking or failure of the damping elements 7a-d,8a,b during the life of the compressor.
The surface of the protruding parts 20,23 beneath the first contact area 1 is planar and thus parallel to the first contact area 1. The surface of the protruding parts 20,23 beneath the third contact area 3 is planar and thus parallel to the third contact area 3.
The first inner surface area 11 of the housing 5, which corresponds to the first contact area 1 of the damping element 7a,c, is parallel to the first contact area 1. This is at least true for a first inner surface area 11 corresponding to 30-40% of the first contact area 1 on the right of damping element 7a in
The block 19 also comprises the crankshaft bearing 24.
Seen in the positive z-direction, the protruding part 20 should preferably not be higher than the upper side of the block 19 at the cylinder housing, thus not increasing the total height of the compressor. It can be allowed to go slightly above this height if the curvature of the housing 5 allows so.
The surface of the protruding parts 20 beneath the first contact area 1 is planar and thus parallel to the first contact area 1. The surface of the protruding parts 20 beneath the second contact area 2 is planar and thus parallel to the second contact area 2.
The first inner surface area 11 of the housing 5, which corresponds to the first contact area 1 of the damping element 7a,b, is curved in this section. So the surface form of the of the first inner surface area 11 does not correspond to the form of the first contact area 1 of the damping element 7a,b. The second inner surface area 12 of the top part 16 of the housing 5, which corresponds to the second contact area 2 of the damping element 7a,b, is planar. This is at least true for a second inner surface area 12 corresponding to 10-20% of the second contact area 2 on the top of damping element 7a in
The drive unit 6 and its block 19 is in the basic position, the damping elements 7c,d are not deflected. In this view one can see that damping element 7c,d each encloses protruding part 23 in an amount of approximately 250°, as in
In
The damping elements 7a-d,8a,b are composed of a polymer material or vulcanized natural rubber, particularly composed of rubber. The damping elements 7a-d,8a,b can be injection molded or snapped on to the protruding parts 20, 23 of the drive unit 6.
In
A typical thickness of a metal sheet for forming top part 16 of the housing 5 is 2 to 4 mm. A typical diameter of the housing 5, measured along x- or y-axis, is 100 to 150 mm, or even more for bigger compressors.
In
In
In
In
In a combination of
Number | Date | Country | Kind |
---|---|---|---|
19170524 | Apr 2019 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3385542 | Enemark et al. | May 1968 | A |
4312627 | Jacobs et al. | Jan 1982 | A |
20160195080 | Miguel et al. | Jul 2016 | A1 |
20180087494 | Brune et al. | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
2016166320 | Oct 2016 | WO |
Entry |
---|
Europe Search Report/Office Action conducted in counerpart Europe Appln. No. EP 19 17 0524 (dated Jul. 25, 2019). |
Number | Date | Country | |
---|---|---|---|
20200340720 A1 | Oct 2020 | US |