REFRIGERANT-CONTAINING COMPOSITION, USE THEREOF AND REFRIGERATOR COMPRISING SAME, AND METHOD FOR OPERATING SAID REFRIGERATOR

Information

  • Patent Application
  • 20220380649
  • Publication Number
    20220380649
  • Date Filed
    August 03, 2022
    2 years ago
  • Date Published
    December 01, 2022
    2 years ago
Abstract
Provided is a refrigerant composition having two types of performance, i.e., a coefficient of performance that is equivalent to that of R410A and a sufficiently low GWP. Provided is a composition comprising a refrigerant, the refrigerant comprising trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO-1123), and difluoromethane (R32) at specific concentrations.
Description
TECHNICAL FIELD

The present disclosure relates to a composition comprising a refrigerant, use of the composition, a refrigerating machine having the composition, and a method for operating the refrigerating machine.


BACKGROUND ART

R410A is currently used as an air conditioning refrigerant for home air conditioners etc. R410A is a two-component mixed refrigerant of difluoromethane (CH2F2; HFC-32 or R32) and pentafluoroethane (C2HF5; HFC-125 or R125), and is a pseudo-azeotropic composition.


However, the global warming potential (GWP) of R410A is 2088. Due to growing concerns about global warming, R32, which has a GWP of 675, has been increasingly used.


For this reason, various low-GWP mixed refrigerants that can replace R410A have been proposed (PTL 1).


CITATION LIST
Patent Literature



  • PTL 1: WO2015/141678



SUMMARY OF INVENTION
Technical Problem

The present inventors performed independent examination, and conceived of the idea that no prior art had developed refrigerant compositions having two types of performance, i.e., a coefficient of performance (COP) that is equivalent to that of R410A and a sufficiently low GWP. An object of the present disclosure is to solve this unique problem.


Solution to Problem
Item 1

A composition comprising a refrigerant, the refrigerant comprising trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO-1123), and difluoromethane (R32), wherein


when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:

  • point I (72.0, 28,0, 0.0),
  • point K (48.4, 33.2, 18.4),
  • point B′ (0.0, 81.6, 18.4),
  • point H (0.0, 86.1, 13.9),
  • point R (20.6, 69.9, 9.5), and
  • point G (38.5, 61.5,0.0),


    or on these line segments (excluding the points on the line segments B′H and GI);


the line segment IK is represented by coordinates (0.025z2−1.7429 z+72.00, −0.025z2+0.7429z+28.0, z),


the line segment HR is represented by coordinates (−0.6198z2+9.8223z−16.772, 0.6198z2−10.8223 z+116.772, z),


the line segment RG is represented by coordinates (−0.072z2−1.1998 z+38.5, 0.072z2+0.1998z+61.5, z), and


the line segments KB′, B′H and GI are straight lines.


Item 2

A composition comprising a refrigerant, the refrigerant comprising HFO-1132 (E), HFO-1123, and R32, wherein


when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IJ, JR, RG, and GI that connect the following 4 points:

  • point I (72.0, 28,0,0.0),
  • point J (57.7, 32.8,9.5),
  • point R (20.6, 69.9,9.5), and
  • point G (38.5, 61.5,0.0),


    or on these line segments (excluding the points on the line segment GI);


the line segment IJ is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),


the line segment RG is represented by coordinates (−0.072z2−1.1998z+38.5, 0.072z2+0.1998z+61.5, z), and


the line segments JR and GI are straight lines.


Item 3

A composition comprising a refrigerant, the refrigerant comprising HFO-1132 (E), HFO-1123, and R32, wherein


when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:

  • point M (47.1, 52.9,0.0),
  • point P (31.8, 49.8,18.4),
  • point B′(0.0, 81.6,18.4),
  • point H (0.0, 86.1,13.9),
  • point R (20.6, 69.9,9.5), and
  • point G (38.5, 61.5,0.0),


    or on these line segments (excluding the points on the line segments B′H and GM);


the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),


the line segment HR is represented by coordinates (−0.6198z2+9.8223z−16.772, 0.6198z2−10.8223z+116.772, z),


the line segment RG is represented by coordinates (−0.072z2−1.1998z+38.5, 0.072z2+0.1998z+61.5, z), and


the line segments PB′, B′H and GM are straight lines.


Item 4

A composition comprising a refrigerant, the refrigerant comprising HFO-1132 (E), HFO-1123, and R32, wherein


when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:

  • point M (47.1, 52.9,0.0),
  • point N (38.5, 52.0,9.5),
  • point R (20.6, 69.9,9.5), and
  • point G (38.5, 61.5,0.0),


    or on these line segments (excluding the points on the line segment GM);


the line segment MN is represented by coordinates (0.0083z2−0.984 z+47.1, −0.0083z2−0.016z+52.9, z),


the line segment RG is represented by coordinates (−0.072z2−1.1998z+38.5, 0.072z2+0.1998z+61.5, z), and


the line segments NR and GM are straight lines.


Item 5

A composition comprising a refrigerant, the refrigerant comprising HFO-1132 (E), HFO-1123, and R32, wherein


when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:

  • point P (31.8, 49.8, 18.4),
  • point S (24.9, 56.7, 18.4), and
  • point T (35.0, 51.1, 13.9),


    or on these line segments;


the line segment ST is represented by coordinates (−0.0632z2−0.2026z+50.03, 0.0632z2−0.7974z+49.97, z),


the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and


the line segment PS is a straight line.


Item 6

A composition comprising a refrigerant, the refrigerant comprising HFO-1132 (E), HFO-1123, and R32, wherein


when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments C′L, LB″, B″D, DU, and UC′ that connect the following 5 points:

  • point C′(47.8, 33.1,19.1),
  • point L (35.5, 27.5,37.0),
  • point B″(0.0, 63.0,37.0),
  • point D (0.0, 67.0,33.0), and
  • point U (28.9, 42.6,28.5),


    or on these line segments (excluding the points on the line segment B″D);


the line segment C′L is represented by coordinates (0.0098z2−1.238z+67.852, −0.0098z2+0.238z+32.148, z),


the line segment DU is represented by coordinates (−1.3777z2+78.306z−1083.8, 1.3777z2−79.306z+1183.8, z),


the line segment UC′ is represented by coordinates (−0.0656z2+1.1139z+50.472, 0.0656z2−2.1139z+49.528, z), and


the line segments LB″ and B″D are straight lines.


Item 7

A composition comprising a refrigerant, the refrigerant comprising HFO-1132 (E), HFO-1123, and R32, wherein


when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:

  • point Q (29.5, 33.5,37.0),
  • point B″(0.0, 63.0,37.0),
  • point D (0.0, 67.0,33.0), and
  • point U (28.9, 42.6,28.5),


    or on these line segments (excluding the points on the line segment B″D);


the line segment DU is represented by coordinates (−1.3777z2+78.306z−1083.8, 1.3777z2−79.306z+1183.8, z),


the line segment UQ is represented by coordinates (0.0192z2−1.1891z+47.168, −0.0192z2+0.1891z+52.832, z), and


the line segments QB″ and B″D are straight lines.


Item 8

A composition comprising a refrigerant, the refrigerant comprising HFO-1132 (E), HFO-1123, and R32, wherein


when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′e′, e′ a′, and a′O that connect the following 5 points:

  • point O (100.0, 0.0,0.0),
  • point c′(56.7, 43.3,0.0),
  • point d′(52.2, 38.3,9.5),
  • point e′(41.8, 39.8,18.4), and
  • point a′(81.6, 0.0,18.4),


or on the line segments c′d′, d′e′, and e′ a′ (excluding the points c′ and a′);


the line segment c′d′ is represented by coordinates (−0.0297z2−0.1915z+56.7, 0.0297z2−0.8085z+43.3, z),


the line segment d′e′ is represented by coordinates (−0.0535z2+0.3229z+53.957, 0.0535z2−1.3229z+46.043, z), and


the line segments Oc′, e′ a′, and a′O are straight lines.


Item 9

A composition comprising a refrigerant, the refrigerant comprising trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO-1123), and difluoromethane (R32), wherein


when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, de, ea′, and a′O that connect the following 5 points:

  • point O (100.0, 0.0,0.0),
  • point c (77.7, 22.3,0.0),
  • point d (76.3, 14.2,9.5),
  • point e (72.2, 9.4,18.4), and
  • point a′(81.6, 0.0,18.4),


    or on the line segments cd, de, and ea′ (excluding the points c and a′);


the line segment cde is represented by coordinates (−0.017z2+0.0148z+77.684, 0.017z2−1.0148z+22.316, z), and


the line segments Oc, ea′, and a′O are straight lines.


Item 10

A composition comprising a refrigerant, the refrigerant comprising trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO-1123), and difluoromethane (R32), wherein


when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′ a, and aO that connect the following 4 points:

  • point O (100.0, 0.0,0.0),
  • point c′(56.7, 43.3,0.0),
  • point d′(52.2, 38.3,9.5), and
  • point a (90.5, 0.0,9.5),


    or on the line segments c′d′ and d′ a (excluding the points c′ and a);


the line segment c′d′ is represented by coordinates (−0.0297z2−0.1915z+56.7, 0.0297z2−0.8085z+43.3, z), and


the line segments Oc′, d′ a, and aO are straight lines.


Item 11

A composition comprising a refrigerant, the refrigerant comprising trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO-1123), and difluoromethane (R32), wherein


when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, da, and aO that connect the following 4 points:

  • point O (100.0, 0.0,0.0),
  • point c (77.7, 22.3,0.0),
  • point d (76.3, 14.2,9.5), and
  • point a (90.5, 0.0,9.5),


    or on the line segments cd and da (excluding the points c and a);


the line segment cd is represented by coordinates (−0.017z2+0.0148z+77.684, 0.017z2−1.0148z+22.316, z), and the line segments Oc, da, and aO are straight lines.


Item 12

The composition according to any one of Items 1 to 11, for use as a working fluid for a refrigerating machine, wherein the composition further comprises a refrigeration oil.


Item 13

The composition according to any one of Items 1 to 12, for use as an alternative refrigerant for R410A.


Item 14

Use of the composition according to any one of Items 1 to 12 as an alternative refrigerant for R410A.


Item 15

A refrigerating machine comprising the composition according to any one of claims 1 to 12 as a working fluid.


Item 16

A method for operating a refrigerating machine, comprising the step of circulating the composition according to any one of claims 1 to 12 as a working fluid in a refrigerating machine.


Advantageous Effects of Invention

The refrigerant according to the present disclosure has two types of performance, i.e., a coefficient of performance that is equivalent to that of R410A and a sufficiently low GWP.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a schematic view of an apparatus used in a flammability test.



FIG. 2 is a view showing points A to U; and line segments that connect the points in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass %.





DESCRIPTION OF EMBODIMENTS

The present inventors conducted intensive studies to solve the above problem, and consequently found that a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (HFC-32 or R32) has the properties described above.


The present disclosure has been completed as a result of further research based on this finding. The present disclosure includes the following embodiments.


DEFINITION OF TERMS

In the present specification, the term “refrigerant” includes at least compounds that are specified in ISO 817 (International Organization for Standardization), and that are given a refrigerant number (ASHRAE number) representing the type of refrigerant with “R” at the beginning; and further includes refrigerants that have properties equivalent to those of such refrigerants, even though a refrigerant number is not yet given.


Refrigerants are broadly divided into fluorocarbon compounds and non-fluorocarbon compounds in terms of the structure of the compounds. Fluorocarbon compounds include chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), and hydrofluorocarbons (HFC). Non-fluorocarbon compounds include propane (R290), propylene (R1270), butane (R600), isobutane (R600a), carbon dioxide (R744), ammonia (R717), and the like.


In the present specification, the phrase “composition comprising a refrigerant” at least includes (1) a refrigerant itself (including a mixture of refrigerants), (2) a composition that further comprises other components and that can be mixed with at least a refrigeration oil to obtain a working fluid for a refrigerating machine, and (3) a working fluid for a refrigerating machine containing a refrigeration oil. In the present specification, of these three embodiments, the composition (2) is referred to as a “refrigerant composition” so as to distinguish it from a refrigerant itself (including a mixture of refrigerants). Further, the working fluid for a refrigerating machine (3) is referred to as a “refrigeration oil-containing working fluid” so as to distinguish it from the “refrigerant composition.”


In the present specification, when the term “alternative” is used in a context in which the first refrigerant is replaced with the second refrigerant, the first type of “alternative” means that equipment designed for operation using the first refrigerant can be operated using the second refrigerant under optimum conditions, optionally with changes of only a few parts (at least one of the following: refrigeration oil, gasket, packing, expansion valve, dryer, and other parts) and equipment adjustment. In other words, this type of alternative means that the same equipment is operated with an alternative refrigerant. Embodiments of this type of “alternative” include “drop-in alternative,” “nearly drop-in alternative,” and “retrofit,” in the order in which the extent of changes and adjustment necessary for replacing the first refrigerant with the second refrigerant is smaller.


The term “alternative” also includes a second type of “alternative,” which means that equipment designed for operation using the second refrigerant is operated for the same use as the existing use with the first refrigerant by using the second refrigerant. This type of alternative means that the same use is achieved with an alternative refrigerant.


In the present specification, the term “refrigerating machine” refers to machines in general that draw heat from an object or space to make its temperature lower than the temperature of ambient air, and maintain a low temperature. In other words, refrigerating machines refer to conversion machines that gain energy from the outside to do work, and that perform energy conversion, in order to transfer heat from where the temperature is lower to where the temperature is higher.


In the present specification, a refrigerant having “WCF lower flammability” means that the most flammable composition (worst case of formulation for flammability: WCF) has a burning velocity of 10 cm/s or less according to the US ANSI/ASHRAE Standard 34-2013. Further, in the present specification, a refrigerant having “ASHRAE lower flammability” means that the burning velocity of WCF is 10 cm/s or less, that the most flammable fraction composition (worst case of fractionation for flammability: WCFF), which is specified by performing a leakage test during storage, shipping, or use based on ANSI/ASHRAE 34-2013 using WCF, has a burning velocity of 10 cm/s or less, and that the flammability classification according to the US ANSI/ASHRAE Standard 34-2013 is determined to be classified as “Class 2L.”


1. Refrigerant
1.1 Refrigerant Component

The refrigerant according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132 (E)), trifluoroethylene (HFO-1123), and difluoromethane (R32).


The refrigerant according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a coefficient of performance equivalent to that of R410A and a sufficiently low GWP.


The refrigerant according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:

  • point I (72.0, 28,0,0.0),
  • point K (48.4, 33.2,18.4),
  • point B′(0.0, 81.6,18.4),
  • point H (0.0, 86.1,13.9),
  • point R (20.6, 69.9, 9.5), and
  • point G (38.5, 61.5, 0.0),


    or on these line segments (excluding the points on the line segments B′H and GI);


the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),


the line segment HR is represented by coordinates (−0.6198z2+9.8223z−16.772, 0.6198z2−10.8223z+116.772, z),


the line segment RG is represented by coordinates (−0.072z2−1.1998z+38.5, 0.072z2+0.1998z+61.5, z), and


the line segments KB′, B′H and GI are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IJ, JR, RG, and GI that connect the following 4 points:

  • point I (72.0, 28,0, 0.0),
  • point J (57.7, 32.8, 9.5),
  • point R (20.6, 69.9, 9.5), and
  • point G (38.5, 61.5, 0.0),


    or on these line segments (excluding the points on the line segment GI);


the line segment IJ is represented by coordinates (0.025z2−1.7429 z+72.0, −0.025z2+0.7429z+28.0, z),


the line segment RG is represented by coordinates (−0.072z2−1.1998 z+38.5, 0.072z2+0.1998z+61.5, z), and


the line segments JR and GI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 65 or less.


The refrigerant according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:

  • point M (47.1, 52.9, 0.0),
  • point P (31.8, 49.8, 18.4),
  • point B′(0.0, 81.6, 18.4),
  • point H (0.0, 86.1, 13.9),
  • point R (20.6, 69.9, 9.5), and
  • point G (38.5, 61.5, 0.0),


    or on these line segments (excluding the points on the line segments B′H and GM);


the line segment MP is represented by coordinates (0.0083z2−0.984 z+47.1, −0.0083z2−0.016 z+52.9, z),


the line segment HR is represented by coordinates (−0.6198z2+9.8223z−16.772, 0.6198z2−10.8223 z+116.772, z),


the line segment RG is represented by coordinates (−0.072z2−1.1998 z+38.5, 0.072z2+0.1998z+61.5, z), and


the line segments PB′, B′H and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:

  • point M (47.1, 52.9, 0.0),
  • point N (38.5, 52.0, 9.5),
  • point R (20.6, 69.9, 9.5), and
  • point G (38.5, 61.5, 0.0),


    or on these line segments (excluding the points on the line segment GM);


the line segment MN is represented by coordinates (0.0083z2−0.984 z+47.1, −0.0083z2−0.016 z+52.9, z),


the line segment RG is represented by coordinates (−0.072z2−1.1998 z+38.5, 0.072z2+0.1998z+61.5, z), and


the line segments NR and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 65 or less.


The refrigerant according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:

  • point P (31.8, 49.8, 18.4),
  • point S (24.9, 56.7, 18.4), and
  • point T (35.0, 51.1, 13.9),


    or on these line segments;


the line segment ST is represented by coordinates (−0.0632z2−0.2026 z+50.03, 0.0632z2−0.7974 z+49.97, z),


the line segment TP is represented by coordinates (0.0083z2-0.984 z+47.1, −0.0083z2−0.016 z+52.9, z), and


the line segment PS is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 94.5% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments C′L, LB″, B″D, DU, and UC″ that connect the following 5 points:

  • point C′(47.8, 33.1, 19.1),
  • point L (35.5, 27.5, 37.0),
  • point B″ (0.0, 63.0, 37.0),
  • point D (0.0, 67.0, 33.0), and
  • point U (28.9, 42.6, 28.5),


    or on these line segments (excluding the points on the line segment B″D);


the line segment C′L is represented by coordinates (0.0098z2−1.238 z+67.852, −0.0098z2+0.238z+32.148, z),


the line segment DU is represented by coordinates (−1.3777z2+78.306z−1083.8, 1.3777z2−79.306 z+1183.8, z),


the line segment UC′ is represented by coordinates (−0.0656z2+1.1139z+50.472, 0.0656z2−2.1139 z+49.528, z), and


the line segments LB″ and B″D are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 96% or more relative to that of R410A, and a GWP of 250 or less.


The refrigerant according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:

  • point Q (29.5, 33.5, 37.0),
  • point B″(0.0, 63.0, 37.0),
  • point D (0.0, 67.0, 33.0), and
  • point U (28.9, 42.6, 28.5),


    or on these line segments (excluding the points on the line segment B″D);


the line segment DU is represented by coordinates (−1.3777z2+78.306z−1083.8, 1.3777z2−79.306 z+1183.8, z),


the line segment UQ is represented by coordinates (0.0192z2−1.1891 z+47.168, −0.0192z2+0.1891z+52.832, z), and


the line segments QB″ and B″D are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 96% or more relative to that of R410A, and a GWP of 250 or less.


The refrigerant according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′e′, e′ a′, and a′O that connect the following 5 points:

  • point O (100.0, 0.0, 0.0),
  • point c′(56.7, 43.3, 0.0),
  • point d′(52.2, 38.3, 9.5),
  • point e′(41.8, 39.8, 18.4), and
  • point a′(81.6, 0.0, 18.4),


    or on the line segments c′d′, d′e′, and e′ a′ (excluding the points c′ and a′);


the line segment c′d′ is represented by coordinates (−0.0297z2−0.1915 z+56.7, 0.0297z2−0.8085 z+43.3, z),


the line segment d′e′ is represented by coordinates (−0.0535z2+0.3229z+53.957, 0.0535z2−1.3229 z+46.043, z), and


the line segments Oc′, e′ a′, and a′O are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 92.5% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, de, ea′, and a′O that connect the following 5 points:

  • point O (100.0, 0.0, 0.0),
  • point c (77.7, 22.3, 0.0),
  • point d (76.3, 14.2, 9.5),
  • point e (72.2, 9.4, 18.4), and
  • point a′ (81.6, 0.0, 18.4), or on the line segments cd, de, and ea′ (excluding the points c and a′);


the line segment cde is represented by coordinates (−0.017z2+0.0148z+77.684, 0.017z2−1.0148 z+22.316, z), and


the line segments Oc, ea′, and a′O are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′ a, and aO that connect the following 4 points:

  • point O (100.0, 0.0, 0.0),
  • point c′(56.7, 43.3, 0.0),
  • point d′(52.2, 38.3, 9.5), and
  • point a (90.5, 0.0, 9.5),


    or on the line segments c′d′ and d′ a (excluding the points c′ and a);


the line segment c′d′ is represented by coordinates (−0.0297z2−0.1915 z+56.7, 0.0297z2−0.8085 z+43.3, z), and


the line segments Oc′, d′ a, and aO are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 93.5% or more relative to that of R410A, and a GWP of 65 or less.


The refrigerant according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, da, and aO that connect the following 4 points:

  • point O (100.0, 0.0, 0.0),
  • point c (77.7, 22.3, 0.0),
  • point d (76.3, 14.2, 9.5), and
  • point a (90.5, 0.0, 9.5),


    or on the line segments cd and da (excluding the points c and a); the line segment cd is represented by coordinates (−0.017z2+0.0148z+77.684, 0.017z2−1.0148 z+22.316, z), and


the line segments Oc, da, and aO are are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 65 or less.


The refrigerant according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132 (E), HFO-1123, and R32, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132 (E), HFO-1123, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and even more preferably 99.9 mass % or more, based on the entire refrigerant.


Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.


1.2. Use

The refrigerant according to the present disclosure can be preferably used as a working fluid in a refrigerating machine.


The composition according to the present disclosure is suitable for use as an alternative refrigerant for R410A.


2. Refrigerant Composition

The refrigerant composition according to the present disclosure comprises at least the refrigerant according to the present disclosure, and can be used for the same use as the refrigerant according to the present disclosure. Moreover, the refrigerant composition according to the present disclosure can be further mixed with at least a refrigeration oil to thereby obtain a working fluid for a refrigerating machine.


The refrigerant composition according to the present disclosure further comprises at least one other component in addition to the refrigerant according to the present disclosure.


The refrigerant composition according to the present disclosure may comprise at least one of the following other components, if necessary. As described above, when the refrigerant composition according to the present disclosure is used as a working fluid in a refrigerating machine, it is generally used as a mixture with at least a refrigeration oil. Therefore, it is preferable that the refrigerant composition according to the present disclosure does not substantially comprise a refrigeration oil.


Specifically, in the refrigerant composition according to the present disclosure, the content of the refrigeration oil based on the entire refrigerant composition is preferably 0 to 1 mass %, and more preferably 0 to 0.1 mass %.


2.1. Water

The refrigerant composition according to the present disclosure may contain a small amount of water. The water content of the refrigerant composition is preferably 0.1 mass % or less based on the entire refrigerant. A small amount of water contained in the refrigerant composition stabilizes double bonds in the molecules of unsaturated fluorocarbon compounds that can be present in the refrigerant, and makes it less likely that the unsaturated fluorocarbon compounds will be oxidized, thus increasing the stability of the refrigerant composition.


2.2. Tracer

A tracer is added to the refrigerant composition according to the present disclosure at a detectable concentration such that when the refrigerant composition has been diluted, contaminated, or undergone other changes, the tracer can trace the changes.


The refrigerant composition according to the present disclosure may comprise a single tracer, or two or more tracers.


The tracer is not limited, and can be suitably selected from commonly used tracers.


Examples of tracers include hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons, deuterated hydrocarbons, deuterated hydrofluorocarbons, perfluorocarbons, fluoroethers, brominated compounds, iodinated compounds, alcohols, aldehydes, ketones, and nitrous oxide (N2O). The tracer is particularly preferably a hydrofluorocarbon, a hydrochlorofluorocarbon, a chlorofluorocarbon, a hydrochlorocarbon, a fluorocarbon, or a fluoroether.


The following compounds are preferable as the tracer.

  • FC-14 (tetrafluoromethane, CF4)
  • HCC-40 (chloromethane, CH3Cl)
  • HFC-23 (trifluoromethane, CHF3)
  • HFC-41 (fluoromethane, CH3Cl)
  • HFC-125 (pentafluoroethane, CF3CHF2)
  • HFC-134a (1,1,1,2-tetrafluoroethane, CF3CH2F)
  • HFC-134 (1,1,2,2-tetrafluoroethane, CHF2CHF2)
  • HFC-143a (1,1,1-trifluoroethane, CF3CH3)
  • HFC-143 (1,1,2-trifluoroethane, CHF2CH2F)
  • HFC-152a (1,1-difluoroethane, CHF2CH3)
  • HFC-152 (1,2-difluoroethane, CH2FCH2F)
  • HFC-161 (fluoroethane, CH3CH2F)
  • HFC-245fa (1,1,1,3, 3-pentafluoropropane, CF3CH2CHF2)
  • HFC-236fa (1, 1, 1, 3, 3, 3-hexafluoropropane, CF3CH2CF3)
  • HFC-236ea (1,1,1,2,3,3-hexafluoropropane, CF3CHFCHF2)
  • HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane, CF3CHFCF3)
  • HCFC-22 (chlorodifluoromethane, CHClF2)
  • HCFC-31 (chlorofluoromethane, CH2ClF)
  • CFC-1113 (chlorotrifluoroethylene, CF2═CClF)
  • HFE-125 (trifluoromethyl-difluoromethyl ether, CF3OCHF2)
  • HFE-134a (trifluoromethyl-fluoromethyl ether, CF3OCH2F)
  • HFE-143a (trifluoromethyl-methyl ether, CF3OCH3)
  • HFE-227ea (trifluoromethyl-tetrafluoroethyl ether, CF3OCHFCF3)
  • HFE-236fa (trifluoromethyl-trifluoroethyl ether, CF3OCH2CF3)


The refrigerant composition according to the present disclosure may contain one or more tracers at a total concentration of about 10 parts per million by weight (ppm) to about 1000 ppm, based on the entire refrigerant composition. The refrigerant composition according to the present disclosure may preferably contain one or more tracers at a total concentration of about 30 ppm to about 500 ppm, and more preferably about 50 ppm to about 300 ppm, based on the entire refrigerant composition.


2.3. Ultraviolet Fluorescent Dye

The refrigerant composition according to the present disclosure may comprise a single ultraviolet fluorescent dye, or two or more ultraviolet fluorescent dyes.


The ultraviolet fluorescent dye is not limited, and can be suitably selected from commonly used ultraviolet fluorescent dyes.


Examples of ultraviolet fluorescent dyes include naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene, fluorescein, and derivatives thereof. The ultraviolet fluorescent dye is particularly preferably either naphthalimide or coumarin, or both.


2.4. Stabilizer

The refrigerant composition according to the present disclosure may comprise a single stabilizer, or two or more stabilizers.


The stabilizer is not limited, and can be suitably selected from commonly used stabilizers.


Examples of stabilizers include nitro compounds, ethers, and amines.


Examples of nitro compounds include aliphatic nitro compounds, such as nitromethane and nitroethane; and aromatic nitro compounds, such as nitro benzene and nitro styrene.


Examples of ethers include 1,4-dioxane.


Examples of amines include 2,2,3,3,3-pentafluoropropylamine and diphenylamine.


Examples of stabilizers also include butylhydroxyxylene and benzotriazole.


The content of the stabilizer is not limited.


Generally, the content of the stabilizer is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.


2.5. Polymerization Inhibitor

The refrigerant composition according to the present disclosure may comprise a single polymerization inhibitor, or two or more polymerization inhibitors.


The polymerization inhibitor is not limited, and can be suitably selected from commonly used polymerization inhibitors.


Examples of polymerization inhibitors include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, and benzotriazole.


The content of the polymerization inhibitor is not limited. Generally, the content of the polymerization inhibitor is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.


3. Refrigeration Oil-Containing Working Fluid

The refrigeration oil-containing working fluid according to the present disclosure comprises at least the refrigerant or refrigerant composition according to the present disclosure and a refrigeration oil, for use as a working fluid in a refrigerating machine. Specifically, the refrigeration oil-containing working fluid according to the present disclosure is obtained by mixing a refrigeration oil used in a compressor of a refrigerating machine with the refrigerant or the refrigerant composition. The refrigeration oil-containing working fluid generally comprises 10 to 50 mass % of refrigeration oil.


3.1. Refrigeration Oil

The composition according to the present disclosure may comprise a single refrigeration oil, or two or more refrigeration oils.


The refrigeration oil is not limited, and can be suitably selected from commonly used refrigeration oils. In this case, refrigeration oils that are superior in the action of increasing the miscibility with the mixture and the stability of the mixture, for example, are suitably selected as necessary.


The base oil of the refrigeration oil is preferably, for example, at least one member selected from the group consisting of polyalkylene glycols (PAG), polyol esters (POE), and polyvinyl ethers (PVE).


The refrigeration oil may further contain additives in addition to the base oil. The additive may be at least one member selected from the group consisting of antioxidants, extreme-pressure agents, acid scavengers, oxygen scavengers, copper deactivators, rust inhibitors, oil agents, and antifoaming agents.


A refrigeration oil with a kinematic viscosity of 5 to 400 cSt at 40° C. is preferable from the standpoint of lubrication.


The refrigeration oil-containing working fluid according to the present disclosure may further optionally contain at least one additive. Examples of additives include compatibilizing agents described below.


3.2. Compatibilizing Agent

The refrigeration oil-containing working fluid according to the present disclosure may comprise a single compatibilizing agent, or two or more compatibilizing agents.


The compatibilizing agent is not limited, and can be suitably selected from commonly used compatibilizing agents.


Examples of compatibilizing agents include polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers, and 1,1,1-trifluoroalkanes. The compatibilizing agent is particularly preferably a polyoxyalkylene glycol ether.


4. Method for Operating Refrigerating Machine

The method for operating a refrigerating machine according to the present disclosure is a method for operating a refrigerating machine using the refrigerant according to the present disclosure.


Specifically, the method for operating a refrigerating machine according to the present disclosure comprises the step of circulating the refrigerant according to the present disclosure in a refrigerating machine.


The embodiments are described above; however, it will be understood that various changes in forms and details can be made without departing from the spirit and scope of the claims.


EXAMPLES

The present disclosure is described in more detail below with reference to Examples. However, the present disclosure is not limited to the Examples.


Mixed refrigerants were prepared by mixing HFO-1132 (E), HFO-1123, and R32 at mass % based on their sum shown in Tables 1 and 2.


The composition of each mixture was defined as WCF. A leak simulation was performed using National Institute of Science and Technology (NIST) Standard Reference Data Base Refleak Version 4.0 under the conditions for equipment, storage, shipping, leak, and recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.


For each mixed refrigerant, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. When the burning velocities of the WCF composition and the WCFF composition are 10 cm/s or less, the flammability of such a refrigerant is classified as Class 2L (lower flammability) in the ASHRAE flammability classification.


A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.


Tables 1 and 2 show the results.














TABLE 1





Item
Unit
I
J
K
L





















WCF
HFO-1132(E)
mass %
72.0
57.7
48.4
35.5



HFO-1123
mass %
28.0
32.8
33.2
27.5



R32
mass %
0.0
9.5
18.4
37.0












Burning velocity (WCF)
cm/s
10
10
10
10























TABLE 2





Item
Unit
M
N
T
P
U
Q























WCF
HFO-1132(E)
mass %
47.1
38.5
35.0
31.8
28.9
29.5



HFO-1123
mass %
52.9
52.1
51.1
49.8
42.6
33.5



R32
mass %
0.0
9.5
13.9
18.4
28.5
37.0













Leak condition that
Storage,
Storage,
Storage,
Storage,
Storage,
Storage,


results in WCFF
Shipping −40°
Shipping, −40°
Shipping, −40°
Shipping, −40°
Shipping, −40°
Shipping, −40°



C., 92% release,
C., 92% release,
C., 92% release,
C., 92% release,
C., 93% release,
C., 94% release,



on the liquid
on the liquid
on the liquid
on the liquid
on the liquid
on the liquid



phase side
phase side
phase side
phase side
phase side
phase side















WCFF
HFO-1132(E)
mass %
72.0
58.9
50.3
44.6
32.9
26.9



HFO-1123
mass %
28.0
32.4
33.8
32.6
24.7
16.1



R32
mass %
0.0
8.7
15.9
22.8
42.4
57.0














Burning
cm/s
8 or less
8 or less
8 or less
8 or less
8 or less
8 or less


velocity (WCF)


Burning
cm/s
10
10
10 
10 
10 
10  


velocity (WCFF)









The results in Table 1 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132 (E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments IK and KL that connect the following 3 points:

  • point I (72.0, 28,0, 0.0),
  • point K (48.4, 33.2, 18.4), and
  • point L (35.5, 27.5, 37.0);


    the line segment IK is represented by coordinates (0.025z2−1.7429 z+72.00, −0.025z2+0.7429z+28.00, z), and


    the line segment KL is represented by coordinates (0.0098z2−1.238 z+67.852, −0.0098z2+0.238z+32.148, z),


    it can be determined that the refrigerant has WCF lower flammability.


For the points on the line segment IK, an approximate curve (x=0.025z2−1.7429 z+72.00) was determined from three points, i.e., I (72.0, 28,0, 0.0), J (57.7, 32.8, 9.5), and K (48.4, 33.2, 18.4) by using the least-square method to determine coordinates


(x=0.025z2−1.7429 z+72.00, y=100-z-x=−0.025z2+0.7429z+28.00, z).


Likewise, for the points on the line segment KL, an approximate curve was determined from three points, i.e., K (48.4, 33.2, 18.4), Example 10 (41.1, 31.2,27.7), and L (35.5, 27.5, 37.0) by using the least-square method to determine coordinates, in the same manner as for the points on the line segment IK.


The results in Table 2 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132 (E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments MP and PQ that connect the following 3 points:

  • point M (47.1, 52.9, 0.0),
  • point P (31.8, 49.8, 18.4), and
  • point Q (29.5, 33.5, 37.0),


    it can be determined that the refrigerant has ASHRAE lower flammability.


In the above, the line segment MP is represented by coordinates (0.0083z2-0.984 z+47.1, −0.0083z2−0.016 z+52.9, z), and the line segment PQ is represented by coordinates (0.0192z2−1.189 z+47.168, −0.0192z2+0.189z+52.832, z).


For the points on the line segment MP, an approximate curve was determined from three points, i.e., points M, N, and P, by using the least-square method to determine coordinates. For the points on the line segment PQ, an approximate curve was determined from three points, i.e., points P. U, and Q, by using the least-square method to determine coordinates, in the same manner as for the points on the line segment IK.


The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in PTL 1). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132 (E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.


The COP ratio and the refrigerating capacity (which may be referred to as “cooling capacity” or “capacity”) ratio relative to those of R410 of the mixed refrigerants were determined. The conditions for calculation were as described below.


Evaporating temperature: 5° C.


Condensation temperature: 45° C.


Degree of superheating: 5K


Degree of subcooling: 5K


Compressor efficiency: 70%


Tables 3 to 23 show these values together with the GWP of each mixed refrigerant.

















TABLE 3








Comparative
Comparative
Comparative
Comparative
Comparative
Comparative




Comparative
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7


Item
Unit
Example 1
A
B
A′
B′
A″
B″























HFO-1132(E)
mass %
R410A
90.5
0.0
81.6
0.0
63.0
0.0


HFO-1123
mass %

0.0
90.5
0.0
81.6
0.0
63.0


R32
mass %

9.5
9.5
18.4
18.4
37.0
37.0


GWP

2088
65
65
125
125
250
250


COP ratio
% (relative
100
99.1
92.2
98.7
93.7
98.7
96.4



to R410A)


Refrigerating
% (relative
100
102.2
111.6
105.3
113.8
110.0
115.6


capacity ratio
to R410A)
























TABLE 4







Comparative
Comparative




Comparative




Example 8
Example 9
Example 1

Example 3

Example 10


Item
Unit
O
C
C′
Example 2
U
Example 4
D























HFO-1132(E)
mass %
100.0
48.8
47.8
39.8
28.9
21.1
0.0


HFO-1123
mass %
0.0
32.8
33.1
36.4
42.6
48.1
67.0


R32
mass %
0.0
18.4
19.1
23.8
28.5
30.8
33.0


GWP

1
125
130
161
193
209
1


COP ratio
% (relative
99.7
96.0
96.0
96.0
96.0
96.0
96.0



to R410A)


Refrigerating
% (relative
98.3
110.2
110.4
111.9
113.5
114.3
103.8


capacity ratio
to R410A)





















TABLE 5







Compar-


Compar-




ative


ative




Exam-
Exam-
Exam-
Exam-




ple 11
ple 5
ple 6
ple 12


Item
Unit
E
T
S
F




















HFO-1132(E)
mass %
42.4
35.0
24.9
0.0


HFO-1123
mass %
48.1
51.1
56.7
74.1


R32
mass %
9.5
13.9
18.4
25.9


GWP

65
95
125
158


COP ratio
% (relative
94.5
94.5
94.5
94.5



to R410A)


Refrigerating
% (relative
109.3
111.0
112.7
114.6


capacity ratio
to R410A)






















TABLE 6







Comparative



Comparative




Example 13

Example 8

Example 14


Item
Unit
G
Example 7
R
Example 9
H





















HFO-1132(E)
mass %
38.5
30.7
20.6
13.3
0.0


HFO-1123
mass %
61.5
64.3
69.9
75.0
86.1


R32
mass %
0.0
5.0
9.5
11.7
13.9


GWP

1
35
65
80
95


COP ratio
% (relative
93.0
93.0
93.0
93.0
93.0



to R410A)


Refrigerating
% (relative
107.0
109.2
111.1
112.1
112.8


capacity ratio
to R410A)






















TABLE 7







Comparative



Comparative




Example 15
Example 10
Example 11
Comparative
Example 17


Item
Unit
I
J
K
Example 16
L





















HFO-1132(E)
mass %
72.0
57.7
48.4
41.1
35.5


HFO-1123
mass %
28.0
32.8
33.2
31.2
27.5


R32
mass %
0.0
9.5
18.4
27.7
37.0


GWP

1
65
125
188
250


COP ratio
% (relative
96.6
95.8
96.0
96.7
97.2



to R410A)


Refrigerating
% (relative
103.1
107.5
110.2
113.0
113.3


capacity ratio
to R410A)





















TABLE 8







Comparative







Exam-
Exam-
Exam-
Exam-




ple 18
ple 12
ple 13
ple 14


Item
Unit
M
N
P
Q




















HFO-1132(E)
mass %
47.1
38.5
31.8
29.5


HFO-1123
mass %
52.9
52.0
49.8
33.5


R32
mass %
0.0
9.5
18.4
37.0


GWP

1
65
125
250


COP ratio
% (relative
93.8
94.2
94.9
97.0



to R410A)


Refrigerating
% (relative
106.2
109.7
112.1
113.9


capacity ratio
to R410A)

























TABLE 9







Comparative
Comparative
Comparative



Comparative
Comparative


Item
Unit
Example 19
Example 20
Example 21
Example 15
Example 16
Example 17
Example 22
Example 23
























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


HFO-1123
mass %
85.0
75.0
65.0
55.0
45.0
35.0
25.0
15.0


R32
mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


GWP

35
35
35
35
35
35
35
35


COP ratio
% (relative
91.8
92.3
92.9
93.8
94.7
95.7
96.7
97.7



to R410A)


Refrigerating
% (relative
110.1
109.9
109.3
108.4
107.4
106.1
104.7
103.1


capacity ratio
to R410A)

























TABLE 10







Comparative
Comparative




Comparative
Comparative


Item
Unit
Example 24
Example 25
Example 18
Example 19
Example 20
Example 21
Example 26
Example 27
























HFO-1132(E)
mass %
90.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0


HFO-1123
mass %
5.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0


R32
mass %
5.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0


GWP

35
68
68
68
68
68
68
68


COP ratio
% (relative
98.8
92.6
93.0
93.6
94.4
95.2
96.1
97.1



to R410A)


Refrigerating
% (relative
101.4
111.7
111.3
110.6
109.7
108.5
107.2
105.8


capacity ratio
to R410A)

























TABLE 11







Comparative





Comparative
Comparative


Item
Unit
Example 28
Example 22
Example 23
Example 24
Example 25
Example 26
Example 29
Example 30
























HFO-1132(E)
mass %
80.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0


HFO-1123
mass %
10.0
75.0
65.0
55.0
45.0
35.0
25.0
15.0


R32
mass %
10.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


GWP

68
102
102
102
102
102
102
102


COP ratio
% (relative
98.0
93.4
93.8
94.3
95.0
95.7
96.6
97.4



to R410A)


Refrigerating
% (relative
104.1
112.9
112.4
111.7
110.7
109.5
108.1
106.6


capacity ratio
to R410A)

























TABLE 12







Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative


Item
Unit
Example 31
Example 32
Example 33
Example 34
Example 35
Example 36
Example 37
Example 38
























HFO-1132(E)
mass %
80.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0


HFO-1123
mass %
5.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0


R32
mass %
15.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0


GWP

102
136
136
136
136
136
136
136


COP ratio
% (relative
98.3
94.2
94.5
95.0
95.6
96.3
97.0
97.8



to R410A)


Refrigerating
% (relative
105.0
113.9
113.3
112.5
111.4
110.2
108.8
107.3


capacity ratio
to R410A)

























TABLE 13







Comparative
Comparative
Comparative

Comparative
Comparative
Comparative
Comparative


Item
Unit
Example 39
Example 40
Example 41
Example 27
Example 42
Example 43
Example 44
Example 45
























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
10.0


HFO-1123
mass %
65.0
55.0
45.0
35.0
25.0
15.0
5.0
60.0


R32
mass %
25.0
25.0
25.0
25.0
25.0
25.0
25.0
30.0


GWP

170
170
170
170
170
170
170
203


COP ratio
% (relative
94.9
95.2
95.6
96.1
96.8
97.5
98.2
95.6



to R410A)


Refrigerating
% (relative
114.5
113.9
113.1
112.0
110.8
109.4
108.0
114.9


capacity ratio
to R410A)

























TABLE 14







Comparative


Comparative
Comparative
Comparative




Item
Unit
Example 46
Example 28
Example 29
Example 47
Example 48
Example 49
Example 30
Example 31
























HFO-1132(E)
mass %
20.0
30.0
35.0
40.0
50.0
60.0
10.0
20.0


HFO-1123
mass %
50.0
40.0
35.0
30.0
20.0
10.0
55.0
45.0


R32
mass %
30.0
30.0
30.0
30.0
30.0
30.0
35.0
35.0


GWP

203
203
203
203
203
203
237
237


COP ratio
% (relative
95.9
96.2
96.5
96.7
97.3
97.9
96.3
96.5



to R410A)


Refrigerating
% (relative
114.3
113.5
113.0
112.4
111.2
109.9
115.2
114.6


capacity ratio
to R410A)

























TABLE 15







Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative


Item
Unit
Example 50
Example 51
Example 52
Example 53
Example 54
Example 55
Example 56
Example 57
























HFO-1132(E)
mass %
30.0
40.0
50.0
60.0
10.0
20.0
30.0
40.0


HFO-1123
mass %
35.0
25.0
15.0
5.0
50.0
40.0
30.0
20.0


R32
mass %
35.0
35.0
35.0
35.0
40.0
40.0
40.0
40.0


GWP

237
237
237
237
271
271
271
271


COP ratio
% (relative
96.8
97.2
97.8
98.3
96.9
97.1
97.4
97.8



to R410A)


Refrigerating
% (relative
113.7
112.7
111.5
110.2
115.2
114.7
113.8
112.9


capacity ratio
to R410A)

























TABLE 16







Comparative









Item
Unit
Example 58
Example 32
Example 33
Example 34
Example 35
Example 36
Example 37
Example 38
























HFO-1132(E)
mass %
50.0
42.0
40.0
42.0
44.0
35.0
37.0
39.0


HFO-1123
mass %
10.0
60.0
58.0
56.0
54.0
61.0
59.0
57.0


R32
mass %
40.0
2.0
2.0
2.0
2.0
4.0
4.0
4.0


GWP

271
14
14
14
14
28
28
28


COP ratio
% (relative
98.2
93.6
93.4
93.6
93.8
93.2
93.4
93.5



to R410A)


Refrigerating
% (relative
111.7
107.4
107.5
107.4
107.2
108.6
108.4
108.2


capacity ratio
to R410A)

























TABLE 17





Item
Unit
Example 39
Example 40
Example 41
Example 42
Example 43
Example 44
Example 45
Example 46
























HFO-1132(E)
mass %
41.0
43.0
31.0
33.0
35.0
37.0
39.0
41.0


HFO-1123
mass %
55.0
53.0
63.0
61.0
59.0
57.0
55.0
53.0


R32
mass %
4.0
4.0
6.0
6.0
6.0
6.0
6.0
6.0


GWP

28
28
41
41
41
41
41
41


COP ratio
% (relative
93.7
93.9
93.2
93.3
93.5
93.6
93.8
94.0



to R410A)


Refrigerating
% (relative
108.1
107.9
109.5
109.3
109.2
109.0
108.8
108.6


capacity ratio
to R410A)

























TABLE 18





Item
Unit
Example 47
Example 48
Example 49
Example 50
Example 51
Example 52
Example 53
Example 54
























HFO-1132(E)
mass %
27.0
29.0
31.0
33.0
35.0
37.0
39.0
33.0


HFO-1123
mass %
65.0
63.0
61.0
59.0
57.0
55.0
53.0
51.0


R32
mass %
8.0
8.0
8.0
8.0
8.0
8.0
8.0
16.0


GWP

55
55
55
55
55
55
55
109


COP ratio
% (relative
93.2
93.3
93.4
93.6
93.7
93.9
94.0
94.6



to R410A)


Refrigerating
% (relative
110.3
110.2
110.0
109.9
109.7
109.5
109.3
111.6


capacity ratio
to R410A)

























TABLE 19





Item
Unit
Example 55
Example 56
Example 57
Example 58
Example 59
Example 60
Example 61
Example 62
























HFO-1132(E)
mass %
31.0
31.0
29.0
27.0
28.0
26.0
24.0
27.0


HFO-1123
mass %
53.0
51.0
53.0
55.0
41.0
43.0
45.0
40.0


R32
mass %
16.0
18.0
18.0
18.0
31.0
31.0
31.0
33.0


GWP

109
122
122
122
210
210
210
223


COP ratio
% (relative
94.5
94.8
94.7
94.6
96.3
96.2
96.1
96.5



to R410A)


Refrigerating
% (relative
111.8
112.1
112.3
112.5
113.7
113.9
114.1
113.9


capacity ratio
to R410A)

























TABLE 20





Item
Unit
Example 63
Example 64
Example 65
Example 66
Example 67
Example 68
Example 69
Example 70
























HFO-1132(E)
mass %
25.0
23.0
21.0
19.0
17.0
15.0
13.0
11.0


HFO-1123
mass %
42.0
44.0
46.0
48.0
50.0
52.0
54.0
56.0


R32
mass %
33.0
33.0
33.0
33.0
33.0
33.0
33.0
33.0


GWP

223
223
223
223
223
223
223
223


COP ratio
% (relative
96.4
96.3
96.3
96.2
96.2
96.1
96.1
96.0



to R410A)


Refrigerating
% (relative
114.1
114.3
114.4
114.6
114.7
114.8
115.0
115.1


capacity ratio
to R410A)

























TABLE 21





Item
Unit
Example 71
Example 72
Example 73
Example 74
Example 75
Example 76
Example 77
Example 78
























HFO-1132(E)
mass %
11.0
13.0
15.0
17.0
19.0
21.0
23.0
25.0


HFO-1123
mass %
54.0
52.0
50.0
48.0
46.0
44.0
42.0
40.0


R32
mass %
35.0
35.0
35.0
35.0
35.0
35.0
35.0
35.0


GWP

237
237
237
237
237
237
237
237


COP ratio
% (relative
96.3
96.3
96.4
96.4
96.5
96.5
96.6
96.6



to R410A)


Refrigerating
% (relative
115.1
115.0
114.9
114.8
114.6
114.5
114.3
114.2


capacity ratio
to R410A)

























TABLE 22





Item
Unit
Example 79
Example 80
Example 81
Example 82
Example 83
Example 84
Example 85
Example 86
























HFO-1132(E)
mass %
27.0
11.0
13.0
15.0
17.0
19.0
21.0
23.0


HFO-1123
mass %
38.0
52.0
50.0
48.0
46.0
44.0
42.0
40.0


R32
mass %
35.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0


GWP

237
250
250
250
250
250
250
250


COP ratio
% (relative
96.7
96.6
96.6
96.6
96.7
96.7
96.8
96.8



to R410A)


Refrigerating
% (relative
114.0
115.2
115.1
115.0
114.8
114.7
114.6
114.4


capacity ratio
to R410A)





















TABLE 23







Item
Unit
Example 87
Example 88





















HFO-1132(E)
mass %
25.0
27.0



HFO-1123
mass %
38.0
36.0



R32
mass %
37.0
37.0



GWP

250
250



COP ratio
% (relative
96.9
96.9




to R410A)



Refrigerating
% (relative
114.2
114.1



capacity ratio
to R410A)










The above results indicate that under the condition that the mass % of HFO-1132 (E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132 (E), HFO-1123, and R32 is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, and the point (0.0, 100.0, 0.0) is on the left side are within the range of a figure surrounded by line segments that connect the following 4 points:

  • point O (100.0, 0.0, 0.0),
  • point A″ (63.0, 0.0,37.0),
  • point B″(0.0, 63.0, 37.0), and
  • point (0.0, 100.0, 0.0),


    or on these line segments,


    the refrigerant has a GWP of 250 or less.


The results also indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments that connect the following 4 points:

  • point O (100.0, 0.0, 0.0),
  • point A′ (81.6, 0.0, 18.4),
  • point B′ (0.0, 81.6, 18.4), and
  • point (0.0, 100.0, 0.0),


    or on these line segments,


    the refrigerant has a GWP of 125 or less.


The results also indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments that connect the following 4 points:

  • point O (100.0, 0.0, 0.0),
  • point A (90.5, 0.0, 9.5),
  • point B (0.0, 90.5,9.5), and
  • point (0.0, 100.0, 0.0),


    or on these line segments,


    the refrigerant has a GWP of 65 or less.


The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:

  • point C (48.8, 32.8,18.4),
  • point U (28.9, 42.6, 28.5), and
  • point D (0.0, 67.0, 33.0),


    or on these line segments,


    the refrigerant has a COP ratio of 96% or more relative to that of R410A.


In the above, the line segment CU is represented by coordinates (−0.0656z2+1.1139z+50.472, 0.0656z2-2.1139 z+49.528, z), and the line segment UD is represented by coordinates (−1.3777z2+78.306z−1083.8, 1.3777z2−79.306 z+1183.8, z).


The points on the line segment CU are determined from three points, i.e., point C, Example 2, and point U, by using the least-square method.


The points on the line segment UD are determined from three points, i.e., point U, Example 4, and point D, by using the least-square method.


The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:

  • point E (42.4, 48.1, 9.5),
  • point T (35.0, 51.1, 13.9), and
  • point S (24.9, 56.7, 18.4),


    or on these line segments,


    the refrigerant has a COP ratio of 94.5% or more relative to that of R410A.


In the above, the line segment ES is represented by coordinates (−0.0632z2−0.2026 z+50.03, 0.0632z2−0.7974 z+49.97, z).


The points on the line segment ES are determined from three points, i.e., points E, T, and S, by using the least-square method.


The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:

  • point G (38.5, 61.5, 0.0),
  • point R (20.6, 69.9, 9.5), and
  • point H (0.0, 86.1, 13.9),


    or on these line segments,


    the refrigerant has a COP ratio of 93% or more relative to that of R410A.


In the above, the line segment RG is represented by coordinates (−0.072z2−1.1998 z+38.5, 0.072z2+0.1998z+61.5, z), and

  • the line segment HR is represented by coordinates (−0.6198z2+9.8223z−16.772, 0.6198z2−10.8223 z+116.772, z).


The points on the line segment RG are determined from three points, i.e., point G, Example 7, and point R, by using the least-square method.


The points on the line segment HR are determined from three points, i.e., point R, Example 9, and point H, by using the least-square method.


In contrast, as shown in, for example, Comparative Examples 8, 13, 15, and 18, when R32 is not contained, the concentrations of HFO-1132(E) and HFO-1123, which have a double bond, become relatively high; this undesirably leads to deterioration, such as decomposition, or polymerization in the refrigerant compound.


DESCRIPTION OF REFERENCE NUMERALS




  • 1: Sample cell


  • 2: High-speed camera


  • 3: Xenon lamp


  • 4: Collimating lens


  • 5: Collimating lens


  • 6: Ring filter


Claims
  • 1. A composition comprising a refrigerant, the refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32), wherein when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:point I (72.0, 28,0, 0.0),point K (48.4, 33.2, 18.4),point B′ (0.0, 81.6, 18.4),point H (0.0, 86.1, 13.9),point R (20.6, 69.9, 9.5), andpoint G (38.5, 61.5, 0.0),or on these line segments (excluding the points on the line segments B′H and GI); the line segment IK is represented by coordinates (0.025z2−1.7429 z+72.00, −0.025z2+0.7429z+28.0, z),the line segment HR is represented by coordinates (−0.6198z2+9.8223z−16.772, 0.6198z2−10.8223 z+116.772, z),the line segment RG is represented by coordinates (−0.072z2−1.1998 z+38.5, 0.072z2+0.1998z+61.5, z), andthe line segments KB′, B′H and GI are straight lines.
  • 2. A composition comprising a refrigerant, the refrigerant comprising HFO-1132(E), HFO-1123, and R32, wherein when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IJ, JR, RG, and GI that connect the following 4 points:point I (72.0, 28,0, 0.0),point J (57.7, 32.8, 9.5),point R (20.6, 69.9, 9.5), andpoint G (38.5, 61.5, 0.0),or on these line segments (excluding the points on the line segment GI); the line segment IJ is represented by coordinates (0.025z2−1.7429 z+72.0, −0.025z2+0.7429z+28.0, z),the line segment RG is represented by coordinates (−0.072z2−1.1998 z+38.5, 0.072z2+0.1998z+61.5, z), andthe line segments JR and GI are straight lines.
  • 3. A composition comprising a refrigerant, the refrigerant comprising HFO-1132(E), HFO-1123, and R32, wherein when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:point M (47.1, 52.9, 0.0),point P (31.8, 49.8, 18.4),point B′(0.0, 81.6, 18.4),point H (0.0, 86.1, 13.9),point R (20.6, 69.9, 9.5), andpoint G (38.5, 61.5, 0.0),or on these line segments (excluding the points on the line segments B′H and GM); the line segment MP is represented by coordinates (0.0083z2−0.984 z+47.1, −0.0083z2−0.016 z+52.9, z),the line segment HR is represented by coordinates (−0.6198z2+9.8223z−16.772, 0.6198z2−10.8223 z+116.772, z),the line segment RG is represented by coordinates (−0.072z2−1.1998 z+38.5, 0.072z2+0.1998z+61.5, z), andthe line segments PB′, B′H and GM are straight lines.
  • 4. A composition comprising a refrigerant, the refrigerant comprising HFO-1132(E), HFO-1123, and R32, wherein when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:point M (47.1, 52.9, 0.0),point N (38.5, 52.0, 9.5),point R (20.6, 69.9, 9.5), andpoint G (38.5, 61.5, 0.0),or on these line segments (excluding the points on the line segment GM); the line segment MN is represented by coordinates (0.0083z2−0.984 z+47.1, −0.0083z2−0.016 z+52.9, z),the line segment RG is represented by coordinates (−0.072z2−1.1998 z+38.5, 0.072z2+0.1998z+61.5, z), andthe line segments NR and GM are straight lines.
  • 5. A composition comprising a refrigerant, the refrigerant comprising HFO-1132(E), HFO-1123, and R32, wherein when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:point P (31.8, 49.8, 18.4),point S (24.9, 56.7,18.4), andpoint T (35.0, 51.1,13.9),or on these line segments; the line segment ST is represented by coordinates (−0.0632z2−0.2026 z+50.03, 0.0632z2−0.7974 z+49.97, z),the line segment TP is represented by coordinates (0.0083z2−0.984 z+47.1, −0.0083z2−0.016 z+52.9, z), andthe line segment PS is a straight line.
  • 6. A composition comprising a refrigerant, the refrigerant comprising HFO-1132(E), HFO-1123, and R32, wherein when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments C′L, LB″, B″D, DU, and UC′ that connect the following 5 points:point C′ (47.8, 33.1, 19.1),point L (35.5, 27.5, 37.0),point B″ (0.0, 63.0, 37.0),point D (0.0, 67.0, 33.0), andpoint U (28.9, 42.6, 28.5),or on these line segments (excluding the points on the line segment B″D); the line segment C′L is represented by coordinates (0.0098z2−1.238 z+67.852, −0.0098z2+0.238z+32.148, z),the line segment DU is represented by coordinates (−1.3777z2+78.306z−1083.8, 1.3777z2−79.306 z+1183.8, z),the line segment UC′ is represented by coordinates (−0.0656z2+1.1139z+50.472, 0.0656z2-2.1139 z+49.528, z), andthe line segments LB″ and B″D are straight lines.
  • 7. A composition comprising a refrigerant, the refrigerant comprising HFO-1132(E), HFO-1123, and R32, wherein when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:point Q (29.5, 33.5, 37.0),point B″ (0.0, 63.0, 37.0),point D (0.0, 67.0, 33.0), andpoint U (28.9, 42.6, 28.5),or on these line segments (excluding the points on the line segment B″D); the line segment DU is represented by coordinates (−1.3777z2+78.306z−1083.8, 1.3777z2−79.306 z+1183.8, z),the line segment UQ is represented by coordinates (0.0192z2−1.1891 z+47.168, −0.0192z2+0.1891z+52.832, z), andthe line segments QB″ and B″D are straight lines.
  • 8. The composition according to claim 1, for use as a working fluid for a refrigerating machine, wherein the composition further comprises a refrigeration oil.
  • 9. The composition according to claim 1, for use as an alternative refrigerant for R410A.
  • 10. Use of the composition according to claim 1 as an alternative refrigerant for R410A.
  • 11. A refrigerating machine comprising the composition according to claim 1 as a working fluid.
  • 12. A method for operating a refrigerating machine, comprising the step of circulating the composition according to claim 1 as a working fluid in a refrigerating machine.
Priority Claims (2)
Number Date Country Kind
2017-242186 Dec 2017 JP national
PCT/JP2018/038747 Oct 2018 JP national
Continuations (1)
Number Date Country
Parent 16913648 Jun 2020 US
Child 17880237 US
Continuation in Parts (1)
Number Date Country
Parent 16772589 Jun 2020 US
Child 16913648 US