Refrigerant system for cooling electronics

Information

  • Patent Grant
  • 11448441
  • Patent Number
    11,448,441
  • Date Filed
    Thursday, July 26, 2018
    6 years ago
  • Date Issued
    Tuesday, September 20, 2022
    2 years ago
Abstract
The various implementations described herein include methods, devices, and systems for cooling a vehicular electronics system. In one aspect, a vehicular refrigerant system includes: (1) a refrigerant loop having a compressor configured to compress a refrigerant, a condenser configured to condense the compressed refrigerant, an expansion device configured to enable expansion of the condensed refrigerant, and a heat exchanger configured to transfer heat from a liquid coolant to the expanded refrigerant; (2) a liquid coolant loop configured to transfer heat from an electronics system via the liquid coolant; and (3) a controller configured to: (a) obtain operating data regarding the refrigerant, the liquid coolant, and/or the electronics system; and (b) adjust operation of the refrigerant loop and/or the liquid coolant loop based on the obtained operating data.
Description
TECHNICAL FIELD

This relates generally to vehicular refrigerant systems, including but not limited to, vehicular refrigerant systems for cooling electronics.


BACKGROUND

Electronic systems are susceptible to failure and damage in high heat conditions. Operation of such electronic systems may generate a significant amount of heat. This problem may be exacerbated on vehicular electronic systems, where the vehicle produces its own heat and may be operated in high heat regions. Thus, it is important to keep the electronic systems cooled to a safe operating temperature.


Some existing electronic systems utilizing liquid cooling to dissipate the heat. However, such passive cooling is insufficient to keep the electronic systems cooled to a safe operating temperature in some circumstances.


SUMMARY

Accordingly, there is a need for systems and/or devices with more efficient and accurate methods for cooling electronics. In some instances, such systems, devices, and methods prevent failure of the electronics, resulting in decreased repair times and/or costs. Such systems, devices, and methods optionally complement or replace conventional systems, devices, and methods for cooling electronics.


Some implementations include a method for cooling an electronics system, the method including: (1) cooling the electronics system by operating a vehicular refrigerant system in a first state, the vehicular refrigerant system including a condenser, a compressor, and an expansion device; (2) while operating the refrigerant system in the first state, obtaining sensor information from one or more sensors of the refrigerant system; and (3) transitioning to operating the vehicular refrigerant system in a second state based on the sensor information


In some implementations, transitioning to operating in the second state includes adjusting a compressor speed. In some implementations, transitioning to operating in the second state includes adjusting a condenser fan speed. In some implementations, transitioning to operating in the second state includes adjusting a liquid pump speed.


In some implementations, the sensor information includes information regarding a temperature of the electronics system. In some implementations, the sensor information includes information regarding a temperature of a refrigerant in the refrigerant system. In some implementations, the sensor information includes information regarding a pressure of refrigerant in the refrigerant system.


In some implementations: (1) the sensor information indicates that the electronics system does not require active cooling; and (2) operating in the second state includes disabling at least a portion of the refrigerant system.


In another aspect, some implementations include a vehicular refrigerant system having: (1) a refrigerant loop, including: (a) a compressor configured to compress a refrigerant; (b) a condenser configured to condense the compressed refrigerant; (c) an expansion device configured to enable expansion of the condensed refrigerant; and (d) a heat exchanger configured to transfer heat from a liquid coolant to the expanded refrigerant; (2) a liquid coolant loop configured to transfer heat from an electronics system via the liquid coolant, the liquid coolant loop including a liquid pump configured to pump the liquid coolant through the liquid coolant loop; and (3) a controller communicatively coupled to the refrigerant loop and the liquid coolant loop, the controller configured to: (a) obtain operating data regarding the refrigerant, the liquid coolant, and/or the electronics system; and (b) adjust operation of the refrigerant loop and/or the liquid coolant loop based on the obtained operating data.


In some implementations, the operating data includes information regarding one or more of: a temperature of the electronics system, a temperature of the refrigerant, a pressure of the refrigerant, and a temperature of the liquid coolant.


In some implementations, adjusting operation of the refrigerant loop and/or the liquid coolant loop includes one or more of: adjusting a compressor compression ratio, adjusting a compressor speed, adjusting a condenser fan speed, and adjusting a liquid coolant pump speed.


In yet another aspect, some implementations include a computing device including one or more processors and memory coupled to the one or more processors, the memory storing one or more programs configured to be executed by the one or more processors, the one or more programs including instructions for performing any of the methods described herein.


In yet another aspect, some implementations include a non-transitory computer-readable storage medium storing one or more programs for execution by one or more processors of a vehicle refrigerant system, the one or more programs including instructions for performing any of the methods described herein.


Thus, devices, storage mediums, and systems are provided with methods for cooling an electronics system, thereby increasing the effectiveness, efficiency, and user satisfaction with such systems. Such methods may complement or replace conventional methods for cooling an electronics system.





BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the various described implementations, reference should be made to the Detailed Description below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.



FIG. 1 is a block diagram illustrating a vehicular refrigerant system in accordance with some implementations.



FIG. 2 is a block diagram illustrating a vehicular refrigerant system in accordance with some implementations.



FIG. 3 is a block diagram illustrating another vehicular refrigerant system in accordance with some implementations.



FIG. 4 is a block diagram illustrating a representative controller in accordance with some implementations.



FIGS. 5A-5K are component drawings illustrating components of a representative refrigerant system in accordance with some implementations.



FIG. 6 is a component drawing illustrating components of another representative refrigerant system in accordance with some implementations.



FIG. 7 is a flow diagram illustrating a method for cooling an electronics system in accordance with some implementations.





DETAILED DESCRIPTION

Reference will now be made in detail to implementations, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the various described implementations. However, it will be apparent to one of ordinary skill in the art that the various described implementations may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the implementations.


Many modifications and variations of this disclosure can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific implementations described herein are offered by way of example only, and the disclosure is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled.


Implementations of the present disclosure are described in the context of refrigerant systems for use in vehicles, and in particular, in the context of refrigerant systems to cool electronics (e.g., roof-mounted electronics) of an over-the-road or off-road vehicle. Roof-mounted electronics are typically exposed to direct sunlight for extend periods of time while the vehicle is travelling. The direct sunlight can further increase heating of the roof-mounted electronics, increasing the need for an electronics' refrigerant system (also sometimes called a refrigeration system or a cooling system). In some implementations, the refrigerant system is, or is a component of, a heating, ventilation, and air-conditioning (HVAC) system. In some implementations, the refrigerant system is not used to cool an interior of the vehicle (e.g., is distinct from a second refrigerant system used to cool an interior of the vehicle).


As used herein, a “refrigerant” is a fluid adapted to undergo phase transitions between liquid and gas during operation of a corresponding refrigerant system. For example, the refrigerant has a liquid-to-gas transition point below a target operating temperature of the refrigerant system. In various implementations, the refrigerant may be a class 1, class 2, or class 3 refrigerant.



FIG. 1 is a block diagram illustrating a vehicular refrigerant system 100 in accordance with some implementations. FIG. 1 shows a vehicle 101 with the refrigerant system 100. As shown in FIG. 1, the refrigerant system 100 has a refrigerant circuit including a compressor 110, a condenser 102, a condenser fan 104, an expansion device 106 (e.g., an evaporator or thermal expansion valve), a heat exchanger 108, and refrigerant lines fluidly connecting the compressor 110, condenser 102, expansion device 106, and the heat exchanger 108 to circulate a refrigerant. FIG. 1 further shows the refrigerant system 100 having a liquid coolant loop including a secondary heat exchanger 112 and a liquid coolant pump 116. As shown in FIG. 1, the heat exchanger 108 is configured to transfer heat between the liquid coolant and the refrigerant. In some implementations, the secondary heat exchanger 112 is configured to transfer heat between the liquid coolant and air. The liquid coolant loop is configured to provide the liquid coolant to the electronic component 114.


It is to be appreciated that the term vehicle as used herein may refer to trucks, such as tractor-trailer trucks or semi-trailer trucks, the scope of the present teachings is not so limited. The present teachings are also applicable, without limitation, to cars, vans, buses, trailers, boats, trains, planes, and any other suitable vehicle.


In some implementations, the refrigerant system includes at least one user interface (e.g., touch screen) and at least one sensor (e.g., a thermostat). In some implementations, the refrigerant system includes at least one battery or power source and a battery monitoring system (also sometimes called a battery management system). In some implementations, the battery monitoring system includes at least one current sensor. In some implementations, the battery monitoring system includes a controller, such as an automatic temperature controller. In some implementations, the controller is electrically coupled to other components of the refrigerant system (e.g., a compressor, a condenser, etc.) to control operation of these components.


In some implementations, the refrigerant loop includes a receiver drier unit (not shown) and/or an accumulator unit (not shown). As used herein, the term “downstream” refers to a position along a refrigerant line in the direction of the refrigerant flow. As used herein, the term “upstream” refers to a position along a refrigerant line opposite to the direction of the refrigerant flow. For example, in FIG. 1 the condenser 102 is disposed downstream of the compressor 110 and fluidly connected to the compressor 110 by a refrigerant line. In some implementations, a receiver drier unit is disposed downstream of the condenser 102 and fluidly connected to the condenser 102 by a refrigerant line. In some implementations, the receiver drier unit includes a receiver drier and a first sensor. In some implementations, the expansion device 106 is disposed downstream of the receiver drier unit and fluidly connected to the receiver drier unit by a refrigerant line. In some implementations, the accumulator unit is disposed downstream of the expansion device 106 and fluidly connected to the expansion device 106 by a refrigerant line and to the compressor 110 by a refrigerant line. In some implementations, the accumulator unit includes an accumulator and a second sensor.


In some implementations, the refrigerant loop includes one or more sensors. In some implementations, the sensor(s) are any type of sensor suitable to measure temperature and/or pressure of the refrigerant, including but not limited to combined pressure and temperature transducers.


In some implementations, during operation of the refrigerant system, the compressor 110 compresses a refrigerant into a compressed refrigerant. The compressor 110 is optionally any type of compressor including but not limited to a reciprocating compressor or rotary compressor. The condenser 102 condenses the refrigerant that has been compressed by the compressor 110. In some implementations, the receiver drier of the receiver drier unit temporarily stores the refrigerant and/or absorbs moisture, debris or other undesirable substances from the refrigerant that has been condensed by the condenser 102. In some implementations, a first sensor measures temperature and pressure of the refrigerant that has been condensed by the condenser 102. The expansion device 106 vaporizes or evaporates the refrigerant that has been condensed by the condenser 102, providing cooling for desired use. In some implementations, the accumulator restricts liquid refrigerant from entering the compressor 110, for example by temporarily storing excess liquid refrigerant at the accumulator, to prevent damage to the compressor 110. In some implementations, a second sensor measures temperature and pressure of the refrigerant that has been vaporized/evaporated by the expansion device 106. It should be noted that depending on the operation and performance of the refrigerant system, the condensed refrigerant at the receiver drier and the vaporized/evaporated refrigerant at the accumulator is in the form of a liquid, a vapor, or a mixture of liquid and vapor.


In some implementations, the compressor 110 is a variable speed compressor. The variable speed compressor allows the system to operate at a lower capacity to conserve the energy (e.g., while the electronics 114 require little or no cooling).



FIG. 2 is a block diagram illustrating the refrigerant system 100 in accordance with some implementations. As shown in FIG. 2, the refrigerant system 100 includes a refrigerant loop 200 having the compressor 110 (e.g., an electrically-driven compressor), the condenser 102, the expansion device 106, and the heat exchanger 108 for exchanging heat with liquid coolant in the liquid coolant loop. The refrigerant loop 200 optionally includes one or more sensors, such as sensor(s) 204 for measuring a temperature and/or pressure of the refrigerant. In some implementations, the sensor(s) 204 are located at other positions along the refrigerant loop 200 (e.g., between the compressor 110 and the condenser 102 or between the heat exchanger 108 and the compressor 110). The refrigerant system 100 also includes a liquid coolant loop 201 for transferring heat from the electronics 114. The liquid coolant loop 201 includes a pump 116 for cycling liquid coolant through the liquid coolant loop, and, optionally, includes the second heat exchanger 112 for transferring heat between the liquid coolant and air (e.g., ambient air) and/or one or more sensors such as the sensor(s) 206 configured to monitor a temperature of the electronics. In some implementations, the liquid coolant loop 201 does not include the pump 116, e.g., the liquid coolant provides a substantially stationary interface between the heat exchanger 108 and the electronics 114.


In accordance with some implementations, the refrigerant loop 200 is arranged such that: an output of the refrigerant condenser 102 is fluidly connected to an input of the expansion device 106 via a first refrigerant connector (e.g., with sensor(s) 204 coupled to the first refrigerant connector); an output of the expansion device 106 is fluidly connected to the heat exchanger 108 via a second refrigerant connector; the heat exchanger 108 is fluidly connected to an input of the compressor 110 via a third refrigerant connector; and an output of the compressor 110 is connected to the refrigerant condenser 102 via a fourth refrigerant connector. The refrigerant connectors are optionally pipes (e.g., aluminum or copper pipes), tubes (e.g., rubber tubes), or the like. In some implementations, at least a first subset of the refrigerant connectors is composed of insulating material. In accordance with some implementations, the fan 104 is positioned to blow air across the refrigerant condenser 102.


In accordance with some implementations, the liquid coolant loop 201 is arranged such that: an output of the pump 116 is fluidly connected to the heat exchanger 108 via a first liquid coolant connector; the heat exchanger 108 is fluidly connected to the heat exchanger 112 via a second liquid coolant connector; and the heat exchanger 112 is fluidly connected to the pump 116 via a third liquid coolant connector (e.g., with the sensor(s) 206 and the electronics 114 coupled to the third liquid coolant connector). The liquid coolant connectors are optionally pipes (e.g., aluminum or copper pipes), tubes (e.g., rubber tubes), or the like. In some implementations, at least a first subset of the liquid coolant connectors is composed of insulating material. In some implementations, the electronics 114 are submerged in a cavity within the liquid coolant loop 201 (e.g., after being hermetically sealed), whereas in other implementations, the electronics 114 are thermally coupled to the liquid coolant (e.g., via a conducting fasteners, thermal paste, and the like).


The refrigerant system 100 also includes control circuitry, such as controller 202, for governing operation of the refrigerant system 100. In some implementations, the controller 202 receives operating data (e.g., temperature and/or pressure data) from the refrigerant loop 200, the liquid coolant loop 201, and/or the electronics 114. In some implementations, the controller 202 receives the data from one or more sensors of the refrigerant system 100 (e.g., the sensor(s) 204). In some implementations, the controller 202 receives data generated by the electronics 114 (e.g., operating temperature, processor load, latency information, and the like). In some implementations, the controller 202 controls operation of the fan 104, the compressor 110, and/or the liquid coolant pump 116. In some implementations, the controller 202 adjusts a speed of operation of the fan 104. In some implementations, the controller 202 adjusts a speed of operation of the pump 116. In some implementations, the controller 202 adjusts a compression ratio for the compressor 110.


In some implementations, the controller 202 is configured to calculate a compression ratio of the compressor 110. If the calculated compression ratio exceeds a specific compression ratio for a given condition, the controller determines that a blockage has occurred in the refrigerant circuit. In some implementations, the controller examines various factors to determine a location of the blockage. For example, an abnormal sub-cooling level indicates a blockage in the condenser 102 and an abnormal super-cooling indicates a blockage in the expansion device 106.


In some implementations, the controller 202 is configured to modulate the speed, and therefore the capacity, of the compressor 110. For example, the controller 202 may operate the compressor 110 at maximum compressor speed and capacity while the electronics are at a temperature above a particular threshold. As the electronics cool down, the controller 202 senses the reduction in temperature and reduces the compressor speed/capacity so as to not draw an excessive amount of power. The speed and capacity of the compressor may be increased as needs demand as determined by the controller 202.


The controller 202 monitors various system parameters to perform its governing functions. In some implementations, both the exterior ambient temperature and the electronics' 114 temperature are monitored by the controller to determine a compressor capacity to achieve and maintain the interior set point temperature. As the electronics' 114 temperature drops the controller 202 optionally reduces the compressor speed and capacity.


In some implementations, the controller 202 monitors (e.g., in addition to the system parameters described above) the compressor power consumption and/or the total system power consumption in its modulation of the compressor speed and capacity. The information obtained from monitoring the various system parameters and/or power consumption is used by the controller 202 to modulate operation of the compressor 110, e.g., to ensure that the available power sources are not depleted beyond a predetermined power capacity for those times that a limited power source is being utilized. For example, the controller 202 may reduce the compressor speed and capacity if the monitored power consumption exceeds appropriate levels. In some implementations, these parameters are also utilized to provide system protection from overload faults.


In some implementations, the controller 202 also monitors system parameters of the refrigerant system including the compressor speed and the refrigerant system pressures and temperatures. In some implementations, the compressor speed signal is utilized in the closed loop proportional, integral, derivative (PID) control. In some implementations, the refrigerant system pressures and/or temperatures are utilized as control parameters to regulate the compressor speed and capacity so that the power utilization is optimized. That is, the compressor modulation may be reduced once a target temperature has been reached within the system to adequately cool the electronics 114. In some implementations, the compressor is stopped altogether while the electronics 114 are below a particular temperature threshold and/or the liquid coolant is determined to be sufficient to cool the electronics without the exchange of heat with the refrigerant. Once the temperature of the electronics and/or the liquid coolant exceeds one or more predetermined thresholds, the controller 202 once again starts the compressor 110. In this way, the draw from the available power sources is minimized while still achieving the goal of providing adequate cooling to the electronics 114. In some implementations, the system parameters also provide the controller 202 with the ability to detect faults within the system (e.g., blockages, undesired refrigerant levels, and the like).


In some implementations, system information such as status display and control inputs are provided between the controller 202 and an operator via a user input/output display (e.g., a display within the vehicle). In some implementations, the controller 202 and a user display are coupled via a wired or wireless communication connection. In some such implementations, communication of control parameters from the user is optionally provided to the controller by means of a serial data link. Likewise, the display of system control and status information is optionally provided by the controller 202 to the display by this serial data link. Control parameters from the user optionally include the desired operating mode of the refrigerant system and/or a desired temperature of the electronics.


In some implementations, the controller 202 controls the speed of the condenser fan 104 and/or the pump 116, e.g., in conjunction with the speed of the compressor 110 to optimize flow and lower energy consumption of the refrigerant system 100. In some implementations, the controller 202 also controls the speed of a compressor fan (not shown). In some implementations, the controller 202 receives input signals (e.g., temperature measurements, electric current draw, refrigerant flow rate, and/or refrigerant pressure). In some implementations, the controller 202 analyzes the input signals to adjust a compressor fan speed and, a condenser fan speed, and/or a liquid pump speed. Thus, in accordance with some implementations, the controller 202 ensures that the system is utilizing the least amount of electrical power as possible in order to maintain optimal temperature of the electronic components 114.


In some implementations, the refrigerant system 100 also includes a power source (not shown) for powering one or more components of the system, such as the condenser 102, the expansion device 106, the compressor 110, and the like. In some implementations, the power source is, or includes, a solar cell, an electrical battery, an alternator, or the like. In some implementations, the power source is belt driven from an internal combustion engine of a vehicle. In some implementations, the refrigerant system 100 includes a power management system (e.g., a battery management system) for managing various components of the system, such as power source. In some implementations, the power management system governs an amount of power drawn by each component of the refrigerant system 100.


In some implementations, the refrigerant system further includes an electronic valve to inject refrigerant from a refrigerant reservoir (e.g., fluid reservoir 602, FIG. 6) into the refrigerant system when a refrigerant charge level is below a predetermined refrigerant charge level. As an example, the electronic valve may be installed at the receiver drier. In some implementations, the electronic valve is selectively operated to allow flow of the refrigerant from the refrigerant reservoir to the refrigerant circuit.


In some implementations, the refrigerant system 100 is communicatively coupled to an electronic device and/or a server system (not shown). In some implementations, the electronic device comprises a display, a user interface, a smartphone, and/or a computer. In some implementations, the electronic device is located in proximity with the refrigerant system 100. For example, the refrigerant system is installed in a vehicle and the electronic device is a display on the dashboard of the vehicle. In some implementations, the electronic device is located remotely from the refrigerant system. For example, the refrigerant system is installed in a vehicle and the electronic device is a device not connected with the vehicle, such as a smartphone or a computer at a dealer. In some implementations, the controller outputs one or more signals to the electronic device. In some implementations, the signals optionally include data (e.g., the electric current drawn by a particular component, the refrigerant charge level, and the like), alerts (e.g., excessive current drawn by a particular component, excessive temperature for a particular component or the electronics component 114, and the like), maintenance request, and the like.


In some implementations, the refrigerant system includes one or more additional components such as air blowers, metering devices, flow control valves, and the like. In accordance with some implementations, FIG. 1 illustrates the refrigerant system including a condenser fan 104 (sometimes called a condenser blower) positioned proximate the condenser 102. In some implementations, the condenser fan 104 comprises one or more individual fans. In some implementations, the condenser fan 104 is a component of the condenser 102. In some implementations, the condenser fan 104 is configured to blow ambient air over the condenser 102. The amount of airflow over the condenser 102 affects the temperature and pressure of the refrigerant at the high pressure side of the refrigerant circuit and hence the efficiency of the refrigerant system. Accordingly, in some implementations, to enhance the efficiency of the refrigerant system, the controller controls a speed of the condenser fan 104 based at least in part on the temperature and/or pressure of the refrigerant in the refrigerant loop.


In some implementations, the refrigerant system also includes a metering device disposed upstream of the expansion device 106 and configured for controlling flow of the refrigerant into the expansion device 106. In some implementations, the metering device comprises a thermal expansion valve (e.g., such as metering device 626, FIG. 6) or a capillary tube. In some implementations, the refrigerant system further includes a flow control valve disposed upstream of the compressor 110 and configured to selectively restrict or permit flow of the refrigerant to the compressor 110.



FIG. 3 is a block diagram illustrating a refrigerant system 300 in accordance with some implementations. As shown in FIG. 3, the refrigerant system 300 includes the refrigerant loop 200 shown in FIG. 2 and a liquid coolant loop 302 for transferring heat from the electronics 114. The liquid coolant loop 302 includes the pump 116 for cycling liquid coolant through the liquid coolant loop, and, optionally, includes the second heat exchanger 112 for transferring heat between the liquid coolant and air (e.g., ambient air), and/or one or more sensors such as the sensor(s) 206 configured to monitor a temperature of the electronics. The heat exchanger 112 shown in FIG. 3 is upstream from the heat exchanger 108 and is positioned such that the air from the fan 104 is provided to the heat exchanger 112, thus enhancing a cooling of the liquid coolant in the heat exchanger 112. As one of skill in the art would recognize after having read the present disclosure, the heat exchanger 112 is optionally positioned in another configuration, e.g., remote from the condenser 102.


In accordance with some implementations, the liquid coolant loop 302 is arranged such that: an output of the pump 116 is fluidly connected to the heat exchanger 112 via a first liquid coolant connector; the heat exchanger 112 is fluidly connected to the heat exchanger 108 via a second liquid coolant connector; and the heat exchanger 108 is fluidly connected to the pump 116 via a third liquid coolant connector (e.g., with the sensor(s) 206 and the electronics 114 coupled to the third liquid coolant connector). In accordance with some implementations, the refrigerant loop 200 and the liquid coolant loop 302 are arranged such that the heat exchanger 112 is positioned adjacent to the refrigerant condenser 102 and the fan 104 is positioned to blow air across both the heat exchanger 112 and the refrigerant condenser 102.


In some implementations, the controller 202 receives input signals (e.g., temperature, current, flow rate, and/or pressure data) from various sensors (e.g., the sensors 204 and 206) and various components (e.g., the electronics 114, the compressor 110, and the pump 116), and uses this information to adjust a speed of the compressor 110, a speed of the fan 104, and/or a speed of the pump 116. In accordance with some implementations, the controller 202 thereby ensures that the system is utilizing the least amount of electrical power as possible in order to maintain optimal temperature of the electronic components.


The configuration shown in FIG. 3 allows for the refrigerant system to be disabled when the electronic components do not require active cooling, thereby reducing a duty cycle of the compressor. Additionally, this configuration enables pre-cooling of the liquid coolant via the heat exchanger 112 before it enters the liquid-to-refrigerant heat exchanger 108, again lowering required electrical power to achieve optimum temperature of the electrical components.



FIG. 4 is a block diagram illustrating a representative controller 202 in accordance with some implementations. In some implementations, the controller 202 includes one or more processing units (e.g., CPUs, ASICs, FPGAs, microprocessors, and the like) 402, one or more communication interfaces 404, memory 408, and one or more communication buses 406 for interconnecting these components (sometimes called a chipset). In some implementations, the controller 202 includes one or more input devices, such as one or more buttons for receiving input. In some implementations, the controller 202 includes one or more output devices, such as one or more indicator lights, a sound card, a speaker, a display for displaying textual information and error codes, etc. In some implementations, the controller 202 includes a location detection device, such as a GPS (global positioning satellite) or other geo-location receiver, for determining the location of the controller 202. In accordance with some implementations, the controller 202 is coupled to the pump 116, the sensor(s) 204, the compressor 110, the sensor(s) 206, and the fan 104, as shown in FIG. 2. In some implementations, the controller 202 is communicatively coupled to a display (e.g., a display mounted in the vehicle, a display of a user device such as a cellphone or tablet, or a display mounted to the controller 202).


The communication interfaces 404 include, for example, hardware capable of data communications using any of a variety of custom or standard wireless protocols (e.g., IEEE 802.15.4, Wi-Fi, ZigBee, 6LoWPAN, Thread, Z-Wave, Bluetooth Smart, ISA100.11a, WirelessHART, MiWi, etc.) and/or any of a variety of custom or standard wired protocols (e.g., Ethernet, HomePlug, etc.), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.


The memory 408 includes high-speed random access memory, such as DRAM, SRAM, DDR SRAM, or other random access solid state memory devices; and, optionally, includes non-volatile memory, such as one or more magnetic disk storage devices, one or more optical disk storage devices, one or more flash memory devices, or one or more other non-volatile solid state storage devices. The memory 408, or alternatively the non-volatile memory within memory 408, includes a non-transitory computer-readable storage medium. In some implementations, the memory 408, or the non-transitory computer-readable storage medium of memory 408, stores the following programs, modules, and data structures, or a subset or superset thereof:

    • Operating logic 410 including procedures for handling various system services and for performing hardware dependent tasks;
    • Communication module 412 for coupling to and communicating with other network devices via one or more networks, e.g., in conjunction with the one or more communication interfaces 404;
    • State module 414 for determining an operating state of the system (e.g., of refrigerant system 100, FIG. 1) and/or for setting/adjusting the operating state of the system;
    • Cooling module 416 for managing cooling operations of the system (e.g., temperature settings, fan speeds, power settings, etc.), e.g., in conjunction with state module 414;
    • Error module 418 for determining whether one or more error conditions are present and/or conveying the one or more error conditions to a user of the system and/or initiating remedial action in response to the one or more error conditions; and
    • Database 420, including but not limited to:
      • Sensor information 422 for storing and managing data received, detected, and/or transmitted by one or more sensors of the system (e.g., sensor(s) 204 and/or sensor(s) 206, FIG. 2);
      • Component settings 424 for storing and managing operational settings for one or more components of the system (e.g., condenser 102, compressor 110, and pump 116); and
      • Timing information 426 for storing and managing timing information related to operation and/or testing of the system.


Each of the above identified elements (e.g., modules stored in the memory 408 of controller 202) corresponds to a set of instructions for performing a function described herein. The above identified modules or programs (i.e., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules may be combined or otherwise rearranged in various implementations. In some implementations, the memory 408, optionally, stores a subset of the modules and data structures identified above. Furthermore, the memory 408, optionally, stores additional modules and data structures not described above. For example, the memory 408 optionally stores a heating module (not shown) for managing heating operations of the system.



FIGS. 5A-5K are component drawings illustrating components of a refrigerant system 500 (e.g., the refrigerant system 100 or 300) in accordance with some implementations. FIG. 5A shows a top-down view of the refrigerant system 500 including the compressor 110, the controller 202, the condenser 102, the heat exchanger 108, a compressor controller assembly 501, and chiller ports 502 (e.g., for coupling to the electronics 114 via the liquid coolant loop 201). In some implementations, the compressor controller assembly 501 includes a liquid-gas separator with electronics cooling. The liquid-gas separator is configured to transfer heat generated by the compressor controller electronics to the refrigerant, resulting in hotter refrigerant (e.g., gaseous refrigerant) and cooler electronics. More details regarding the liquid-gas separator can be found in U.S. patent application Ser. No. 15/283,150, filed Sep. 30, 2016, entitled “Refrigerant Liquid-gas Separator with Electronics Cooling,” which is hereby incorporated by reference in its entirety. In some implementations, the chiller ports 502 couple with liquid coolant loop 201 (e.g., couple to the heat exchanger 112 and/or the liquid coolant pump 116). In some implementations, the condenser 102 is an L-shaped condenser. In some implementations, the condenser 102 includes a tube-fin condenser coil, e.g., an L-shaped tube-fin condenser coil. In some implementations, the refrigerant system 100 includes a brass bulkhead with copper ends.



FIG. 5B shows a perspective view of the refrigerant system 500 in accordance with some implementations. As shown in FIG. 5B the refrigerant system 500 includes a fan assembly 503. In some implementations, the fan assembly 503 includes an air outlet, such as the filtered air outlet shown in FIG. 5B. In some implementations, the fan assembly 503 includes an exhaust fan to blow air out of the refrigerant system 500. In some implementations, the fan assembly 503 includes a condenser fan, such as the fan 104 in FIG. 1. In some implementations, the refrigerant system 500 is configured such that a front side of the refrigerant system (e.g., as shown in FIG. 5J) is aligned with a front side of a vehicle to which the refrigerant system is mounted, e.g., to facilitate air flow into the air intakes 504 while the vehicle is moving forward.



FIGS. 5C-5D show another perspective view of the refrigerant system 500 in accordance with some implementations. As shown in FIGS. 5C-5D the refrigerant system 500 includes air intakes 504 (e.g., air intakes 504-1, 504-2, and 504-3). In some implementations, the air intakes 504 are covered by respective filters (as shown in FIG. 5C). In accordance with some implementations, the air intakes 504 are positioned so that air flowing into the air intakes 504 passes over the condenser 102 (e.g., the air intakes 504 are adjacent to the condenser 102). As shown in FIGS. 5A and 5D, in some implementations, the condenser 102 is shaped and positioned to be adjacent to the air intakes 504. FIGS. 5E-5F show another perspective view of the refrigerant system 500 including compressor controller electronics 506 positioned within the compressor controller assembly 501. FIGS. 5G and 5H show top and bottom views of the refrigerant system 500 and FIGS. 5I-5K show side, front, and back views of the refrigerant system 500 respectively.



FIG. 6 is a component drawing illustrating components of a refrigerant system 600 (e.g., the refrigerant system 100 or 300) in accordance with some implementations. The refrigerant system 600 includes a refrigerant loop coupling a compressor 616 (e.g., the compressor 110), a condenser coil 622 (e.g., corresponding to the condenser 102), a condenser fan 624 (e.g., the fan 104), a metering device 626 (e.g., a thermal expansion valve), and an accumulator 620. The refrigerant system 600 further includes a liquid coolant loop coupling a liquid coolant pump 604 (e.g., the pump 116), a secondary heat exchanger 614 (e.g., the heat exchanger 112), and chiller ports 606 for coupling with electronics to be cooled (e.g., the electronics 114). The refrigerant system 600 further includes heat exchanger 613 (e.g., for exchanging heat between the refrigerant and the liquid coolant), an electronics cooling device 612 (e.g., a liquid-gas separator with electronics cooling as described above with respect to FIG. 5A), a temperature sensor 618 (e.g., for determining a temperature of the refrigerant), a fluid reservoir 602 for storing refrigerant and/or liquid coolant, and a power connector 608 (e.g., for coupling with a power source such as a battery, solar panel, electric engine, or gas-powered engine). In some implementations, system electronics (e.g., compressor controller electronics) are arranged within the electronics cooling device 612. In some implementations, the condenser coil 622 is composed of aluminum or an aluminum alloy for increased thermal conductivity and reduced weight (e.g., as compared to other metals). In some implementations, the compressor 616 is a micro-compressor configured to reduce a profile of the system 600 while providing adequate cooling for coupled electronics. In some implementations, the condenser fan 624 is a brushless fan. In some implementations, the fan 624 is positioned to move air in a substantially vertical direction (e.g., with 10 degrees, 20 degrees, or 30 degrees of vertical) when mounted and operating on a vehicle. In some implementations, the fan 624 is positioned and configured to exhaust air upward and outward from the refrigerant system 600 when mounted on a vehicle. In some implementations, the fan 624 is positioned and configured to pull air past the condenser coil 622 and push it up and away from a vehicle to which the refrigerant system 600 is mounted. In some implementations, the liquid coolant loop of the refrigerant system 600 is a self-contained liquid coolant loop. In some implementations, the system 600 is configured to couple to, and cool, one or more of: electronic components, motors, and batteries via chiller ports 606.


In some implementations, the system 600 includes a casing (not shown), e.g., a casing adapted to be aerodynamic when arranged on a roof of a vehicle. In accordance with some implementations, the system 600 is arranged and configured to have a low profile so as to reduce drag on a vehicle when mounted to a roof, hood, or side of the vehicle.



FIG. 7 is a flowchart diagram illustrating a method 700 for cooling electronics in accordance with some implementations. In some implementations, the method 700 is performed by a refrigerant system (e.g., the refrigerant system 100 or 300) or one or more components of the refrigerant system, such as the controller 202, FIG. 2. In some implementations, the method 700 is performed by a device or controller coupled to the refrigerant system. Thus, in some implementations, the operations of the method 700 described herein are interchangeable, and respective operations of the method 700 are performed by any of the aforementioned devices, systems, or combination of devices and/or systems. In some implementations, the method 700 is governed by instructions that are stored in a non-transitory computer-readable storage medium and that are executed by one or more controllers of a refrigerant system. For convenience, method 700 is described below as being performed by a system, such as the refrigerant system 100 in FIG. 1.


A system having a refrigeration loop and a liquid coolant loop (e.g., refrigerant system 100) operates (702) in a first state. In some implementations, the first state corresponds to a particular condenser fan speed, compressor compression ratio, and/or liquid coolant pump speed.


The system receives (704) sensor information (e.g., receives the sensor information from the sensor(s) 204 and/or sensor(s) 206 in FIG. 2). In some implementations, the system receives (706) temperature information. In some implementations, the system receives (708) pressure information. In some implementations, the system receives information on one or more of: component temperature, ambient temperature, refrigerant temperature, refrigerant pressure, refrigerant flow rate, liquid coolant pressure, liquid coolant temperature, and component current draw.


The system operates (710) in a second state based on the sensor information. In some implementations, a controller (e.g., controller 202) transitions the system from operating in the first state to operating in the second state based on the sensor information. In some implementations, the second state corresponds to a parameter, such as condenser fan speed, compressor compression ratio, and/or liquid coolant pump speed, distinct from the corresponding parameter in the first state. In some implementations, operating in the second state includes adjusting (712) a compressor speed. In some implementations, operating in the second state includes adjusting (714) a condenser fan speed. In some implementations, operating in the second state includes adjusting (716) a liquid coolant pump speed. In some implementations, the controller adjusts component speed (e.g., compressor speed) by modifying a current and/or voltage supplied to the component.


In some implementations, operating in the second state includes disabling (718) at least a portion of the refrigerant system in accordance with a determination that associated electronic components do not require active cooling. For example, disabling the compressor 110. In some implementations, the refrigerant system (e.g., refrigerant system 100) includes one or more bypasses to route the refrigerant around disabled component(s).


In some implementations, the system modulates the compressor speed to minimize power consumption. In some implementations, the system modulates the condenser fan speed to minimize power consumption. In some implementations, the system modulates the coolant pump to minimize power consumption. In some implementations, the system monitors conditions (e.g., periodically or continuously monitors) and modulates any one of the above components to meet performance needs and to minimize power consumption (e.g., and extend battery life of the system).


In some implementations, the system includes a refrigerant loop (e.g., refrigerant loop 200), but does not include a liquid coolant loop. For example, the system includes a refrigerant loop with a cold plate rather than the heat exchanger 108 in some implementations. In this example, the cold plate is configured to cool (e.g., transfer heat from) the electronics. In some implementations, the system includes a cooling component (e.g., a cold plate) for the electronics and does not include a liquid coolant loop. In some implementations, the cooling component is coupled to the refrigerant loop. In some implementations, the system includes the refrigerant loop coupled via the heat exchanger to a liquid coolant interface (e.g., a substantially stationary liquid coolant) with the electronics.


It should be understood that the particular order in which the operations in FIG. 7 have been described is merely an example and is not intended to indicate that the described order is the only order in which the operations could be performed. One of ordinary skill in the art would recognize various ways to reorder the operations described herein. Additionally, it should be noted that details of other processes described herein with respect to other methods and/or processes described herein are also applicable in an analogous manner to the method 700 described above with respect to FIG. 7.


Although some of various drawings illustrate a number of logical stages in a particular order, stages that are not order dependent may be reordered and other stages may be combined or broken out. While some reordering or other groupings are specifically mentioned, others will be obvious to those of ordinary skill in the art, so the ordering and groupings presented herein are not an exhaustive list of alternatives. Moreover, it should be recognized that the stages could be implemented in hardware, firmware, software or any combination thereof.


It will also be understood that, although the terms first, second, etc. are, in some instances, used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first sensor could be termed a second sensor, and, similarly, a second sensor could be termed a first sensor, without departing from the scope of the various described implementations. The first sensor and the second sensor are both sensors, but they are not the same sensor unless explicitly described as such.


The terminology used in the description of the various described implementations herein is for the purpose of describing particular implementations only and is not intended to be limiting. As used in the description of the various described implementations and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


As used herein, the term “if” is, optionally, construed to mean “when” or “upon” or “in response to determining” or “in response to detecting” or “in accordance with a determination that,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” is, optionally, construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event]” or “in accordance with a determination that [a stated condition or event] is detected,” depending on the context.


The foregoing description, for purpose of explanation, has been described with reference to specific implementations. However, the illustrative discussions above are not intended to be exhaustive or to limit the scope of the claims to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The implementations were chosen in order to best explain the principles underlying the claims and their practical applications, to thereby enable others skilled in the art to best use the implementations with various modifications as are suited to the particular uses contemplated.

Claims
  • 1. A vehicular electronics cooling system, comprising: a refrigerant loop, comprising: a compressor configured to compress a refrigerant to a compressed refrigerant;a condenser configured to condense the compressed refrigerant to a condensed refrigerant;an expansion device configured to expand the condensed refrigerant to an expanded refrigerant; anda first sensor configured to monitor operation of the refrigerant loop;a liquid coolant loop comprising: a liquid coolant pump configured to pump a liquid coolant through the liquid coolant loop, the liquid coolant loop configured to transfer heat from an electronics system via the liquid coolant, wherein the electronics system is separate and distinct from the refrigerant loop;a heat exchanger coupled to the refrigerant loop and the liquid coolant loop, the heat exchanger configured to transfer heat from the liquid coolant in the liquid coolant loop to the expanded refrigerant in the refrigerant loop; anda second sensor configured to monitor operation of the liquid coolant loop; anda controller communicatively coupled to the refrigerant loop and the liquid coolant loop, the controller configured to: obtain operating data, via the first and second sensors, indicative of cooling requirements of the electronics system, wherein the operating data comprises at least electric current data from at least one component of the electronics system; andadjust speed of one or more components of the vehicular electronics cooling system based on a combination of the operating data of both the first and second sensors.
  • 2. The vehicular electronics cooling system of claim 1, wherein the operating data includes information regarding one or more of: a temperature of the electronics system, a temperature of the refrigerant, a pressure of the refrigerant, and a temperature of the liquid coolant.
  • 3. The vehicular electronics cooling system of claim 1, wherein adjusting speed of the one or more components includes one or more of: adjusting a compressor compression ratio, adjusting a compressor speed, adjusting a condenser fan speed, and adjusting a liquid coolant pump speed.
  • 4. The vehicular electronics cooling system of claim 1, further comprising a fluid reservoir coupled to the refrigerant loop and configure to store the refrigerant; wherein the controller is further configured to transfer refrigerant between the fluid reservoir and the refrigerant loop in accordance with the operating data.
  • 5. The vehicular electronics cooling system of claim 1, wherein adjusting operation of the one or more components includes disabling the compressor in accordance with a determination that a temperature of the electronics system is below a threshold temperature.
  • 6. The vehicular electronics cooling system of claim 1, further comprising a secondary heat exchanger for exchanging heat between the refrigerant and air.
  • 7. The vehicular electronics cooling system of claim 1, further comprising a secondary heat exchanger for exchanging heat between the liquid coolant and air.
  • 8. The vehicular electronics cooling system of claim 1, wherein the first sensor includes one or more temperature sensors thermally coupled to the refrigerant loop and the second sensor includes one or more temperature sensors thermally coupled to one or more of: the liquid coolant loop and the electronics system.
  • 9. The vehicular electronics cooling system of claim 1, wherein the operating data comprises electric current data from the compressor.
  • 10. The vehicular electronics cooling system of claim 1, wherein the operating data comprises information regarding a refrigerant charge level.
  • 11. The vehicular electronics cooling system of claim 1, wherein the controller is communicatively coupled to a display and is configured to transmit system data to the display for presentation to a user.
  • 12. A method for cooling an electronics system, comprising: cooling the electronics system by operating a vehicular electronics cooling system in a first state, the cooling system comprising a refrigerant loop including a condenser and a compressor and thermally coupled to the electronics system via a liquid coolant loop, wherein the electronics system is separate and distinct from the refrigerant loop of the cooling system;while operating the cooling system in the first state, obtaining operating data indicative of cooling requirements of the electronics system from one or more sensors of the cooling system, wherein: the one or more sensors include a first sensor configured to monitor operation of the refrigerant loop and a second sensor configured to monitor operation of the liquid coolant loop, andthe operating data comprises at least electric current data from at least one component of the electronics system; andtransitioning to operating the cooling system in a second state based on a combination of the operating data obtained from both the first and second sensors.
  • 13. The method of claim 12, wherein transitioning to operating in the second state includes adjusting a compressor speed.
  • 14. The method of claim 12, wherein transitioning to operating in the second state includes adjusting a condenser fan speed.
  • 15. The method of claim 12, wherein transitioning to operating in the second state includes adjusting a pump speed for a liquid coolant pump of the cooling system.
  • 16. The method of claim 12, wherein the operating data includes information regarding one or more of: a temperature of the electronics system, a temperature of the liquid coolant, and a temperature of a refrigerant of the cooling system.
  • 17. The method of claim 12, wherein the operating data includes information regarding a pressure or flow rate of refrigerant in the cooling system.
  • 18. The method of claim 12, wherein the operating data indicates that the electronics system does not require active cooling; and wherein operating in the second state includes disabling a portion of the cooling system.
  • 19. The method of claim 18, wherein disabling the portion of the cooling system includes disabling the compressor.
  • 20. The method of claim 18, wherein disabling the portion of the cooling system includes disabling a refrigerant loop of the cooling system while maintaining operation of a liquid coolant pump of the cooling system.
  • 21. The vehicular electronics cooling system of claim 1, wherein the controller is configured to adjust speed of one or more components of the vehicular electronics cooling system based on the electric current data from at least one component of the electronics system.
  • 22. The vehicular electronics cooling system of claim 1, wherein the vehicular electronics cooling system is disposed at an exterior surface of a vehicle.
PRIORITY AND RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 62/537,864, filed Jul. 27, 2017, entitled “Refrigerant System for Cooling Electronics,” which is hereby incorporated by reference in its entirety. This application is related to U.S. patent application Ser. No. 15/283,150, filed Sep. 30, 2016, entitled “Refrigerant Liquid-gas Separator with Electronics Cooling,” which is hereby incorporated by reference in its entirety.

US Referenced Citations (287)
Number Name Date Kind
2722050 Shank Nov 1955 A
2789234 Lambert et al. Jun 1956 A
3176502 Cizek et al. Apr 1965 A
3225819 Stevens Dec 1965 A
3590910 Lorenz Jul 1971 A
3627030 Lorenz Dec 1971 A
3807087 Staats Apr 1974 A
3844130 Wahnish Oct 1974 A
3880224 Weil Apr 1975 A
3885398 Dawkins May 1975 A
3938349 Ueno Feb 1976 A
3948060 Gaspard Apr 1976 A
3995443 Iversen Dec 1976 A
4015182 Erdman Mar 1977 A
4034801 Bernstein Jul 1977 A
4071080 Bridgers Jan 1978 A
4217764 Armbruster Aug 1980 A
4266405 Trask May 1981 A
4271677 Harr Jun 1981 A
4280330 Harris et al. Jul 1981 A
4324286 Brett Apr 1982 A
4359875 Ohtani Nov 1982 A
4391321 Thunberg Jul 1983 A
4412425 Fukami et al. Nov 1983 A
4448157 Eckstein et al. May 1984 A
4459519 Erdman Jul 1984 A
4577679 Hibshman Mar 1986 A
4604036 Sutou et al. Aug 1986 A
4617472 Slavik Oct 1986 A
4641502 Aldrich et al. Feb 1987 A
4658593 Stenvinkel Apr 1987 A
4667480 Bessler May 1987 A
4694798 Kato et al. Sep 1987 A
4748825 King Jun 1988 A
4825663 Nijjar et al. May 1989 A
4841733 Dussault et al. Jun 1989 A
4856078 Konopka Aug 1989 A
4893479 Gillett et al. Jan 1990 A
4905478 Matsuda et al. Mar 1990 A
4945977 D'Agaro Aug 1990 A
4947657 Kalmbach Aug 1990 A
4952283 Besik Aug 1990 A
4982576 Proctor et al. Jan 1991 A
5025634 Dressler Jun 1991 A
5046327 Walker Sep 1991 A
5067652 Enander Nov 1991 A
5095308 Hewitt Mar 1992 A
5125236 Clancey et al. Jun 1992 A
5170639 Datta Dec 1992 A
5205781 Kanno et al. Apr 1993 A
5230719 Berner et al. Jul 1993 A
5269153 Cawley Dec 1993 A
5275012 Dage et al. Jan 1994 A
5307645 Pannell May 1994 A
5316074 Isaji et al. May 1994 A
5324229 Weisbecker Jun 1994 A
5333678 Mellum et al. Aug 1994 A
5361593 Dauvergne Nov 1994 A
5376866 Erdman Dec 1994 A
5396779 Voss Mar 1995 A
5402844 Elluin Apr 1995 A
5404730 Westermeyer Apr 1995 A
5426953 Meckler Jun 1995 A
5465589 Bender et al. Nov 1995 A
5497941 Numazawa et al. Mar 1996 A
5501267 Iritani et al. Mar 1996 A
5502365 Nanbu et al. Mar 1996 A
5524442 Bergmen, Jr. et al. Jun 1996 A
5528901 Willis Jun 1996 A
5562538 Suyama Oct 1996 A
5586613 Ehsani Dec 1996 A
5641016 Isaji et al. Jun 1997 A
5647534 Kelz et al. Jul 1997 A
5657638 Erdman et al. Aug 1997 A
5682757 Peterson Nov 1997 A
5720181 Karl et al. Feb 1998 A
5727396 Boyd Mar 1998 A
5752391 Ozaki et al. May 1998 A
5761918 Jackson et al. Jun 1998 A
5775415 Yoshini et al. Jul 1998 A
5782610 Ikeda Jul 1998 A
5819549 Sherwood Oct 1998 A
5896750 Karl Apr 1999 A
5898995 Ghodbane May 1999 A
5899081 Evans et al. May 1999 A
5901572 Peiffer et al. May 1999 A
5901780 Zeigler et al. May 1999 A
5921092 Behr et al. Jul 1999 A
5934089 Magakawa et al. Aug 1999 A
5982643 Phlipot Nov 1999 A
5996363 Kurachi et al. Dec 1999 A
6016662 Tanaka et al. Jan 2000 A
6021043 Horng Feb 2000 A
6028406 Birk Feb 2000 A
6029465 Bascobert Feb 2000 A
6038877 Peiffer et al. Mar 2000 A
6038879 Turcotte Mar 2000 A
6059016 Rafalovich et al. May 2000 A
6072261 Lin Jun 2000 A
6073456 Kawai et al. Jun 2000 A
6111731 Cepynsky Aug 2000 A
6112535 Hollenbeck Sep 2000 A
6125642 Seener et al. Oct 2000 A
6134901 Harvest et al. Oct 2000 A
6152217 Ito et al. Nov 2000 A
6185959 Zajac Feb 2001 B1
6193475 Rozek Feb 2001 B1
6205795 Backman et al. Mar 2001 B1
6205802 Drucker et al. Mar 2001 B1
6209333 Bascobert Apr 2001 B1
6209622 Lagace et al. Apr 2001 B1
6213867 Yazici Apr 2001 B1
6230507 Ban et al. May 2001 B1
6253563 Ewert et al. Jul 2001 B1
6265692 Umebayahi et al. Jul 2001 B1
6276161 Peiffer et al. Aug 2001 B1
6282919 Rockenfeller Sep 2001 B1
6318103 Rieger et al. Nov 2001 B1
6351957 Hara Mar 2002 B2
6405793 Ghodbane et al. Jun 2002 B1
6411059 Frugier et al. Jun 2002 B2
6453678 Sundhar Sep 2002 B1
6457324 Zeigler et al. Oct 2002 B2
6467279 Backman et al. Oct 2002 B1
6474081 Feuerecker Nov 2002 B1
6490876 Derryberry Dec 2002 B2
6530426 Kishita et al. Mar 2003 B1
6543245 Waldschmidt Apr 2003 B1
6571566 Temple et al. Jun 2003 B1
6575228 Ragland et al. Jun 2003 B1
6626003 Kortüm et al. Sep 2003 B1
6651448 Ross Nov 2003 B2
6662592 Ross Dec 2003 B2
6675601 Ebara Jan 2004 B2
6684863 Dixon et al. Feb 2004 B2
6725134 Dillen et al. Apr 2004 B2
6745585 Kelm et al. Jun 2004 B2
6748750 Choi Jun 2004 B2
6758049 Adachi et al. Jul 2004 B2
6889762 Zeigler et al. May 2005 B2
6932148 Brummett et al. Aug 2005 B1
6939114 Iwanami et al. Sep 2005 B2
6965818 Koenig et al. Nov 2005 B2
6981544 Iwanami et al. Jan 2006 B2
6992419 Kim et al. Jan 2006 B2
7131281 Salim et al. Nov 2006 B2
7135799 Rittmeyer Nov 2006 B2
7150159 Brummett et al. Dec 2006 B1
7246502 Hammonds et al. Jul 2007 B2
7316119 Allen Jan 2008 B2
7350368 Heberle et al. Apr 2008 B2
7385323 Takahashi et al. Jun 2008 B2
7591143 Zeigler et al. Sep 2009 B2
7591303 Zeigler et al. Sep 2009 B2
7614242 Quesada Saborio Nov 2009 B1
7637031 Salim et al. Dec 2009 B2
7765824 Wong et al. Aug 2010 B2
7821175 Ionel et al. Oct 2010 B2
7932658 Ionel Apr 2011 B2
8001799 Obayashi et al. Aug 2011 B2
8141377 Connell Mar 2012 B2
8156754 Hong et al. Apr 2012 B2
8276892 Narikawa et al. Oct 2012 B2
8492948 Wang et al. Jul 2013 B2
8517087 Zeigler et al. Aug 2013 B2
8821092 Nambara et al. Sep 2014 B2
8841813 Junak et al. Sep 2014 B2
8905071 Coombs et al. Dec 2014 B2
8919140 Johnson et al. Dec 2014 B2
8947531 Fischer et al. Feb 2015 B2
9157670 Kreeley et al. Oct 2015 B2
9216628 Self et al. Dec 2015 B2
9221409 Gauthier et al. Dec 2015 B1
9783024 Connell et al. Oct 2017 B2
9878591 Taniguchi et al. Jan 2018 B2
10267546 Evans Apr 2019 B2
20010010261 Oomura et al. Aug 2001 A1
20010013409 Burk et al. Aug 2001 A1
20010015070 Junichiro Aug 2001 A1
20020020183 Hayashi Feb 2002 A1
20020026801 Yamashita Mar 2002 A1
20020036081 Ito et al. Mar 2002 A1
20020042248 Vincent et al. Apr 2002 A1
20020078700 Kelm et al. Jun 2002 A1
20020084769 Iritani et al. Jul 2002 A1
20020108384 Higashiyama Aug 2002 A1
20020112489 Egawa et al. Aug 2002 A1
20020157412 Iwanami et al. Oct 2002 A1
20020157413 Iwanami et al. Oct 2002 A1
20030041603 Tada et al. Mar 2003 A1
20030105567 Koenig et al. Jun 2003 A1
20030106332 Okamoto Jun 2003 A1
20040060312 Horn et al. Apr 2004 A1
20040079098 Uno et al. Apr 2004 A1
20040112074 Komura et al. Jun 2004 A1
20040168449 Homan et al. Sep 2004 A1
20040216477 Yamasaki et al. Nov 2004 A1
20040221599 Hille et al. Nov 2004 A1
20040250560 Ikura et al. Dec 2004 A1
20040256082 Bracciano Dec 2004 A1
20050016196 Kadle et al. Jan 2005 A1
20050109499 Iwanami et al. May 2005 A1
20050161211 Zeigler et al. Jul 2005 A1
20050230096 Yamaoka Oct 2005 A1
20050235660 Pham Oct 2005 A1
20050257545 Ziehr et al. Nov 2005 A1
20060042284 Heberle et al. Mar 2006 A1
20060080980 Lee et al. Apr 2006 A1
20060102333 Zeigler et al. May 2006 A1
20060118290 Klassen et al. Jun 2006 A1
20060151163 Zeigler et al. Jul 2006 A1
20060151164 Zeigler et al. Jul 2006 A1
20060254309 Takeuchi et al. Nov 2006 A1
20060277936 Norden Dec 2006 A1
20070039336 Wu et al. Feb 2007 A1
20070070605 Straznicky et al. Mar 2007 A1
20070101760 Bergander May 2007 A1
20070103014 Sumiya et al. May 2007 A1
20070131408 Zeigler Jun 2007 A1
20070144723 Aubertin et al. Jun 2007 A1
20070144728 Kinmartin et al. Jun 2007 A1
20070163276 Braun et al. Jul 2007 A1
20070227167 Shapiro Oct 2007 A1
20070295017 Pannell Dec 2007 A1
20080017347 Chung et al. Jan 2008 A1
20080110185 Veettil et al. May 2008 A1
20080156887 Stanimirovic Jul 2008 A1
20080196436 Connell Aug 2008 A1
20080196877 Zeigler et al. Aug 2008 A1
20080209924 Yoon et al. Sep 2008 A1
20080295535 Robinet Dec 2008 A1
20090140590 Hung Jun 2009 A1
20090211280 Alston Aug 2009 A1
20090229288 Alston et al. Sep 2009 A1
20090241592 Stover Oct 2009 A1
20090249802 Nemesh et al. Oct 2009 A1
20090301702 Zeigler et al. Dec 2009 A1
20100009620 Kawato et al. Jan 2010 A1
20100019047 Flick Jan 2010 A1
20100127591 Court et al. May 2010 A1
20100218530 Melbostad et al. Sep 2010 A1
20100263395 Adachi et al. Oct 2010 A1
20100293966 Yokomachi et al. Nov 2010 A1
20100297517 Maier Nov 2010 A1
20110088417 Kayser Apr 2011 A1
20110120146 Ota et al. May 2011 A1
20110126566 Jones et al. Jun 2011 A1
20110174014 Scarcella et al. Jul 2011 A1
20110308265 Phannavong Dec 2011 A1
20120023982 Berson et al. Feb 2012 A1
20120047930 Uselton Mar 2012 A1
20120102779 Beers et al. May 2012 A1
20120118532 Jentzsch et al. May 2012 A1
20120133176 Ramberg May 2012 A1
20120247135 Fakieh Oct 2012 A1
20120297805 Kamada et al. Nov 2012 A1
20120318014 Huff et al. Dec 2012 A1
20130040549 Douglas et al. Feb 2013 A1
20130091867 Campbell et al. Apr 2013 A1
20130145781 Liu Jun 2013 A1
20130167577 Street Jul 2013 A1
20130181556 Li et al. Jul 2013 A1
20130298583 O'Donnell Nov 2013 A1
20130319630 Yamamoto Dec 2013 A1
20140066572 Corveleyn Mar 2014 A1
20140075973 Graaf et al. Mar 2014 A1
20140102679 Matsudaira et al. Apr 2014 A1
20140241926 Fraser Aug 2014 A1
20140245770 Chen et al. Sep 2014 A1
20140260358 Leete et al. Sep 2014 A1
20140260403 Connell Sep 2014 A1
20140290299 Nakaya Oct 2014 A1
20150059367 Emo et al. Mar 2015 A1
20150064639 Dumbreck Mar 2015 A1
20150158368 Herr-Rathke et al. Jun 2015 A1
20150210287 Penilla et al. Jul 2015 A1
20150236525 Aridome Aug 2015 A1
20150239365 Hyde et al. Aug 2015 A1
20150306937 Kitamura et al. Oct 2015 A1
20160089958 Powell Mar 2016 A1
20160144685 Ochiai et al. May 2016 A1
20160146554 Bhatia et al. May 2016 A1
20160229266 Maeda et al. Aug 2016 A1
20170067676 Munk et al. Mar 2017 A1
20170211855 Fraser et al. Jul 2017 A1
20170350632 Hirao et al. Dec 2017 A1
20180001731 Vehr et al. Jan 2018 A1
Foreign Referenced Citations (61)
Number Date Country
1468409 Jan 2004 CN
2883071 Mar 2007 CN
201872573 Jun 2011 CN
102398496 Apr 2012 CN
103547466 Jan 2014 CN
104105610 Oct 2014 CN
105071563 Nov 2015 CN
105186726 Nov 2015 CN
4440044 May 1996 DE
197 45 028 Apr 1999 DE
19917811 Mar 2000 DE
10014483 Nov 2000 DE
199 42 029 Mar 2001 DE
199 54 308 Jul 2001 DE
102005004950 Aug 2006 DE
10 2007 028851 Dec 2008 DE
102010054965 Jun 2012 DE
10 2012 022564 May 2014 DE
11 2015 000552 Nov 2016 DE
0516413 Dec 1992 EP
0958952 Nov 1999 EP
1024038 Aug 2000 EP
1 400 764 Mar 2004 EP
1 477 748 Nov 2004 EP
1 700 725 Sep 2006 EP
1 703 231 Sep 2006 EP
1 970 651 Sep 2008 EP
2048011 Apr 2009 EP
2196748 Jun 2010 EP
2320160 May 2011 EP
2894420 Jul 2015 EP
0963895 Dec 2015 EP
3118035 Jan 2017 EP
2966391 Apr 2012 FR
H02-128915 May 1990 JP
5032121 Feb 1993 JP
H07186711 Jul 1995 JP
H97-76740 Mar 1997 JP
H09318177 Dec 1997 JP
H10281595 Oct 1998 JP
2000108651 Apr 2000 JP
2005044551 Apr 2000 JP
2002081823 Mar 2002 JP
2005-033941 Feb 2005 JP
2005-081960 Mar 2005 JP
2006-264568 Oct 2006 JP
2008220043 Sep 2008 JP
2012017029 Jan 2012 JP
2014226979 Dec 2014 JP
20090068136 Jun 2009 KR
WO 8909143 Oct 1989 WO
WO 9961269 Dec 1999 WO
WO 0000361 Jan 2000 WO
WO 2004011288 Feb 2004 WO
WO 2006082082 Aug 2006 WO
WO 2012158326 Nov 2012 WO
WO 2013113308 Aug 2013 WO
WO 2014112320 Jul 2014 WO
WO 2014180749 Nov 2014 WO
WO 2014209780 Dec 2014 WO
WO 2015076872 May 2015 WO
Non-Patent Literature Citations (128)
Entry
Connell, Notice of Allowance, U.S. Appl. No. 15/439,865, dated Jan. 30, 2020, 8 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 15/660,734, dated Mar. 9, 2020, 8 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 16/133,599, dated Mar. 3, 2020, 9 pgs.
Bergstrom, Inc., Communication Pursuant to Article 9 4(3), EP17780954.8, dated Jul. 30, 2020, 6 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 16/546,141, dated Dec. 2, 2020, 5 pgs.
Xi, Office Action,U.S. Appl. No. 16/370,741, dated Jun. 29, 2021, 17 pgs.
Alfa Laval Website http://www.alfalaval.com/ecore-Java/WebObjects/ecoreJava.woa/wa/shoNode?siteNodelID=1668&cont . . . ; date last visited May 18, 2007; 1 page.
Anonymous: “NITE Connected Climate Controlled Transport Monitoring/Mobile Internet of Things UI Design/Mobil UI: Progress/Printeres/Internet of Things, User Inter . . . ,” Oct. 19, 2016 retrieved from: URL:htps://za.pinterest.com/pin/192810427773981541/, 1 pg.
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2014/026687, dated Jul. 28, 2014, 12 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2014/026687, dated Sep. 15, 2015, 7 pgs.
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2014/026683, dated Jul. 3, 2014 12 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2014/026683, dated Sep. 15, 2015, 6 pgs.
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2013/068331, dated Nov. 7, 2014, 9 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2013/068331, dated May 10, 2016, 6 pgs.
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2016/021602, dated Nov. 3, 2016, 7 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2016/021602, dated Sep. 12, 2017, 11 pgs.
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2017/021346, dated Jul. 25, 2017, 11 pgs.
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2016/065812, dated Mar. 22, 2017, 12 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2016/065812, dated Jun. 12, 2018, 8 pgs.
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2018/044093, dated Oct. 25, 2018, 13 pgs.
Bergstrom, Inc., International Search Report and Written Opinion, PCT/US2017049859, dated Nov. 12, 2017, 4 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2017049859, dated Mar. 5, 2019, 6 pgs.
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2017053196, dated Sep. 3, 2018, 17 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2017053196, dated Apr. 2, 2019, 11 pgs.
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2016/423326, dated Sep. 27, 2016, 8 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability PCT/US2016/423326, dated Jan. 16, 2018, 7 pgs.
Bergstrom, Inc., Interational Search Report and Written Opinion PCT/US2016/42307, dated Oct. 7, 2016, 8 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability PCT/US2016/42307, dated Jan. 16, 2018, 7 pgs.
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2016/42314, dated Sep. 30, 2016, 7 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability, PCT/US2016/42314, dated Jan. 16, 2018, 6 pgs.
Bergstrom, Inc., International Search Report and Written Opinion PCT/US2016/42329, dated Sep. 30, 2016, 6 pgs.
Bergstrom, Inc., International Preliminary Report on Patentability PCT/US2016/42329, dated Jan. 16, 2018, 5 pgs.
Bergstrom, Inc., Communication Pursuant to Rules 161(2) and 162 EPC, EP14717604.4, dated Oct. 23, 2015, 2 pgs.
Bergstrom, Inc., Communication Pursuant to Article 94(3), EP14717604.4, dated Jun. 2, 2017, 12 pgs.
Bergstrom, Inc., Communication Pursuant to Article 94(3), EP14717604.4, dated Feb. 4, 2019, 5 pgs.
Bergstrom, Inc., Communication Pursuant to Rules 161(2) and 162 EPC, EP14722438.0, dated Nov. 2, 2015. 2 pgs.
Bergstrom, Inc. Communication Pursuant to Article 94(3), EP14722438.0, dated Jan. 24, 2018, 5 pgs.
Bergstrom, Inc., Communication Pursuant to Rules 161(2) and 162 EPC, EP13795064.8, dated Jun. 22, 2016, 2 pgs.
Bergstrom, Inc. Extended European Search Report, EP16204254.3, dated Jul. 25, 2017, 8 pgs.
Bergstrom, Inc. Partial European Search Report, EP16204259.2, dated May 30, 2017, 14 pgs.
Bergstrom, Inc. Extended European Search Report, EP16204259.2, dated Oct. 25, 2017, 15 pgs.
Bergstrom, Inc. Corrected Extended European Search Report, EP16204259.2, dated Nov. 24, 2017, 15 pgs.
Bergstrom, Inc. Partial European Search Report, EP16204256.8, dated Jul. 13, 2017, 14 pgs.
Bergstrom, Inc. Extended European Search Report, EP16204256.8, dated Jan. 12, 2018, 11 pgs.
Bergstrom, Inc. Extended European Search Report, EP16204256.8, dated Dec. 1, 2017, 13 pgs.
Bergstrom, Inc. Extended European Search Report, EP16204267.5, dated Jul. 11, 2017, 8 pgs.
Bergstrom, Inc., Communicaton Pursuant to Article 94(3), EP16820096.2, dated Aug. 12, 2019, 7 pgs.
Bergstrom, Inc. Extended European Search Report, EP18177850.7, dated Nov. 28, 2018. 8 pgs.
Bergstrom, Inc., Communication Pursuant to Rules 161(1) and 162, EP17780954.8, dated May 10, 2019, 3 pgs.
Bergstrom, Inc., Extended European Search Report, EP19166779.9, dated Aug. 30, 2019, 8 pgs.
Bergstrom, Inc., Office Action, CN201480027137.4, 15 pgs.
Bergstrom, Inc., 2nd Office Action, CN201480027137.4, dated Jul. 13, 2017, 10 pgs.
Bergstrom, Inc., 3rd Office Action, CN201480027137.4, dated Jan. 17, 2018, 19 pgs.
Bergstrom, Inc., 4th Office Action, CN201480027137.4, dated Jul. 26, 2018, 8 pgs.
Bergstrom, Inc., Notification of Grant, CN201480027I37.4, dated Feb. 21, 2019, 1 pg.
Bergstrom, Inc., Patent Certificate CN201480027137.4, May 31, 2019, 4 pgs.
Bergstrom, Inc., Office Action, CN201480027117.7, 8 pgs.
Bergstrom, Inc., Patent Certificate, CN201480027117.7, Nov. 21, 2017, 3 pgs.
Bergstrom, Inc., 2nd Office Action, CN201380081940.1, dated Jan. 17, 2018, 13 pgs.
Bergstrom, Inc., 3rd Office Action, CN201380081940.1, dated Jul. 31, 2018, 7 pgs.
Bergstrom, Inc., 1st Office Action, CN201680002224.3. dated Dec. 11, 2018, 5 pgs.
Bergstrom, Inc., Letters Patent, CN201680002224.3, Sep. 10, 2019, 2 pgs.
Connell, Office Action, U.S. Appl. No. 14/209,877, dated Nov. 27, 2015, 19 pgs.
Connell, Final Office Action, U.S. Appl. No. 14/209,877, dated Jun. 22, 2016, 17 pgs.
Connell, Final Office Action, U.S. Appl. No. 14/209,877, dated Dec. 29, 2016, 21 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 14/209,877, dated May 16, 2017, 5 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 14/209,877, dated Aug. 4, 2017, 7 pgs.
Connell, Office Action, U.S. Appl. No. 14/209,961, dated Dec. 2, 2015, 14 pgs.
Connell, Final Office Action, U.S. Appl. No. 14/209,961, dated Jul. 25, 2016, 15 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 14/209,961, dated Jun. 15, 2017, 10 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 15/064,552, dated Jun. 1, 2017, 9 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 14/995,119, dated Aug. 31, 2017, 7 pgs.
Connell, Office Action, U.S. Appl. No. 14/965,142, dated Aug. 29, 2017, 12 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 14/965,142, dated Feb. 26, 2018, 8 pgs.
Connell, Office Action, U.S. Appl. No. 15/280,876, dated Dec. 14, 2017, 23 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 15/280,876, dated Jun. 21, 2018, 9 pgs.
Connell, Office Action, U.S. Appl. No. 15/791,243, dated May 8, 2018, 12 pgs.
Connell, Office Action, U.S. Appl. No. 15/065,745, dated May 31, 2018, 44 pgs.
Connell, Final Office Action, U.S. Appl. No. 15/065,745, dated Dec. 17, 2018, 27 pgs.
Connell, Office Action, U.S. Appl. No. 15/065,745, dated May 9, 2019, 28 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 15/065,745, dated Nov. 14, 2019, 9 pgs.
Connell, Office Action, U.S. Appl. No. 15/283,150, dated Sep. 27, 2018, 21pgs.
Connell, Notice of Allowance, U.S. Appl. No. 15/283,150, dated Mar. 22, 2019, 8 pgs.
Connell, Office Action, dated Oct. 19, 2018, U.S. Appl. No. 15/722,860, 7 pgs.
Connell, Notice of Allowance, dated Feb. 7, 2019, U.S. Appl. No. 15/722,860, 5 pgs.
Connell, Notice of Allowance, dated May 20, 2019, U.S. Appl. No. 15/722,860, 5 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 15/791,243, dated Jan. 24, 2019, 7 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 15/791,243, dated May 15, 2019, 7 pgs.
Connell, Office Action, dated Apr. 18, 2019, U.S. Appl. No. 15/816,993, 17 pgs.
Connell, Notice of Allowance, dated Sep. 26, 2019, U.S. Appl. No. 15/816,993, 8 pgs.
Connell, Office Action, U.S. Appl. No. 15/439,865, dated Sep. 24, 2019, 6 pgs.
Connell, Office Action, U.S. Appl. No. 15/660,734, dated Oct. 30, 2019, 24 pgs.
FlatPlate Heat Exchangers; GEA FlatPiate Inc.; website—http://www.flatplate.com/profile.html; date last visited Aug. 9, 2007; 3 pages.
Glacier Bay Inc., Glacier Bay's Home Page, page printed from a website, htt(?:i/web.archive.org/web/19990417062255/htt[2://www.glacierbay.com/, apparent archive date: Apr. 17, 1999, 1 page.
Glacier Bay Inc., Darpa/Glacier Bay ECS, pages printed from a website, httir//web.archive.org/web/19991104132941/wvvw .glacierbay.com/darQatxt. htm, apparent archive date: Nov. 4, 1999, 2 pages.
Glacier Bay Inc., Glacier Bay ECS DARPA Project—Final Report, pages printed fom a website, httn://web.archive.or_gjweb/19991103001512/v⋅vww ,_g.Jacierbay.com/Darnhtm.htm, apparent archive date: Nov. 3, 1999, 9 pages.
Glacier Bay Inc., Glacier Bay ECS DARPA Project—Project Photos, pages printed from a website, httg://web.archive.org/web/1999 ″1103012854/www .glacierbay.com/Dargghotos.htm, apparent archive date: Nov. 3, 1999, 2 pages.
Glacier Bay Inc., Glacier Bay ECS DARPA Project—Operational Video, page printed from a website, httQ://web.archive.orq/web/19991022221040/wvvw .qlacierbay.com/DarQvid.htm, apparent archive date Oct. 22, 1999; 1 page.
Glacier Bay Inc., R & D, pages printed from a website, htt ://web.archive.org/web/20000121130306/www.glacierbay.com/R&D.htm, apparent archive date: Jan. 21, 2000, 2 pages.
Glacier Bay Inc., Company History, pages printed from a website, httg://web.archive.org/web/20000301153828/www .g!acierbay.com/History:.htm, apparent archive date: Mar. 1, 2000; 2 pages.
Glacier Bay Inc., Contact, page printed from a website, httQ://web.archive.orq/web/19990508104511/W\'″I!V .qlacierba:t.com/Contact.htm, apparent archive date: May 8, 1999; 1 page.
Hansson, Office Action dated Oct. 5, 2018, U.S. Appl. No. 15/256,109, 14pgs.
Hansson, Final Office Action, U.S. Appl. No. 15/256,109, dated May 2, 2019, 14 pgs.
Hansson, Notice of Allowance, U.S. Appl. No. 15/256,109, dated Sep. 24, 2019, 9 pgs.
Michael Löhle, Günther Feuerecker and Ulrich Salzer; NON Idling HVAC-modufe tor Long Distance Trucks;SAE TechnicalPaper Series 1999-01-1193; International Congress and Exposition, Detroit, Michigan; Mar. 1-4, 1999; 8 pages.
Mahmoud Ghodbane; On Vehicle Performance of a Secondary Loop A/C System; SAE Technical Paper Series 2000-01-1270; SAE 2000 World Congress, Detroit, Michigan; Mar. 6-9, 2000; 6 pages.
Masami Konaka and Hiroki Matsuo: SAE Technical Paper Series 2000-01-1271; SAE 2000 World Congress, Detroit, Michigan; Mar. 6-9, 2000; 6 pages.
Mayo Mayo, Office Action, U.S. Appl. No. 15/034,517, dated Feb. 21, 2018, 22 pgs.
Mayo Mayo, Final Office Action, U.S. Appl. No. 15/034,517, dated Aug. 28, 2018, 9pgs.
Mayo Mayo, Final Office Action, U.S. Appl. No. 15/034,517, dated Nov. 30, 2018, 7 pgs.
Frank Stodolsky, Linda Gaines, and Anant Vyas; Analysis of Technology Options to Reduce the Fuel Consumption of Idling Tracks; Paper-Center for Transportation Research, Energy Systems Division, Argonne National Laboratory,9700 South Cass Avenue, Argonne, Illinois 60439;Jun. 2000; 30 pages.
Paper No. 26 in IPR2012-00027, Jun. 11, 2013, 12 pgs. (U.S. Pat. No. 7,591,303).
Patricia Gardie and Vincent Goetz; Thermal Energy Storage System by Solid Absorption for Electric Automobile Heating and Air-Conditioning; Paper; 5 pages.
TropiCool No-idle Heating & Cooling, 110V/12V High-efficency, Self-contained, Electrfied Heating/AC System; ACC Climate Control Brochure, Elkhart, Indiana; 205, 1 page.
TropiCool Power Plus, More comfort. More efficiency. More options.; ACC Climate Control Brochure, Elkhart, Indiana; 2006, 3 pages.
TYCO Electronics Corporation, “MAG-MATE Connector with Multispring Pin,” Datasheet, 2013, pp. 1-2 from <URL: http://datasheet.octopart.com/1247003-2-TE-Connectivity-datasheet-14918754.pdf>.
Packless Industries, the leader in refrigerant to water coaxial heat exchangers, flexible hoses and sucti . . . ; website—http://www.packless.com/profile.htmle: date last visited Aug. 9, 2007; 1 page.
Zeigler, Office Action, U.S. Appl. No. 13/661,519, dated Mar. 11, 2013, 8 pgs.
Zeigler, Final Office Action, U.S. Appl. No. 13/661,519, dated Sep. 18, 2013, 15 pgs.
Zeigler, Office Action, U.S. Appl. No. 13/661,519, dated Apr. 9, 2014, 20 pgs.
Zeigler, Final Office Action, U.S. Appl. No. 13/661,519, dated Sep. 26, 2014, 23 pgs.
Zeigler, Office Action, U.S. Appl. No. 13/661,519, dated Oct. 28, 2015, 20 pgs.
Zeigler, Notice of Allowance, U.S. Appl. No. 13/661,519, dated Jun. 17, 2016, 8 pgs.
Bergstrom, Inc., Communication Pursuant to Article 94(3), EP16820096.2, dated Jan. 18, 2022, 5 pgs.
Connell, Office Action, U.S. Appl. No. 16/894,728, dated May 26, 2021, 7 pgs.
Connell, Notice of Allowance, U.S. Appl. No. 16/894,728, dated Sep. 22, 2021, 8 pgs.
Xi, Final Office Action, U.S. Appl. No. 16/370,741, dated Dec. 1, 2021, 7 pgs.
Xi, Notice of Allowance, U.S. Appl. No. 16/370,741, dated Apr. 18, 2022, 8 pgs.
Related Publications (1)
Number Date Country
20190030984 A1 Jan 2019 US
Provisional Applications (1)
Number Date Country
62537864 Jul 2017 US