Refrigerant systems are known to utilize refrigerant circulating throughout a closed-loop circuit to condition a secondary fluid. Typically, a refrigerant system includes a compressor for compressing the refrigerant, and delivering the refrigerant to a downstream heat exchanger. Refrigerant from that downstream heat exchanger passes through an expansion device, and then to an evaporator. In traditional refrigerant systems, the expansion device is a fixed area restriction or a valve that may be controlled such that the amount of expansion is tailored to achieve desired characteristics in operation of the refrigerant system.
In some advanced refrigerant systems, the work which is available from the expansion process of the refrigerant is utilized to drive or assist in driving at least one component within the refrigerant system.
In one known refrigerant system configuration, a secondary compressor operates in parallel with a main compressor. This secondary compressor compresses a portion of the refrigerant circulated throughout the refrigerant system. The secondary compressor is driven by the expander, with the expander operating much like a turbine, to receive the compressed refrigerant, and expand that refrigerant to a lower pressure and temperature. The work from this expansion process is utilized to drive the secondary compressor. This known combination of a compressor and an expander, located on the same shaft, is called an expresser. The use of the expresser is known in the industry, where the expander drives or assists in driving the corresponding compressor. The refrigerant exiting a heat rejection heat exchanger enters the expander, and then is expanded to a lower pressure and temperature. A two-phase flow exiting the expander enters the evaporator. The work extracted from the expansion process in the expander is used to drive the secondary compressor that is quite often located on the same shaft as the expander. In addition to extracting useful work from the expansion process, the refrigerant passing through the expander acquires a higher cooling thermodynamic potential, as it expands through the expander, since it follows a more efficient isentropic process. The use of the expresser technology is especially expected to grow in CO2 applications, where the potential for the expansion energy recovery is higher than for the conventional refrigerants.
One of the disadvantages of positioning the expander and the associated compressor into a closely coupled mechanical engagement, such as locating them on the same shaft, is that the expander speed is not actively controlled. In other words, the expander will settle at a speed at which the power extracted by the expander from the refrigerant expansion process is roughly equal to and is balanced by the power delivered to the compressor. Since the expander speed cannot be actively controlled, the expansion process through the expander is typically not optimal. If the expansion process is not optimal, then the amount of refrigerant delivered to the evaporator, and its thermodynamic state, cannot be precisely controlled. If a delivered amount of refrigerant cannot be adjusted, it may result, for instance, in less than optimal gas cooler pressure, in transcritical applications, and/or undesirable conditions at the compressor entrance.
In other words, to optimize the expansion process for given operating and environmental conditions, such as gas cooler pressure, suction superheat, etc., flexibility in varying the expander speed must be provided. One way to enhance the control of the expander is to install an expansion valve that is located in series with the expander. However, the expansion valve would reduce/limit the amount of the work extracted from the expansion process by the expander. This reduction would occur, as part of the expansion process would take place in the expansion valve, and not in the expander. Therefore, a need exists to optimize the expresser operation.
In this invention, the expansion process in the expander is controlled by adjusting the speed of the expander. The higher the expander speed, the more refrigerant can be passed through the expander. Similarly, the lower the expander speed, the less refrigerant passes through the expander. The expander speed of the expresser (a mechanically coupled compressor-expender configuration) is adjusted by changing the load on the compressor component of the expresser. Compressor unloading can be accomplished by using various unloading techniques such as, for example, moving a slide valve of a screw compressor, opening a bypass port of the scroll compressor, using suction cutoff of a reciprocating compressor, installing a suction modulation valve, or utilizing any other known techniques to reduce the compressor load. This compressor load reduction causes the expander speed to increase.
Similarly, loading the associated compressor component of the expresser results in a speed decrease of the expander component of the expresser. Therefore, by utilizing the proper amount of compressor unloading we can very the expresser speed and thus optimize the expansion process. This is true since the expander speed varies along with the expresser speed, as both the compressor and expander are closely mechanically coupled, such as located on the same shaft. An ability to change the expander speed is similar to adjusting the amount of flow by using a variable restriction expansion device, such as an electronic expansion valve, in comparison to inefficient fixed cross-sectional area expansion device, such as a capillary tube or orifice.
These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
A refrigerant system 20 is illustrated in
Downstream of the condenser 32, an expansion process, to a lower pressure and temperature, occurs in an expander 34. As known, the expander 34 takes the compressed refrigerant from the heat rejection heat exchanger (a subcritical condenser or a supercritical gas cooler) 32, and utilizes energy from that compressed refrigerant to drive the expander, while the compressed refrigerant is “isentropically” expanded to a lower pressure and temperature. A shaft 36 (alternatively a generator) is driven by the expander 34, and this shaft (or power from the generator) in turn drives the secondary compressor 28. Such systems are known as “expressers.”
A heat exchanger, or an evaporator, 38 is positioned downstream of the expander 34. The evaporator 38 is located on a lower pressure side of the refrigerant system 20, and heat is transferred to the refrigerant in the evaporator 38 from a secondary fluid to be delivered to a climate-controlled space. Refrigerant passes from the expander 34, through the evaporator 38, and back into the suction line 24 to return to the compressors 22 and 28. The refrigerant system 20, as described to this point, is as known in the art. Obviously, the basic refrigerant system 20 may have additional features or enhancement options. All these variations in refrigerant system configurations are within the scope and can equally benefit from the invention.
A control 50 for the refrigerant system 20 operates components such as a bypass valve 40, and/or a suction modulation valve 44, both associated with the secondary compressor 28, to limit the amount of refrigerant compressed by the secondary compressor 28, and thus to unload the compressor 28. By reducing the amount of refrigerant compressed by the secondary compressor 28, the speed of the expander 34 mechanically coupled with the compressor 28 can be increased. The expander speed adjustment achieves desired thermodynamic characteristics of the expanding refrigerant that can be optimized for specific operating conditions. The desired thermodynamic characteristics of the expanding refrigerant tailored to a specific set of operating conditions are as known in the art, and have been utilized for operation and control of electronic expansion valves. However, achieving desired thermodynamic characteristics of the expanding refrigerant have been limited with systems utilizing expanders, since the expander speed is not usually actively controlled.
However, by utilizing the control 50, and selectively operating, for example, either the bypass valve 40 to control the amount of refrigerant bypassed through a bypass line 42, or by limiting the amount of refrigerant passing through a suction modulation valve 44 and reaching the secondary compressor 28, the amount of refrigerant compressed by the secondary compressor 28, and thus the speed of the expander 34, can be controlled. The control 50 may also be operated in a pulse width modulation mode to rapidly cycle either valve 40 or 44 between open and closed positions to achieve precise control over the amount of refrigerant compressed by the secondary compressor 28. Obviously, the valves 40 and 44 may operate in conjunction with each other to achieve the desired level of unloading of the secondary compressor 28.
Compressor unloading can be accomplished by using various unloading techniques such as, for example, moving a slide valve of a screw compressor, opening a bypass port of the scroll compressor, using suction cutoff of a reciprocating compressor, installing a suction modulation valve, or utilizing any other known techniques to reduce the compressor load.
To be operational and to take advantage of the invention, the expander 34 does not have to be connected to the high source of pressure associated with the heat rejection heat exchanger 32 and to the source of low pressure associated with the evaporator 38. To perform the expansion function, the expander can be connected to an intermediate pressure point in the refrigerant system 120 as shown in
Similarly, in the embodiment 220 shown in
Even further arrangements are possible, where, for example, the secondary compressor 28 is not compressing the refrigerant, but instead is compressing some other process fluid. In this case, in the embodiment 320 shown in
Further, in all the embodiments above, a clutch can be installed on the rotating shaft 36 connecting the secondary compressor 28 and the expander 34 to selectively engage and disengage a mechanical coupling of these two expresser components.
It should be pointed out that many different compressor and expander types could be used in this invention. For example, scroll, screw, rotary, centrifugal or reciprocating compressors and expanders can be employed.
The refrigerant systems that utilize this invention can be used in many different applications, including, but not limited to, air conditioning systems, heat pump systems, marine container units, refrigeration truck-trailer units, and supermarket refrigeration systems.
Furthermore, it has to be understood that although this invention can be applied to any economized refrigerant systems, the refrigerant systems employing CO2 as a refrigerant would particularly benefit from this invention, since these systems have inherit deficiencies and require additional means for the performance enhancement.
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in the art would recommend that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2007/066278 | 4/10/2007 | WO | 00 | 8/25/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/123884 | 10/16/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3266261 | Anderson | Aug 1966 | A |
3321930 | La Fleur | May 1967 | A |
3362626 | Schlirf | Jan 1968 | A |
3788066 | Nebgen | Jan 1974 | A |
4281970 | Stewart et al. | Aug 1981 | A |
6131402 | Mills, Jr. et al. | Oct 2000 | A |
6185956 | Brasz | Feb 2001 | B1 |
6199387 | Sauterleute | Mar 2001 | B1 |
6898941 | Sienel | May 2005 | B2 |
20040250556 | Sienel | Dec 2004 | A1 |
Entry |
---|
Search Report and Written Opinion mailed on Dec. 26, 2007 for PCT/US2007/66278. |
Notification of Transmittal of International Preliminary Report on Patentability mail on Aug. 4, 2009 for PCT/US2007/66278. |
Number | Date | Country | |
---|---|---|---|
20100083678 A1 | Apr 2010 | US |