Referring to the FIGURES, a front-loading refrigerated case 10 of the open-front type having a storage space 16 for display of chilled (e.g. refrigerated, frozen, etc.) products is shown according to an exemplary embodiment. The case 10 is shown to include an air curtain 14 (e.g. air stream, etc.) formed from a flow of air that is dehumidified by an air curtain dehumidifying coil 24. Unlike conventional air curtains that function to provide primarily a thermal boundary to separate the low temperature interior product storage space of the case from a warmer external ambient environment surrounding the case (e.g. supermarket atmosphere, etc.), the air curtain of the illustrated embodiments is operated at an increased temperature and functions primarily as a humidity tempering device to maintain a low humidity level within the storage space. The dehumidified air curtain may also provide a secondary benefit of serving, at least to some degree, as a thermal boundary too. The low temperature of the food products within the storage space is maintained primarily by contact cooling from chilled shelves and/or the cooling effects from the circulation of air from a gravity cooling coil disposed above the shelves. The operation of the air curtain at an increased temperature (in relation to conventional open-front refrigerated case air curtains) is intended to prevent frost accumulation on the air curtain dehumidifying coil, while also providing sufficient dehumidification to the air curtain to maintain the product storage space at low humidity to minimize or eliminate frost accumulation on the chilled shelves and/or gravity cooling coil(s). The combination of the dehumidification provided by the relatively “warmer” air curtain and air curtain dehumidifying coil, with the chilled shelves and/or gravity cooling coil to maintain the temperature of the products in the storage space, is believed to provide a relatively “frost-free” or reduced-frost refrigerated case of the open-front type.
Referring to
Unlike conventional open-front refrigerated cases that use a common cooling coil to chill an air curtain (to provide a thermal boundary across the open front) and to provide chilled air for cooling the storage space and the products stored therein, the dehumidified air curtain 14 operates primarily as a humidity boundary and not as the primary source of cooling for the storage space 16 and the products contained therein. Thus, the temperature of the air curtain may be operated at a temperature that is higher than the air curtains of conventional open-front cases. For the embodiments where the dehumidification device is provided as a coil, the dehumidifying coil 24 may receive a supply of coolant from any suitable source.
As shown for example in the embodiment of
As shown by way of example in
According to the present embodiments, the temperature and flow rate of the coolant through the air curtain dehumidifying coil 24 is regulated so that the dehumidifying coil 24 operates at a temperature above freezing (i.e. 32° F.) so that moisture from the flow of air that condenses on the coil 24 remains in a liquid state and is routed to a suitable receptacle (e.g. drip pan, etc.) or drain (not shown), and does not freeze on the surface of the dehumidifying coil 24. Operation of the dehumidifying coil 24 at a temperature above freezing is intended to prevent frost accumulation on the surface of the air curtain dehumidifying coil 24. The dehumidification of the air curtain 14 is intended to maintain a low humidity level within the storage space 16 by tempering the surrounding ambient air and humidity with a dehumidified layer of air. The air curtain dehumidifying coil 24 dehumidifies the flow of air used in the air curtain 14 to maintain a low humidity level within the storage space 16. The low humidity level within the space 16 permits the use of low temperature cooling devices such as (for example) chilled shelves and/or gravity coil(s) to cool the food products, in a manner intended to minimize or eliminate the accumulation of frost on the surfaces of the shelves or gravity coil(s).
According to another embodiment, the dehumidification device may be non-coolant based and provided as a liquid desiccant, desiccant wheel, or the like, where the dehumidification coil and the supply of a coolant thereto are omitted. The dehumidification device (such as a desiccant wheel) may be arranged within a bottom or rear portion or top portion of the case housing for simple and convenient replacement.
Referring to
The coolant is provided at a temperature sufficient to permit the chilled shelves 30 to provide a desired amount of contact cooling to food products (or the like) disposed on the shelves. According to one embodiment, the temperature range of the coolant provided to the shelves 30 is below freezing, for example, within a range of approximately 20° F.-32° F. Alternatively, the temperature range of the coolant provided to the shelves may be above freezing, for example, within a range of approximately 32° F.-38° F. However, the coolant may be provided at any suitable temperature that is appropriate to maintain the desired temperature of the products disposed on the shelves within the storage space. The relatively low humidity level in the case is intended to allow the shelves to operate below freezing without accumulating excessive amounts of frost on the surfaces of the shelves.
Referring to
The coolant is provided at a temperature sufficient to permit the gravity coil(s) 32 to provide a desired amount of cooling to the food products (or the like) disposed on the shelves 31. According to one embodiment, the temperature range of the coolant provided to the gravity coil(s) 32 is below freezing, for example, within a range of approximately 20° F.-32° F. Alternatively, the temperature range of the coolant provided to the gravity coil(s) may be above freezing, for example, within a range of approximately 32° F.-38° F. However, the coolant may be provided at any suitable temperature that is appropriate to maintain the desired temperature of the products within the storage space. The relatively low humidity level in the case is intended to allow the gravity coils 32 to operate below freezing without accumulating excessive amounts of frost.
Referring to
Referring further to
According to any exemplary embodiment, an open-front type refrigerated display case is provided that is intended to operate in a relatively frost-free manner in comparison to conventional open-front refrigerated cases. The case of the illustrated embodiments uses a dehumidification device such as a coil operating at a temperature above freezing (to prevent frosting of the coil) to dehumidify a flow of air for use in an air curtain, where the air curtain functions as a humidity tempering device to maintain a relatively low humidity level within the storage space, while chilled shelves and/or gravity cooling coil(s) are provided within the storage space to maintain the desired temperature of food products stored within the space. The dehumidified air curtain is intended to permit operation of the chilled shelves and/or gravity cooling coil(s) in a relatively frost-free manner, by providing a humidity boundary that minimizes the level of moisture in the air space proximate the shelves and/or gravity cooling coil(s). Accordingly, the unique combination of an air curtain dehumidified by a coil operating at a temperature above freezing, and contact or gravity cooling elements within the storage space to cool the products has resulted in an open-front type refrigerated display case that is believed to operate in a manner that substantially reduces the need for defrosting of the cooling surfaces of the case.
According to any alternative embodiment, other types cooling or dehumidifying devices or technology may be used to permit operation of the case in a manner that reduces the humidity in the vicinity of cooling surfaces that operate at a temperature below freezing. Accordingly all such types of cooling and/or dehumidification technology is intended to be within the scope of the disclosure.
It is also important to note that the construction and arrangement of the elements of the refrigerated case with reduced frost operation as shown in the preferred and other exemplary embodiments is illustrative only. Although only a few embodiments of the present inventions have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the plenum and its inlets, outlets, and airflow devices may be arranged in any suitable manner or otherwise varied to take advantage of the dehumidified air curtain and the cooling elements within the storage space. The length or width of the structures and/or members or connectors or other elements of the case may be varied. It should be noted that the elements and/or assemblies of the refrigerated case may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures and combinations. Accordingly, all such modifications are intended to be included within the scope of the appended claims. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the preferred and other exemplary embodiments without departing from the spirit of the appended claims.
The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Any means-plus-function clause is intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Other substitutions, modifications, changes and omissions may be made in the design, operating configuration and arrangement of the preferred and other exemplary embodiments without departing from the spirit of the appended claims.