The present invention relates to beverage dispensers, in particular water dispensers, such as the type in which water stored in a water bottle or from a piped source is fed into the dispenser, and are well known as such. In the case of a bottled water dispenser, the bottled water is place either above the dispenser, usually in an inverted position such that the neck and opening of the bottle meet with a feeder tube in the dispenser, and the water in the bottle falls into the dispenser by gravity, or via an air pump that injects air via an air filter unit into the bottle, or else the bottle is placed underneath the dispenser and pumped into the dispenser circuit. In the case of piped water, water is generally taken from a domestic supply of water to a building and the pressure from such domestic supply is used to introduce the water into the dispenser system.
Most of the beverage dispenser systems described generally above have means for varying the temperature of the water being dispensed. Usually, the water is chilled using cooling means or a heat exchanger system, but the water can also occasionally be heated, if that is so desired. In some cases, the water is carbonated via injection of carbon dioxide gas under pressure into the water line of the dispenser. This enables a carbonated water stream to be dispensed.
One of the problems with typical water dispensers that integrate both cooling and carbonating systems is that they tend to be bulky. In addition, they tend to be complex to maintain, because the various separate components do not fit easily together. Generally, most carbonating systems are separate from the main intake of water, such that the gas injector nozzles and injection chamber are removed from the direct intake. This does not facilitate maintenance of the dispenser, since each functional section has to be attended to separately, which is very costly and time consuming.
The inventors of the present invention have surprisingly managed to create a fully functional integrated core, that is usable in a beverage dispenser, such as the water dispenser systems of the type described above, and which integrates a compact cooling system, as well as a carbonating system, into a single unit. The core of the invention thereby enables dispensing of carbonated water along with room temperature water, chilled water and optionally heated water as desired.
Accordingly, one object of the present invention is an integrated core adapted for use in a beverage dispenser system, comprising:
a multi-chamber cooling system comprising an outer upper chamber and a inner lower chamber, the inner lower chamber being located partially within the upper outer chamber and interconnected in such a way to permit a fluid to flow from the upper chamber to the lower chamber and vice-versa;
beverage transport means distributed throughout the upper chamber capable of transporting beverage to be cooled through said upper chamber;
cooling means distributed throughout substantially a lower zone of the lower chamber;
cooling transfer fluid distributed throughout both chambers and capable of flowing from one chamber to the other;
a beverage carbonator, located substantially in an upper zone of the inner lower chamber.
According to a preferred embodiment, the inner lower chamber is in substantial axial alignment with the upper outer chamber. In another preferred embodiment, the inner lower chamber is displaced axially with respect to the upper outer chamber.
In still yet another preferred embodiment, the cooling transfer fluid is water, a saline solution containing mineral or polymer anions or cations, or a eutectic fluid, and having a predetermined freezing point, for example −10° C., −15° C., or −20° C.
In the most preferred embodiment the carbonator comprises:
a carbonated beverage storage chamber;
a beverage inlet enabling beverage to enter the carbonated beverage storage chamber and be stored there temporarily;
a carbonated beverage outlet enabling carbonated beverage to be withdrawn from the carbonated beverage storage chamber;
a carbon dioxide inlet enabling carbon dioxide gas to be injected into the storage chamber.
Preferably, the incoming beverage stream is cooled prior to introduction into the storage chamber, and is at a pressure of between about 0.5 to 9 bar, and most preferably 5 bar+/−1 bar, the beverage pressure being superior to the pressure of the carbon dioxide gas entering the storage chamber. Even more preferably, the incoming beverage stream entering the storage chamber is pre-cooled, preferably at a temperature comprised between about 2° C. to about 3° C. In such a preferred embodiment, the incoming beverage stream is withdrawn from the flow of beverage that has been cooled after transport via the beverage transport means through the upper chamber. Alternatively, the beverage can be chilled after leaving the storage chamber, or further chilled after leaving said storage chamber. Preferably, the outflowing beverage stream leaving the storage chamber is cooled after having left beverage outlet.
In another preferred embodiment, the carbon dioxide gas is introduced into the storage chamber at a pressure comprised between about 4.5 bar and 7.5 bar, preferably at about 4.5 bar+/−1 bar. Even more preferably, the carbon dioxide gas is pre-cooled before introduction into the storage chamber to a temperature comprised between about 2° C. to about 3° C.
In still yet another particularly preferred embodiment, the carbon dioxide gas inlet also comprises a conduit that extends via a stepped reduction in diameter to a second narrower conduit and an injection orifice into the carbonated beverage storage chamber. Preferably, the carbon dioxide gas inlet also comprises a primer conduit that connects the gas inlet to a non-return valve.
It is most preferred that the carbonator have a volume comprised between about 400 ml to about 1.5 litres, and even more preferably from about 400 ml to about 500 ml. The carbonator may also preferably comprise a baffle adapted in shape and form to prevent pockets of CO2 gas from forming in a beverage outlet column, a vent to relieve any eventual excess gas pressure in the beverage storage chamber, and carbonated water level detection means. Where the carbonator comprises such detection level means, the latter can advantageously comprise two electrodes connected to an alternating current. These two electrodes are preferably housed in a housing that projects down into the carbonated beverage storage chamber. In this way, the electrodes are protected from eddies, or splashing, caused by the beverage stream being injected into the storage chamber, since the housing provides a relatively confined volume into which the electrodes dip that is substantially undisturbed by any such movement.
In a particularly preferred embodiment, the beverage carbonator is located above the cooling means in the lower chamber, and is most preferably totally immersed in cooling transfer fluid.
Another object of the present invention is a beverage dispenser comprising a beverage source, one or more taps for dispensing said beverage, and a flow path means providing a stream of beverage from the source of beverage to the taps, wherein the dispenser also comprises an integrated core according to the first object of the invention.
Preferably, however, the beverage dispenser also comprises a sanitisation system connected to the integrated core, comprising means for generating heat of a temperature sufficient to substantially destroy any bacteria within the integrated core, carbonator and flow path means. More preferably, the means for generating heat comprise an electric current supply connected to one or more of the flow path means, the beverage transport means and the beverage inlet and carbonated beverage outlet, and one or more of the former are made of an electrically conducting material. Even more preferably, the beverage dispenser comprises means for generating heat which comprise a supply of sanitising vapour that is transported either via its own vapour pressure or via a purge system through one or more of the flow path means, integrated core, and carbonator.
In the most preferred embodiments of the present invention, the beverage is drinking water, and even more preferably, such drinking water can be supplied by a water bottle or carboy or a domestic water supply.
The invention will be further described by the following detailed example of a preferred embodiment, in association with the figures, and is intended to serve as an illustration of the general inventive concept underlying said invention.
As mentioned above,
A first flow path leads from the feeder tube 5, via a three-way connector 6 to an air inlet conduit 7, that is in turn connected to an air vent 9 in which is placed an air filter unit 8, and from there to an optional air pump 65. When water is fed through the feed tube 5 into the connector 6, for example via gravity, air can enter via the air vent 9 passing through the air filter unit 8 into the air inlet conduit 7, either naturally, or via activation of the air pump 65 that will force air into the system, through the connector 6 and into the feeder tube 5, and from there can escape into the carboy 2 thereby equalizing the pressure within.
A second flow path leads from the feeder tube 5, via the connector 6 to an ambient temperature conduit 11 which is connected to the tap 10 via a second three-way connector 17, that has three inlets corresponding to number of water flows to be distributed via the tap 10. A first electrically actuated valve 15 is placed in the ambient temperature flow path and selectively closes or opens the ambient temperature conduit 11, depending on whether the operator of the dispenser wants ambient temperature water or another type of water available from one of the other flow paths.
A third flow path leads from the feeder tube 5, via the connector 6 to a beverage transport means inlet conduit 14. The inlet conduit 14 leads to an integrated cooling and carbonating core, referenced generally by the number 18. The integrated core 18 comprises a multi-chamber cooling system, the peripheral walls 19, 20 of which define respectively an outer upper chamber 21 and a inner lower chamber 22, the inner lower chamber 22 being located partially within the upper outer chamber 21 and interconnected in such a way to permit a fluid to flow from the upper chamber 21 to the lower chamber 22 and vice-versa. As illustrated by
The upper chamber 21 comprises beverage transport means distributed throughout the upper chamber 21 capable of transporting beverage to be cooled through said upper chamber 21. The beverage transport means comprise an inlet 26 and an outlet 27, interconnected via an entry conduit 28 and an exit conduit 29, and a coil 30 that is wound around the upper chamber 21. The lower chamber 22, which is axially aligned with the upper chamber 21 along a vertical axis (not shown), and located within the latter in a substantially concentric manner, has an upper zone 31 and a lower zone 32. The upper zone 31 of the lower chamber 22 is located within the upper chamber 21 and extends to the lower zone 32 of the lower chamber 22 and thereby beyond the bottom 33 of the upper chamber 21. The lower chamber 22 comprises cooling means, for example cooling means such as an evaporator coil 34, substantially located and distributed in the lower zone 32. Other cooling means can be used as appropriate, for example, a Peltier plate or a thermoelectric cooler located within a ceramic hull and insulated from the hull with a thermal exchange gel, whereby the hull can be sealingly inserted into the lower zone 32 of the lower chamber 22.
The integrated core 18 also further comprises a beverage carbonator, indicated generally on
As illustrated by
As
As can be seen in
As mentioned above, the carbonator 35 is substantially immersed in the cooling transfer fluid present in the chambers 21, 22. The advantage of this is that the carbon dioxide gas is pre-cooled before introduction into the storage chamber 36 to a temperature comprised between about 2° C. to about 3° C., which thereby facilitates solubilisation of the gas into the beverage stream in said mixing chamber.
As illustrated in
As illustrated by
In still yet another preferred embodiment, the beverage dispenser 1 also comprises a sanitisation system connected to the integrated core 18, comprising means for generating heat of a temperature sufficient to substantially destroy any bacteria within the integrated core 18, carbonator 35 and flow path means 6, 7, 11, 12, 13, 14. The means for generating heat comprise an electric current supply connected to one or more of the flow path means 6, 7, 11, 12, 13, 14, the beverage transport means 26, 27, 28, 29, 30 and the carbonated beverage inlet 37 and outlet 38, and one or more of the former are made of an electrically conducting material, for example stainless steel. In a most preferred embodiment, the means for generating heat comprise a supply of sanitising vapour that is transported either via its own vapour pressure or via a purge system through one or more of the flow path means 6, 7, 11, 12, 13, 14, integrated core 18, and carbonator 35.
An example of the sanitisation process is described as follows. The cooling transfer fluid is emptied from chambers 21 and 22 and stored in a temporary storage chamber via pump 24. Then, any carbonated beverage remaining in the storage chamber 36 is removed via opening of the valve 64. When valve 64 is opened, the excess carbon dioxide gas pressure in the chamber 36 flushes out any remaining liquid in said chamber and along outlet 38 to the tap 10. The storage chamber 36 now only contains carbon dioxide. The carbon dioxide supply is stopped or suspended and the valve 64 actuated to cause gas to be withdrawn via outlet 38, and thereby draw any remaining beverage in the beverage transport means (27,28,29) via the pump 64 into the storage chamber 36. This also enables all of the carbon dioxide gas remaining in the system to be purged via the tap 10. An alternative solution would be to provide a connecting tube from the conduit 63 directly to the beverage inlet 37, thereby bypassing the pump 62 inlet and outlet. A transformer is electrically connected to the beverage transport means and flow paths, which are made of stainless steel, and therefore conduct electricity, and the resistance and consequential heat generated by the passage of current causes the remaining drinking water in the system to turn into steam and sterilise the whole of the dispensing system including the valves 15, 16 and 64, by operating sequentially said valves so as to direct the steam in one direction or another along the flow paths. It is to be noted that the above method of operating also enables pump 62 to be sanitised along with the rest of the system. At the end of the sanitisation operation, cooling transfer fluid that was held in a temporary storage chamber is allowed to flow back, or be pumped back via pump 24, into the chambers 21 and 22.
Number | Date | Country | Kind |
---|---|---|---|
05290467 | Mar 2005 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB06/00420 | 3/1/2006 | WO | 00 | 7/23/2008 |