This invention relates generally to refrigerated display merchandisers of the type used in commercial establishments to display refrigerated or frozen products. More particularly, this invention relates to a refrigerated display merchandiser including a microchannel evaporator that is oriented so as to more reliably ensure removal of condensate that accumulates on the surfaces of the tubes and fins of the microchannel evaporator.
Refrigerated display merchandisers (also referred to as display cases) are used to contemporaneously refrigerate and display products in commercial settings such as supermarkets, mini-marts and convenience stores. There are two general categories of display cases: those with an open front display and those with a closed front display. Open front type display cases are advantageous in that unlike closed front type cases they do not have containment doors, and thus they allow for unobstructed display of products and enable consumers to handle products without the inconvenience that occurs when it is necessary to open a door to access products in a closed type case. However, both types of display cases are used today and will likely continued to be used for the foreseeable future.
Although the specific design and arrangement of open and closed front display cases can vary, current models include a heat exchanger (e.g., an evaporator), which serves an important role in maintaining a product display region at a proper temperature to prevent spoilage of displayed products. The evaporator operates in a cycle during which air is circulated over the evaporator, cooled by refrigerant within the evaporator, and then directed to the product display region of the display case so as to cool the products therein. At least a portion of the cooled air also forms an air curtain in the front of the display case and thus acts as a barrier to inhibit warm air from entering the product display region. Some of the air from the air curtain is merged with air from the product display region and is drawn back into the evaporator, thus restarting the air cooling cycle anew.
A wide variety of evaporator designs are incorporated or are possible for application in refrigerated display merchandisers. Among these are so-called microchannel evaporators (also often designated by the abbreviation “MCHX”), which refer to a particular type of heat exchanger that includes substantially parallel flat tubes with fins disposed between and connected to the tubes. Of late, microchannel evaporators are receiving an increasing amount of attention from the Heating Ventilating Air Conditioning and Refrigeration (HVACR) industry due to their oftentimes superior performance in certain settings (e.g., in refrigerated display merchandisers) as compared to evaporators that have different designs, such as round tube plate fin evaporators.
During operation of a microchannel evaporator, moisture in the air that enters and exits the microchannel evaporator will condense on the surfaces of the tubes and fins when their surface temperature is at or below the dewpoint of the air. Thus, when the microchannel evaporator is maintained at a freezing temperature, moisture will condense on the surfaces of the tubes and fins as frost, which, if not removed, can cause problems such as increased product temperature and decreased efficiency of the microchannel evaporator. If, instead, the microchannel evaporator is operated at an above-freezing temperature, then moisture will condense on the surfaces of the tubes and fins as water, which, if not adequately drained, will disadvantageously impede the flow of air through the microchannel evaporator.
Various options exist for removing the frost from (i.e., for defrosting) a microchannel evaporator. If the microchannel evaporator utilizes a medium temperature (e.g., about 15° to about 30° F.) refrigerant, then the flow of refrigerant to the microchannel evaporator can be halted temporarily (e.g., for about 20 to 30 minutes) at predetermined intervals (e.g., 4 to 6 times within a 24 hour period) while one or more air circulation devices (e.g., fans) present within the display case continue to operate. If, however, the microchannel evaporator uses a low temperature refrigerant (e.g., about −5° F. to about −40° F.), then halting the flow of refrigerant alone is not sufficient to melt the frost. Instead, the microchannel evaporator can be equipped with a heater, and/or hot gas from the compressor can be introduced into the microchannel evaporator to melt the accumulated frost.
Although these techniques successfully cause the frost on a microchannel evaporator to thaw and melt (i.e., to defrost) without also causing the temperature of the display case and its contents to rise to an unacceptable level, a problem arises in that a portion of the melted frost condensate is retained on the surfaces of the tubes and fins of the microchannel evaporator and refreezes once refrigerant flow resumes. This problem is particularly troublesome since any frozen condensate that remains following defrosting will disadvantageously impede the flow of air through the microchannel evaporator during a cooling cycle. Although this problem could be addressed through longer and/or more frequent defrost periods, that, in turn, would increase the temperature of the display case and its contents to unacceptable levels during the defrost cycle(s).
Some in the art have attempted to solve this problem by orienting microchannel evaporators in a manner that purportedly promotes reliable removal of melted frost condensate from the surfaces of the tubes and fins of the microchannel evaporator, as well as continuous removal of condensate from the surfaces of the tubes and fins of the microchannel evaporator during non-freezing applications. Two such approaches are illustrated schematically in
Referring again to
As illustrated by
Referring again to
Further, due to the orientation of the fins 20 and tubes 30 of the
Therefore, a need presently exists for a refrigerated display merchandiser that includes a microchannel evaporator which can be oriented so as to effectively remove or cause to be removed condensate that accumulates on the surfaces of the tubes and fins of the microchannel evaporator during its operation, yet that also will not necessitate a lengthy refrigerant inlet header and will not otherwise interfere with the operation, functioning and/or design of either an open type or a closed type of refrigerated display merchandiser in which the microchannel evaporator is incorporated.
These and other needs are met by a refrigerated display merchandiser, which, according to one exemplary aspect, includes a vertical axis and comprises (a) a display zone that defines a product display region, (b) an air circulation zone that includes at least one air circulation device, and (c) a microchannel evaporator that is disposed within the air circulation zone. The microchannel evaporator comprises a plurality of tubes and a plurality of fins between at least some of the plurality of tubes, wherein the plurality of tubes and the plurality of fins are at least substantially vertically oriented with respect to the vertical axis of the refrigerated display merchandiser.
It is currently preferred for both the tubes and the fins of the microchannel evaporator to be in a plane that is at least substantially vertically oriented with respect to the vertical axis of a display case in which the microchannel evaporator is present, since such an orientation advantageously causes condensate to remove itself from the surfaces of the tubes and fins of the microchannel evaporator so as not to interfere with air flow into the microchannel evaporator in an above-freezing application, or in a low or medium temperature freezing application. Such an orientation also enables the flow of air into the microchannel evaporator to be at least substantially in the direction of gravity, thus further helping to cause condensate to remove itself from the surfaces of the tubes and fins of the microchannel evaporator.
In accordance with this or other exemplary aspects, the refrigerated display merchandiser can be open front type or closed front type. Also, the refrigerated display merchandiser can have a horizontal axis, wherein the microchannel evaporator can be offset from the horizontal axis of the refrigerated display merchandiser by an angle, which, for example, can be up to about 30° (e.g., between about 0° and about 15°).
Also, in accordance with this or other exemplary aspects, the microchannel evaporator can include a refrigerant inlet adapted to supply refrigerant of a predetermined temperature (e.g., above about 30° F. for above-freezing applications, between about 15° F. to about 30° F. for medium temperature freezing applications, or between about −5° F. to about −40° F. for low temperature freezing applications) to the microchannel evaporator. By way of non-limiting example, the refrigerant inlet can have a length less than about two feet, such as between about 10 inches to about 18 inches.
Further in accordance with this or other exemplary aspects, the density of fins (e.g., the number of fins per inch) of the microchannel evaporator can be in the range of 2 fins per inch and 14 fins per inch, and the depth and spacing of the tubes of the microchannel evaporator can be in the range of about 0.5 inch to about 2.5 inches and about 0.3 inch to about 0.8 inch, respectively.
Still further in accordance with this or other exemplary aspects, a predetermined quantity of air can be supplied to and cooled by the microchannel evaporator, wherein at least a portion of the cooled air is supplied to the display zone via the air circulation zone. And by way of non-limiting example, at least a portion of the air cooled by the microchannel evaporator can be supplied to the display zone via at least one opening defined between the display zone and air circulation zone.
In accordance with another exemplary aspect, the refrigerated display merchandiser includes a vertical axis and a rear wall that is substantially parallel to the vertical axis, wherein the rear wall has a top edge and a bottom edge. A top wall extends from the top edge of the rear wall and is normal to the vertical axis, and a base extends from the bottom edge of the rear wall and is normal to the vertical axis. A back panel is horizontally offset from the rear wall, wherein the back panel has a top edge and a bottom edge. A top panel extends from the top edge of the back panel and is vertically offset from the top wall, and an interior base panel extends from the bottom edge of the back panel and is vertically offset from the base. A display zone is defined between the top panel and the interior base panel and forward of the back panel, wherein the display zone includes a product display region. An air circulation zone includes at least one air circulation device, is substantially continuous, and is defined between the top wall and the top panel, between the rear wall and the back panel, and between the base and the interior base panel. A microchannel evaporator is disposed within the air circulation zone, wherein the microchannel evaporator comprises a plurality of tubes and a plurality of fins between at least some of the plurality of tubes, wherein the plurality of tubes and the plurality of fins are at least substantially vertically oriented with respect to the vertical axis of the refrigerated display merchandiser.
Still other aspects, embodiments and advantages of these exemplary aspects are discussed in detail below. Moreover, it is to be understood that both the foregoing general description and the following detailed description are merely illustrative examples of various embodiments, and are intended to provide an overview or framework for understanding the nature and character of the claimed embodiments. The accompanying drawings are included to provide a further understanding of the various embodiments, and are incorporated in and constitute a part of this specification. The drawings, together with the description, serve to explain the principles and operations of the described and claimed embodiments.
For a fuller understanding of the nature and desired objects of the present invention, reference is made to the following detailed description taken in conjunction with the accompanying figures, wherein like reference characters denote corresponding parts throughout the views, and in which:
Referring initially to
The exemplary display case 100 depicted in
The display case 100 further includes a back panel 170 that is substantially parallel to and horizontally offset from the real wall 120. A top panel 180 and an interior base panel 190 extend, respectively, from a top edge 200 and a bottom edge 210 of the back panel 170, wherein the top panel is substantially parallel to and vertically offset from the top wall 130, and wherein the interior base panel is substantially parallel to and vertically offset from the base 140. The top wall 130 is connected to the top panel 180 to define an air outlet 220 and the interior base panel is 190 connected to the base floor 140 to define an air inlet 230.
The area between the air inlet 230 and the air outlet 220 is defined as an air circulation zone 250, wherein one or more air circulation devices (e.g., one or more fans) 260 are disposed within the air circulation zone. The specific location of the one or more air circulation devices 260 can vary; however, generally, and as depicted in
Also present within the air circulation zone 250 is a heat exchanger device (e.g., an evaporator) 300. It is currently preferred for the evaporator 300 to be a microchannel evaporator, which generally is located within a portion of the air circulation zone 250 between the air circulation device 260 and air outlet 220, such as between the interior base panel 190 and the base floor 140 as shown in
A product display region 240 is defined within the area between the top panel 180 and the interior base panel 190, and forward of the back panel 170. Generally, but not necessarily, one or more product display elements (e.g., one or more shelves) 290 are disposed within the product display region 240 and extend from the back panel 170 of the display case 100. The number and/or placement of the product display elements 270 can vary according to factors such as the size and shape of the display case 100, the products being displayed, etc.
The display case 100 can operate selectively or substantially continuously. During operation of the display case, the air circulation device 260 causes air to enter the air inlet 230 and to be circulated into the microchannel evaporator 300, at which the air is cooled to predetermined temperature by refrigerant within the evaporator. The cooled air exits the microchannel evaporator 300 and rises into the portion of the air circulation zone 250 located between the rear wall 120 and the back panel 170. Generally, the back panel 170 includes one or more openings or perforations 400 from which a predetermined portion of the cooled air exits the air circulation zone 250 and enters the product display region 240, thus cooling the product display region and the product(s) contained therein. The size, shape and total number of openings 400 can vary, but are generally chosen to ensure that at least a portion (but not all) of the cooled air enters the product display region 240.
The portion of the cooled air that does not enter the product display region 240 travels into and through the segment of the air circulation zone 250 that is located between the top wall 130 and the top panel 180. A second air circulation device, if present, can assist this air in being brought to and expelled from the air outlet 220. This expelled air forms what is generally referred to as an “air curtain” 295, which is expelled from the air outlet 220 so as to be directed toward the air inlet 230. Generally, the air curtain 295 also will be partially formed from air exiting the product display region 240.
Based on its position and temperature, and as shown in
Referring now to
As shown in
Referring now to
The tubes 410 and fins 430 can have various sizes depending, e.g., on the size of the display case in which the evaporator 300 is incorporated. Generally, however, the fins 430 and tubes 410 have certain numerical characteristics, as noted in Table I below:
By virtue of the position of the microchannel evaporator 300 within the display case 100, and as best shown in
The
In particular, because the tubes 410 and fins 430 of the microchannel evaporator 300 of
Additionally, the
Moreover, the
Although various embodiments have been described herein, it is not intended that such embodiments be regarded as limiting the scope of the disclosure, except as and to the extent that they are included in the following claims—that is, the foregoing description is merely illustrative, and it should be understood that variations and modifications can be effected without departing from the scope or spirit of the various embodiments as set forth in the following claims. Moreover, any document(s) mentioned herein are incorporated by reference in its/their entirety, as are any other documents that are referenced within such document(s).
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2006/029757 | 7/28/2006 | WO | 00 | 11/23/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/013546 | 1/31/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2715321 | Burger | Aug 1955 | A |
3561230 | Gatton et al. | Feb 1971 | A |
4350025 | Izumi | Sep 1982 | A |
4621685 | Nozawa | Nov 1986 | A |
D304855 | Aoki | Nov 1989 | S |
4926932 | Ohara et al. | May 1990 | A |
4982579 | Suzuki et al. | Jan 1991 | A |
5341870 | Hughes et al. | Aug 1994 | A |
5765393 | Shlak et al. | Jun 1998 | A |
6216773 | Falta | Apr 2001 | B1 |
6435268 | Bhatti et al. | Aug 2002 | B1 |
6722149 | Saroka et al. | Apr 2004 | B1 |
6912864 | Roche et al. | Jul 2005 | B2 |
6993925 | Duffy | Feb 2006 | B2 |
7024877 | Yap | Apr 2006 | B2 |
7062932 | Downs | Jun 2006 | B2 |
7162882 | Alahyari et al. | Jan 2007 | B2 |
20010003248 | Otto et al. | Jun 2001 | A1 |
20030140638 | Arshansky et al. | Jul 2003 | A1 |
20050193755 | Duffy | Sep 2005 | A1 |
Entry |
---|
Extended European Search Report mailed Sep. 30, 2010 (5 pgs.). |
International Search Report and Written Opinion of International Searching Authority mailed Jan. 8, 2007 (8 pgs.). |
International Preliminary Report on Patentability mailed Mar. 12, 2009 (6 pgs.). |
Number | Date | Country | |
---|---|---|---|
20100064712 A1 | Mar 2010 | US |