The present invention relates to refrigerated merchandisers, and more particularly to refrigerated merchandisers that have doors and a refrigerated airflow directed along the doors.
Refrigerated merchandisers are used by grocers to store and display food items in a product display area that must be kept at a predetermined temperature. These merchandisers generally include a cabinet with an integrated refrigeration unit and have multiple shelves supported within the product display area. Doors positioned along the front side of the merchandiser separate the product display area from the ambient external conditions and allow for consumer access to the contents within. The doors typically include one or more panes of glass configured to minimize heat transfer while providing unimpaired visual access to the product display area.
Due to the conditions of the environment in which they operate, refrigerated merchandisers are susceptible to heat infiltration due to contact between cold air in the refrigerated space and the inner surfaces of the doors. Generally, as air flows downward along the front side of the merchandiser, a small layer of stagnant air forms between the airflow and the inside surface of the doors. This layer of stagnant air, known as a boundary layer of air, is very thin and is ineffective in limiting heat transfer through the doors.
In one construction, the invention provides a refrigerated merchandiser including a case that has a product display area for supporting food product, an opening for providing customer access to the product display area, and an air passageway in fluid communication with the product display area to direct an airflow into the product display area. A door is coupled to the case over the opening and includes a charged glass pane. The merchandiser also includes a charge device in fluid communication with the air passageway to alter the polarity of the airflow to create a charged airflow. The charged glass pane and the charged airflow have the same polarity such that the glass pane is insulated from the charged airflow.
In another construction, the invention provides a refrigerated merchandiser including a case that has a product display area for supporting food product, an opening for providing customer access to the product display area, and an air passageway including an outlet in fluid communication with the product display area to direct an airflow into the product display area. The air passageway further includes an inlet to receive air from the product display area. A door is coupled to the case over the opening and has a glass pane with a charged conductive layer facing the product display area. The merchandiser also includes a first charge device in fluid communication with the air passageway to alter the polarity of the airflow to create a charged airflow, and a second charge device in fluid communication with the air passageway to alter the polarity of air entering the air passageway. The charged conductive layer and the charged airflow have the same polarity such that the glass pane is insulated from the charged airflow, and the second charge device has a polarity opposite the polarity of the first charge device to neutralize charged air entering the inlet.
In another construction, the invention provides a method of controlling a merchandiser including a case defining a product display area and a door having a glass pane enclosing the product display area. The method includes charging the glass pane, charging an airflow to a polarity that is the same as the polarity of the glass pane, directing the charged airflow into the product display area and across the glass pane, and repelling the charged airflow away from the glass pane as the airflow traverses the product display area to insulate the glass pane from the charged airflow.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
The case 15 also includes a casing or frame 50 located adjacent a front of the merchandiser 10 to support doors 55. In particular, the frame 50 includes vertical mullions 60 that define customer access openings 65 and that support the doors 55 over the openings 65. The openings 65 provide access to food product stored in the product display area 40. The mullions 60 are structural members spaced horizontally along the case 15.
With reference to
The case 15 defines an air passageway 80 that provides fluid communication between the inlet 67 and the outlet 72. As illustrated, the air passageway 80 conducts air substantially horizontally through the base 20 from the air return plenum 70, substantially vertically along the rear wall 35, and substantially horizontally through the canopy 30 to the air discharge plenum 75.
With reference to
Generally, the first charge device 100 and the second charge device 105 can take any suitable form to charge or ionize the airflow 90 and to neutralize the airflow 90. As illustrated, the first charge device 100 has a first charged mesh that is located upstream of the air discharge plenum 75 such that the airflow 90 passes through the charged mesh 100 prior to entering the air discharge plenum 75. The second charge device 105 has a second charged mesh is located downstream of the air discharge plenum 75 so that the portion of the air curtain 95 received by the air return plenum 70 flows through the second charged mesh 105. While
As described in further detail below, the first charge device 100 interacts with and charges or ionizes (e.g., statically charges) the airflow 90 exiting the air discharge plenum 75, and the second charge device 105 interacts with and neutralizes (e.g., statically neutralizes) air entering the air return plenum 70. Generally, statically charged air is formed of air ions with an electric charge due to an imbalance between the number of electrons (or negative charges) and the number of protons (or positive charges). The strength of the charged or ionized airflow 90 (the strength of its electric field) is proportional to the charge provided by the first charge device 100. Similarly, the ability of the second charge device 105 to neutralize the charged or ionized airflow 90 is proportional to the charge of the device 105 and the conductivity of the airflow 90. While the illustrated first and second charge devices 100, 105 have charged meshes, the charge devices 100, 105 can take any suitable form to charge (ionize) and neutralize the airflow 90.
Referring to
With reference to
The polarized air curtain 95 is repelled by the like-charged surface 135 of the glass pane 130, which forces the air curtain 95 to travel generally downward at a distance from the door 55. Stated another way, the positive polarity of the airflow 90 and the positive polarity or static positive potential of the conductive film 140 substantially increase the thickness or depth of the boundary layer between the air curtain 95 and the glass pane 130 to minimize heat transfer between the air curtain 95 and the door 55.
The thickness or depth of the enhanced boundary layer achieved by the like charges between the air curtain 95 and the glass pane 130 can be controlled electronically by a controller 150 that is in communication with the first and second meshes 100, 105 and the conductive film 140. Generally, the distance at which the air curtain 95 is spaced from the door 55 due to the like charges between them is partially based on the amount of charge applied to the glass pane 130 and the airflow 90. For example, when a relatively weak charge is applied to either or both the airflow 90 and the glass pane 130, the distance between the air curtain 95 and the glass pane 130 will be relatively small compared to the distance achieved by a relatively strong charge applied to either or both the airflow 90 and the glass pane 130.
The distance at which the air curtain 95 is spaced from the door 55 also is based on the angle at which the discharged airflow 90 is directed into the product display area 40. For example, when the air curtain 95 is directed generally away from the doors 55, the air curtain 95 will be minimally repelled by the like charge of the glass pane 130, but the spacing between the air curtain 95 and the doors 55 will be relatively large due to the direction of the air curtain 95. When the air curtain 95 is directed generally parallel to or toward the doors 55, the air curtain 95 will be repelled more strongly by the like charge of the glass pane 130, and the resultant spacing between the air curtain 95 and the doors 55 will depend substantially on the strength of the like charges.
At least some of the polarized air curtain 95 enters the air return plenum 70 to be recycled through the air passageway 80. In doing so, the positively charged in the air return plenum 70 passes over the negatively charged second charge device 105, which neutralizes and accelerates the airflow 90 within the air passageway 80. The airflow 90 is then recirculated and reconditioned within the air passageway 80 prior to discharge through the air discharge plenum 75.
Although the merchandiser 10 is described in detail with regard to the first charge device 100 and the glass pane 130 having positive potentials and the second charge device 105 having a negative potential, it will be appreciated that the polarities of the respective components of the merchandiser 10 can be reversed to insulate the air curtain 95 from the glass pane 130. In other words, the polarities of the first charged 100 and the glass pane 130 can be defined by a negative potential and the polarity of the second charge device 105 can be defined by a positive potential to achieve the insulative spacing between the air curtain 95 and the doors 55 and to neutralize the airflow 90.
The distance between the air curtain 95 and the glass pane 130, which is substantially larger than the boundary layers associated with conventional merchandisers, insulates the glass pane 130 from the airflow 90. The like-charged air curtain 95 and glass pane 130 spaces the airflow 90 away from the door 55 to reduce heat infiltration into the product display area 40 via the glass assembly 125, thus maximizing the insulative properties of the glass assembly 125. Stated another way, the amount of contact between the refrigerated air and the glass surface 135 is minimized by increasing the distance between the airflow 90 and the door 55.
Various features and advantages of the invention are set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3105750 | Kayko et al. | Oct 1963 | A |
3179482 | Kassenbeck | Apr 1965 | A |
3397631 | Simons | Aug 1968 | A |
4145893 | Vogel | Mar 1979 | A |
4245482 | Abraham | Jan 1981 | A |
4248015 | Stromquist et al. | Feb 1981 | A |
4265090 | Abraham | May 1981 | A |
4361012 | Ibrahim | Nov 1982 | A |
5852284 | Teder et al. | Dec 1998 | A |
6112546 | Kim | Sep 2000 | A |
6144017 | Millett et al. | Nov 2000 | A |
6776822 | Johnson | Aug 2004 | B2 |
6811883 | Lewiner et al. | Nov 2004 | B2 |
7362491 | Busick et al. | Apr 2008 | B2 |
20040003617 | Chandler et al. | Jan 2004 | A1 |
20040222724 | Cording | Nov 2004 | A1 |
20060103269 | Artwohl et al. | May 2006 | A1 |
20070188843 | Stroumbos et al. | Aug 2007 | A1 |
20070259137 | Busick et al. | Nov 2007 | A1 |
20080098761 | Zangari et al. | May 2008 | A1 |
20080184715 | Chen et al. | Aug 2008 | A1 |
20080223061 | Hixson et al. | Sep 2008 | A1 |
20100043472 | Iguchi et al. | Feb 2010 | A1 |
Entry |
---|
PCT/US2012/070479 International Search Report and Written Opinion date mailed Mar. 19, 2013 (9 pages). |
Number | Date | Country | |
---|---|---|---|
20130187520 A1 | Jul 2013 | US |