The present invention relates to a refrigerating machine and a control method therefor.
In the related art, HFC refrigerant used in refrigerating machines and heat pumps has Global Warming Potential (GWP) of several hundred to several thousand and thus, it is necessary to switch from HFC refrigerant to HFO refrigerant (for example, HPO-1233zd of HPO-1234ze) having GWP less than 10. HFO-1233zd(E), which is not combustible, has a boiling point of approximately 18° C. Accordingly, in a case where HFO-1233zd(E) is used as a refrigerant for a refrigerating machine, a pressure in an evaporator becomes a negative pressure, and thus, entering of air into the refrigerating machine is concerned. If air enters the refrigerating machine, there is a concern that performance deterioration of the refrigerating machine is generated due to an increase in a condensation pressure and a failure and stopping of the refrigerating machine are generated due to an increase in abnormality. In addition, if water inside the refrigeration machine and oxygen of the entering air are combined to each other, there is a concern that rust occurs and the refrigerating machine (particularly, compressor) deteriorates.
As a technology for extracting a noncondensable gas such as air entering the refrigerating machine is known in PTLs below.
[PTL 1] Japanese Unexamined Patent Application Publication No. 62-80474
[PTL 2] Japanese Unexamined Patent Application Publication No. 1-217168
[PTL 3] Japanese Unexamined Patent Application Publication No. 4-335973
[PTL 4] Japanese Unexamined Patent Application Publication No. 7-280398
[PTL 5] Japanese Unexamined Patent Application Publication No. 2011-133192
[PTL 6] Japanese Unexamined Patent Application Publication No. 2011-75208
However, there is a known technique of performing air bleeding in a case where a certain amount of a noncondensable gas such as air accumulates in the refrigerating machine arid performance of the refrigerating machine clearly decreases. However, a technology of performing air bleeding regularly at an appropriate timing to maintain effective performance of the refrigerating machine has not been established yet.
Particularly, in a case of a shell-and-tube type condenser, air accumulates inside a pipe group formed by a plurality of heat transfer tubes, and air freely moves in a longitudinal direction of the condenser. Accordingly, a position of the air accumulation cannot be specified and it is not possible to reliably perform air bleeding.
The present invention is made in consideration of the above-described circumstances, and an object thereof is to provide a refrigeration machine capable of accurately detecting accumulation of a noncondensable gas such as air inside the refrigerating machine and a control method therefor.
In addition, another object of the present invention is to provide a refrigerating machine capable of effectively extracting a noncondensable gas accumulated inside the refrigerating machine and a control method therefor.
In order to achieve one object, a refrigerating machine of the present invention and a control method therefor adopts the following means.
That is, according to an aspect of the present invention, there is provided a refrigerating machine, including: a compressor which compresses a refrigerant; a condenser which includes at least one pipe group configured of a plurality of heat transfer pipes through which a cooling medium flows and condenses the refrigerant compressed by the compressor; an expansion valve which expands the refrigerant condensed by the condenser; an evaporator which evaporates the refrigerant expanded by the expansion valve; a temperature sensor which measures a cooling medium outlet temperature which is a temperature of the cooling medium which flows out from at least one heat transfer pipe configuring the pipe group; and a control unit which determines, on the basis of the temperature measured by the temperature sensor, an air bleeding start state in which an air bleeding operation to extract a noncondensable gas to the outside starts.
If the noncondensable gas stays inside the pipe groups of the condenser and outside the heat transfer pipes, a heat transfer coefficient to the outside of the pipe decreases, heat transfer between a cooling medium (for example, cooling water) flowing through the heat transfer pipes and a refrigerant outside the heat transfer pipes decreases, and a cooling medium outlet temperature is higher than that of a normal case where the noncondensable gas does not exist. That is, by providing the temperature sensor which measures an outlet temperature of the cooling medium flowing out from at least one heat transfer pipe of the pipe groups, on the basis of the temperature measured by the temperature sensor, the air bleeding start state in which the air bleeding operation to extract the noncondensable gas accumulated inside the refrigerating machine to the outside starts is determined using the above-described phenomenon. Accordingly, it is possible to accurately detect the noncondensable gas being accumulated inside the refrigerating machine, and it is possible to start the air bleeding operation at an appropriate timing.
Moreover, in the above-described refrigerating machine, the control unit stores, as a reference condenser termination temperature difference in a case where desired heat transfer is performed in the pipe group, a condenser termination temperature difference which is a difference between a saturation temperature determined by a pressure inside the condenser and a cooling medium outlet temperature in a storage unit according to refrigerating capability within an operable range, and in a case where a current condenser termination temperature difference which is a difference between a saturation temperature determined by a current pressure inside the condenser and a current cooling medium outlet temperature measured by the temperature sensor is greater than the reference condenser termination temperature difference, it is determined that the state is in the air bleeding start state.
With respect to the condenser termination temperature difference which is the difference between the saturation temperature determined by the pressure inside the condenser and the cooling medium outlet temperature, if a current value is greater than the reference value, which means that heat transfer is not preferably performed in the pipe group, that is, the noncondensable gas exists to an extent that heat transfer is inhibited. Accordingly, in a case where the current condenser termination temperature difference is greater than the reference condenser termination temperature difference, it is determined that the state is in the air bleeding operation start state.
In addition, since the reference condenser termination temperature difference is determined according to the refrigerating capability within the operable range, the air bleeding operation start state can be appropriately determined according to the operation state of the refrigerating machine.
Moreover, according to another aspect of the present invention, there is provided a refrigerating machine, including: a compressor which compresses a refrigerant; a condenser which condenses the refrigerant compressed by the compressor; an expansion valve which expands the refrigerant condensed by the condenser; an evaporator which evaporates the refrigerant expanded by the expansion valve; an air bleeding device which is connected to the condenser and extracts noncondensable gas to the outside; and a control unit which increases an opening degree of the expansion valve before operating the air bleeding device.
By increasing the opening degree of the expansion valve, a circulation air volume of the evaporator increases and the noncondensable gas staying in the evaporator can flow to the suction side of the compressor to be introduced to the condenser. Accordingly, it is possible to effectively extract the noncondensable gas accumulated inside the evaporator.
In addition, in a case where an economizer is provided between the condenser and the evaporator, an opening degree of a low stage expansion valve provided between the economizer and the evaporator increases.
In addition, the above-described refrigerating machine further includes a hot gas bypass pipe which is connected to the condenser and the evaporator, and a hot gas bypass valve which is provided in the hot gas bypass pipe, the control unit increases an opening degree of the hot gas bypass valve before operating the air bleeding device.
By increasing the opening degree of the hot gas bypass valve, a hot gas inside the evaporator flows into the evaporator. The noncondensable gas staying in the evaporator to which the hot gas bypass pipe is connected can flow to the suction side of the compressor along with the hot gas so as to be introduced to the condenser.
In addition, in the above-described refrigerating machine, after the control unit increases the opening degree of the hot gas bypass valve, the control unit returns the opening degree of the hot gas bypass valve to an opening degree before increasing, and after a predetermined time elapses, the control unit gradually increases the opening degree of the hot gas bypass valve within a range of a predetermined value or less.
After the opening degree of the hot gas bypass valve increases, if the opening degree is returned to the opening degree before increasing and a predetermined time elapses, the noncondensable gas expelled from the inside of the evaporator is collected inside the condenser via the compressor. Thereafter, by gradually increasing the opening degree of the hot gas bypass valve within a range of a predetermined value or less, the noncondensable gas staying in the condenser moves to a connection portion side of the hot gas bypass pipe, and it is possible to move the noncondensable gas to a desired position. For example, if the connection portion to the air bleeding device is positioned on the hot gas bypass pipe side with respect to the center position of the condenser, the noncondensable gas staying on a side far from the center position of the condenser when viewed from the hot gas bypass pipe can be introduced to the position at which the air bleeding device is connected, and thus, the air bleeding is easily performed.
The opening degree of the hot gas bypass valve is set to the range of the predetermined value or less. The opening degree or the predetermined position or less is an opening degree of an extent that it avoids sucking the noncondensable gas from the hot gas bypass pipe. In order to avoid sucking the noncondensable gas from the hot gas bypass pipe, preferably, the opening degree of the hot gas bypass valve gradually increases, and for example, the opening degree increases at a speed of 1%/sec.
Moreover, the above-described refrigerating machine further includes an economizer which is provided between the condenser and the evaporator, an intermediate suction pipe which connects the economizer and an intermediate suction port of the compressor to each other, and intermediate suction flow rate control means for controlling an intermediate suction flow rate of the compressor, in which the control unit increases a flow rate of the intermediate suction flow rate control means before operating the air bleeding device.
By increasing the intermediate suction flow rate, the flow rate inside the economizer increases, and the noncondensable gas staying in the economizer can flow to the intermediate suction port of the compressor to be introduced to the condenser.
For example, in a case where the compressor is a two-stage turbocompressor, the intermediate suction flow rate control means may be a second vane.
In addition, in the above-described refrigerating machine, the control unit decreases a discharge flow rate of the compressor before operating the air bleeding device.
In the condenser, since a liquefied refrigerant stays in the lower portion thereof, the refrigerant discharged from the compressor flows from the upper portion of the condenser to the lower portion thereof. Accordingly, the noncondensable gas inside the condenser may be forced downward by the discharged refrigerant and can stay at the lower position (for example, the inside of the pipe group). Therefore, by decreasing the discharge flow rate of the compressor, a circulation air volume of the refrigerant inside the condenser decreases, and the noncondensable gas staying at the lower position (for example, the inside of the pipe group) of the condenser can move upward to be collected at the upper portion of the condenser.
For example, in the case of the turbocompressor, the means for decreasing the discharge flow rate of the compressor may be a suction vane which adjusts a suction flow rate.
In addition, according to still another aspect of the present invention, there is provided a control method of a refrigerating machine which includes a compressor which compresses a refrigerant, a condenser which includes at least one pipe group configured of a plurality of heat transfer pipes through which a cooling medium flows and condenses the refrigerant compressed by the compressor, an expansion valve which expands the refrigerant condensed by the condenser, an evaporator which evaporates the refrigerant expanded by the expansion valve, and a temperature sensor which measures a cooling medium outlet temperature which is a temperature of the cooling medium which flows out from at least one heat transfer pipe configuring the pipe group, the control method including: determining, on the basis of the temperature measured by the temperature sensor, an air bleeding start state in which an air bleeding operation to extract a noncondensable gas to the outside starts.
If the noncondensable gas stays inside the pipe groups of the condenser and outside the heat transfer pipes, a heat transfer coefficient to the outside of the pipe decreases, heat transfer between a cooling medium (for example, cooling water) passing through the heat transfer pipes and a refrigerant outside the heat transfer pipes decreases, and a cooling medium outlet temperature is higher than that of a normal case where the noncondensable gas does not exist. That is, by providing the temperature sensor which measures an outlet temperature of the cooling medium flowing out from at least one heat transfer pipe of the pipe groups, on the basis of the temperature measured by the temperature sensor, the air bleeding start state in which the air bleeding operation to extract the noncondensable gas accumulated inside the refrigerating machine to the outside starts is determined using the above-described phenomenon. Accordingly, it is possible to accurately detect the noncondensable gas being accumulated inside the refrigerating machine, and it is possible to start the air bleeding operation at an appropriate timing.
In addition, according to still another aspect of the present invention, there is provided a control method of a refrigerating machine which includes a compressor which compresses a refrigerant, a condenser which condenses the refrigerant compressed by the compressor, an expansion valve which expands the refrigerant condensed by the condenser, an evaporator which evaporates the refrigerant expanded by the expansion valve, and an air bleeding device which is connected to the condenser and extracts a noncondensable gas to the outside, the control method including: increasing an opening degree of the expansion valve before operating the air bleeding device.
By increasing the opening degree of the expansion valve, a circulation air volume of the evaporator increases and the noncondensable gas staying in the evaporator can flow to the suction side of the compressor to be introduced to the condenser. Accordingly, it is possible to effectively extract the noncondensable gas accumulated inside the evaporator.
In addition, in a case where an economizer is provided between the condenser and the evaporator, an opening degree of a low stage expansion valve provided between the economizer and the evaporator increases.
It is possible to accurately detect the noncondensable gas such as air being accumulated inside the refrigerating machine by the temperature sensor which measures the cooling medium outlet temperature.
The noncondensable gas staying at each location inside the refrigerating machine moves to the condenser before the air bleeding device is activated. Accordingly, it is possible to effectively extract the noncondensable gas accumulated inside the refrigerating machine.
Hereinafter, an embodiment according to the present invention will be described with reference to the drawings.
As shown in
For example, as a refrigerant used in the turbo refrigerating machine 1, a refrigerant such as HFO-1223zd(E) in which a pressure inside an evaporator is a negative pressure is used. However, the present invention is not limited to this.
The turbocompressor 2 and the electric motor 3 configure an electric compressor having a closed structure in which housings thereof are integrally connected to each other, and in the present embodiment, the turbocompressor 2 is a two-stage compressor, the motor 3 is an inverter-driven electric motor, and the turbocompressor 2 can be driven by a rotation of a shaft of the electric motor 3.
Although not shown, a first vane and a second vane which adjust a flow rate of an inflow refrigerant are respectively provided on inlet sides of a first impeller and a second impeller configuring the two-stage turbocompressor 2. An opening degree of the vane is controlled by a control unit (not shown).
The condenser 4 is a shell-and-tube type heat exchanger, in which cooling water (cooling medium) cooled by a cooling tower 9 flows through a plurality of heat transfer pipes, a high-pressure refrigerant gas introduced from a discharge port 2b of the turbocompressor 2 is cooled to be condensed and liquefied, and thus, a sub-cool liquid is generated.
The economizer 6 performs gas-liquid separation on a refrigerant which is decompressed to an intermediate pressure by the high stage expansion valve 5 and introduces a gas refrigerant to an intermediate suction port 2c between the first stage and the second stage of the two-stage turbo compressor 2 through an intermediate suction pipe 11.
The evaporator 8 is a shell-and-tube type heat exchanger, performs heat exchange between cold water returned from a load 13 side and a low-pressure refrigerant decompressed by the low stage expansion valve 7 to cool the cold water to a predetermined temperature, and discharges the cold water to the load 13 side. The turbocompressor 2 sucks a low-pressure refrigerant gas evaporated by the evaporator 8 from a suction port 2a, compresses the low-pressure refrigerant in a two-stage compression manner to generate a high-pressure refrigerant gas again, and discharges the refrigerant gas to the condenser 4. The turbo refrigerating machine 1 is configured to repeat this cycle to cool the cold water by the evaporator 8.
An air bleeding device 15 is provided between the condenser 4 and the evaporator 8. The air bleeding device 15 extracts air (noncondensable gas) accumulated in the turbo refrigerating machine 1 and discharges the air to the outside of the turbo refrigerating machine 1. As shown in
The liquid refrigerant separated from the gas-liquid separation container 18 is taken out from the lower portion to be introduced to the evaporator 8. Air separated from the gas-liquid separation container 18 is discharged from the upper portion to the atmosphere via an exhaust pump 17.
As shown in
The control of the turbo refrigerating machine 1 is performed by a control unit (not shown). In the present embodiment, a determination to start an air bleeding operation or a sequence of the air bleeding operation is performed by the control unit.
For example, the control unit is configured of a Central Processing Unit (CPU), a Random Access Memory (RAM), a Read Only Memory (ROM), a computer readable storage medium, or the like. In addition, for example, a series of processing for realizing various functions is stored in a storage medium or the like as a program form, the CPU reads the program using the RAM or the like to execute information processing and calculation processing, and thus, various functions are realized. In addition, a form in which the program is installed in the ROM or other storage mediums in advance, a form in which the program is provided in a state of being stored in a computer readable storage medium, a form in which the program is delivered via wired or wireless communication means, or the like may be adopted. The computer readable storage medium includes a magnetic disk, a magneto optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
Next, a specific configuration of the condenser 4 will be described with reference to
As shown in
A plurality of heal transfer pipes 30 are connected to each other between the water chambers 25 and 26. Accordingly, cooling water flows through each heat transfer pipe 30 and a refrigerant exists outside each heat transfer pipe 30. In addition, in
As shown
A pressure sensor 35 which measures an internal pressure of the condenser 4 is provided in the condenser 4. An output of the pressure sensor 35 is sent to the control unit and saturation temperatures Tc,sat is obtained.
As shown in
The temperature sensor 37 is provided in each of all the heat transfer pipes 30. However, preferably, the temperature sensor 37 is provided in the plurality of representative heat transfer pipes 30. The representative heat transfer pipe 30 is a heat transfer pipe having high possibility of generating an air accumulation A1, and for example, the heat transfer pipe 30 inside positioned in each pipe group 31 is selected as the representative heat transfer pipe 30.
In
In
As shown in
A plurality of heat transfer pipes 50 are connected to each other between the water chambers 45 and 46. The heat transfer pipes 50 configure a plurality of pipe groups.
A refrigerant pipe 52 to which the refrigerant introduced from the economizer 6 is introduced is connected to the lower portion of the evaporator 8. A suction pipe 54 through which the refrigerant gas evaporated inside the evaporator 8 is introduced to the suction port 2a of the turbocompressor 2 is connected to the upper portion of the evaporator 8. In addition, the hot gas bypass pipe 22 is connected to the end portion of the upper portion of the evaporator 8. The connection portion of the hot gas bypass pipe 22 is partitioned from other areas by a partition plate 56. A hot gas introduced from the hot gas bypass pipe 22 is introduced to the heat transfer pipes 50 positioned at the lower portion by the partition plate 56.
In the evaporator 8, air accumulations A4 are formed at the upper portion of the evaporator 8, and an air accumulation A5 is formed in the vicinity of the connection portion of the hot gas bypass pipe 22 partitioned by the partition plate 56.
The turbo refrigerating machine 1 having the above-described configuration is operated as follows.
A refrigerant sucked to the turbocompressor 2 from the suction port 2a is compressed in a two-stage compression manner and introduced to the condenser 4.
In the condenser 4, the refrigerant is cooled by cooling water introduced from the cooling tower 9 and is condensed and liquefied to generate the sub-cool liquid. The sub-cool liquid generated in the condenser 4 is throttled by the high stage expansion valve 5 and thereafter, is introduced to the economizer 6.
In the economizer 6, the refrigerant is subjected to gas-liquid separation, the liquid refrigerant is introduced to the low stage expansion valve 7 to be throttled, and thereafter, is introduced to the evaporator 8. The gas refrigerant generated by the gas-liquid separation in the economizer 6 is introduced to the intermediate suction port 2c of the turbocompressor 2 through the intermediate suction pipe 11.
In the evaporator 8, the refrigerant is evaporated by cooling the cold water introduced from the load 13. The evaporated gas refrigerant is introduced to the suction port 2a of the turbocompressor 2 and repeats the above-described processes.
While the above-described refrigeration cycle is performed, air enters the turbo refrigerating machine 1 from the atmosphere.
For example, in a where a refrigerant such as HFO-1233zd(E) in which a pressure inside the evaporator 8 is a negative pressure is used, it is considered that air enters the inside from the evaporator 8. If the air enters the turbo refrigerating machine 1 and is accumulated, a disadvantage in which performance of the refrigerating machine decreases or the like occurs. Accordingly, the air bleeding device 15 is activated to discharge the air inside the turbo refrigerating machine 1 to the outside.
A timing to start an air bleeding operation is determined as follow by the control unit.
As shown in
Specifically, the control unit includes a map and a relationship expression reflecting a graph shown in
A curve L indicates a reference condenser termination temperature difference and is determined by performing a test or simulation in advance. If a temperature is higher than the reference condenser termination temperature difference, heat transfer between the cooling water and the refrigerant is not sufficiently performed, and it is determined that there are air accumulations A1 which cannot be ignored in the pipe groups 31.
In addition, in a case where a current condenser termination temperature difference which is a difference between a current saturation temperature determined by the pressure sensor 35 and a current cooling water outlet temperature measured by the temperature sensor 37 is greater than the reference condenser termination temperature difference, the control unit determines that the state is in an air bleeding operation start state and determines a timing of activation of the air bleeding device 15.
If the start of the air bleeding operation is determined as described above, a pre-air bleeding start operation is performed as follow before the air bleeding operation starts. That is, a preparation operation of moving not only air staying in the condenser 4 but also air staying in the evaporator 8 or the economizer 6 to the condenser 4 and further moving the air to the upper portion of the condenser 4 is performed.
As shown in
As shown in
Next, the above-described opening degrees of the low stage expansion valve 7 and the hot gas bypass valve 23 are returned to the opening degrees before the pre-air bleeding start operation is performed. Moreover, an opening degree of a second stage vane (not shown) provided on the upstream side of the second stage impeller of the turbocompressor 2 is increased by the command of the control unit. Accordingly, a flow rate of the refrigerant in the intermediate suction port 2c increases, and as a result, a flow rate inside the economizer 6 connected to the intermediate suction pipe 11 increases. Therefore, as shown in
According to the above-described operations, the air accumulations staying in the evaporator 8 and the economizer 6 are introduced into the condenser 4. Next, an operation of moving the air accumulations to the upper portion at which the air bleeding pipe 33 is positioned in the condenser 4 is performed.
In order to decrease a discharge flow rate of the turbocompressor 2, the opening degrees of the first stage vane and the second stage vane are decreased by the command of the control unit. Accordingly, the circulation air volume of the refrigerant inside the condenser 4 decreases, and the ear accumulations A1 staying in the pipe groups 31 of the condenser 4 can move to the upper portion by buoyancy to be collected at the upper portion of the condenser 4.
In addition, by gradually increasing the opening degree of the hot gas bypass valve 23 within a range of a predetermined value or less by the command of the control unit, the air accumulation staying in the condenser 4 moves to the connection portion side of the hot gas bypass pipe 22. As shown in
After the above-described pre-air bleeding start operation is completed, the air collected at the upper portion of the condenser 4 is discharged to the outside of the turbo refrigerating machine 1 by activating the air bleeding device 15 by the command of the control unit.
According to the present embodiment, the following effects are exerted.
The cooling water outlet temperature of the heat transfer pipe 30 of the condenser 4 is measured and the air bleeding operation start state is determined based on the temperature change. Accordingly, it is possible to accurately detect the air accumulations A1 being accumulated in the pipe groups 31, and it is possible to start the air bleeding operation at an appropriate timing.
In addition, by performing the pre-air bleeding start operation, air moves from the evaporator 8 and the economizer 6 to the condenser 4, and air inside the condenser 4 moves to the upper portion at which the air bleeding pipe 33 is positioned. Accordingly, it is possible to effectively extract air staying in the turbo refrigerating machine 1.
As described above, by extracting air from the inside of the turbo refrigerating machine 1, it is possible to prevent progress of corrosion of a part inside the refrigerating machine, and it is possible to prevent a decrease in performance of the refrigerating machine. In addition, it is possible to prevent an abnormal increase in a pressure inside the condenser 4, and it is possible to continue a sound operation.
Number | Date | Country | Kind |
---|---|---|---|
2015-170703 | Aug 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/069482 | 6/30/2016 | WO | 00 |