1. Field of the Invention
The present invention relates generally to techniques for illuminating the interior of a refrigerating or freezing apparatus.
2. Description of the Prior Art
It is convenient for the user if at least parts of the interior of a refrigerating or freezing apparatus are illuminated when he or she opens an access door or access lid of the apparatus in order to put in or take out objects. The interior is that space into which the objects (foodstuffs) to be kept refrigerated or frozen are placed. Particularly in the case of refrigerating apparatuses of the lower price category, often only a simple lamp is mounted at a suitable place in the interior, which is switched on when the door or lid is opened and provides a certain brightness at least in the immediate vicinity of the lamp. Furthermore, there are solutions in which light is radiated from the side into a narrow side of a transparent plate which forms, for example, a placement area for storing objects. With such an illuminating plate, the interior of the refrigerating or freezing apparatus can be illuminated at least to a certain extent. Moreover, such an illuminating plate creates a nice aesthetic effect.
It is an object of the present invention to provide a solution for an interior illumination with which the interior of a refrigerating or freezing apparatus can be variably illuminated.
The present invention achieves this and other objectives by providing a refrigerating or freezing apparatus which comprises an interior and a lighting device for illuminating the interior. The lighting device includes at least one light-emitting element and a reflecting surface arrangement, in the direction of which the light-emitting element emits a light beam and by which the light beam is reflected in the direction of the interior. For the variable illumination of the interior, the lighting device further includes an actuating device to change at least one of the radiating position and radiating direction of the light beam emitted by the light-emitting element relative to the reflecting surface arrangement. By changing at least one of the radiating position and radiating direction of the light beam relative to the reflecting surface arrangement, a variation of at least one of the direction, position and divergence of the light beam radiated by the reflecting surface arrangement into the interior and thus a variation of the illumination profile of the interior are obtained. In this way, different regions of the interior can be selectively more or less intensely illuminated as required.
The refrigerating or freezing apparatus according to the invention may comprise exclusively a refrigerating function, exclusively a freezing function or both. In the latter case, a lighting device may be provided solely in association with a refrigerating region of the combined refrigerating and freezing apparatus, solely in association with a freezing region of the apparatus or in association with each of the two regions. With regard to its construction, the refrigerating or freezing apparatus according to the invention may have a cabinet or chest form. In the case of the cabinet form, the refrigerating or/and freezing apparatus includes at least one vertically standing access door, through which the interior of the apparatus is accessible. In the case of a chest form by contrast, it has a horizontally lying chest lid delimiting the interior upwards.
The variation of at least one of the radiating position and radiating direction of the light beam emitted by the light-emitting element may be achieved according to one embodiment by the light-emitting element being arranged positionally adjustably relative to the reflecting surface arrangement. The actuating device in this case comprises a drive device for the positional adjustment of the light-emitting element. Alternatively, at least part of the reflecting surface arrangement may be arranged positionally adjustably relative to the light-emitting element. In this case, the actuating device comprises a drive device for the positional adjustment of the relevant part of the reflecting surface arrangement. Moreover, it is also not excluded that both the light-emitting element and at least part of the reflecting surface arrangement are positionally adjustably arranged and can be adjusted by a drive device included in the actuating device.
When a positional adjustability is referred to here, this adjustability can be expressed in at least one of an adjustability of the position in space and an adjustability of an angular position. Accordingly, the positional adjustability of the light-emitting element or/and of the reflecting surface arrangement may comprise an adjustability having at least one translational component and—alternatively or additionally thereto—having at least one rotatory component.
Of course, there is not excluded in the context of the invention a suitable electronic control of the light-emitting element itself, in order to cause, without positional adjustment of the same, a variation of at least one of the radiating position and radiating direction of the emitted light beam relative to the reflecting surface arrangement.
According to one embodiment, the light-emitting element is mounted on a printed circuit board which is positionally adjustable by means of the drive device—for example formed by an electric motor.
The reflecting surface arrangement may include a reflecting surface concavely curved in at least one sectional plane. The light-emitting element may be positionally adjustable in the sectional plane relative to this reflecting surface. In the case of an adjustability with at least one translational component, the light-emitting element may be movable in the direction from one edge region of the concavely curved reflecting surface to an opposite edge region of the same. In the case of an adjustability with at least one rotatory degree of freedom, the light-emitting element may be adjustable about an axis of rotation perpendicular to the sectional plane with respect to its angular position relative to the reflecting surface.
In a configuration in which the interior is delimited by a back wall, two side walls opposite one another, a top wall and a bottom wall, the light-emitting element may be positionally adjustable in a sectional plane of the reflecting surface which runs parallel to the side walls. When in this case the light-emitting element and at least part of the reflecting surface arrangement associated therewith are arranged on the top wall, the conditions are fulfilled for radiating the light beam, radiated into the interior by the reflecting surface arrangement, in the manner of a light curtain from the top downwards, it being possible for this curtain to be directed downwards at different angles depending on the set position of the light-emitting element. In this way, it is possible to illuminate alternately front, central and rear regions of a placement plate for the refrigerated or frozen goods to be stored. Of course, a light curtain of such variable adjustability can also be created by adjusting the concavely curved reflecting surface in the sectional plane.
In one embodiment, the reflecting surface is formed by a reflecting trough, wherein the lighting device includes a plurality of light-emitting elements arranged in a manner distributed in the trough longitudinal direction. The plurality of the light-emitting elements may in this case be positionally adjustable relative to the reflecting trough on a common support along a sectional plane perpendicular to the trough longitudinal direction. The common support may, for example, be a printed circuit board on which the plurality of the light-emitting elements is mounted. Of course, in the context of the invention, an individual positional adjustability of a single one or a plurality of the light-emitting elements is not excluded.
According to an embodiment of the invention, the actuating device may comprise a control unit adapted to cause a change of at least one of the radiating position and radiating direction of the light beam in accordance with a predetermined variation profile. The variation profile specifies, for example, the manner in which at least one of the radiating direction and radiating position of the light beam emitted by the light-emitting element is to be changed with respect to the reflecting surface arrangement after the opening of the refrigerating or freezing apparatus (i.e. when a user opens an access door or access lid). For example, it is conceivable to program the variation profile such that, after the opening of the refrigerating or/and freezing apparatus, the focus of the illumination gradually moves from upper regions of the interior towards lower regions or/and from front regions of the interior towards rear regions.
for the actuating device to comprise a control unit adapted to cause a change of at least one of the radiating position and radiating direction of the light beam based on sensory-acquired information with regard to at least one of a user of the apparatus and an interior state of the apparatus. In such a configuration, a situation-dependent adaptation of the illumination is possible, for example depending on the region of the interior into which a user reaches with his or her hand, or/and depending on the region of the interior into which the user looks with his or her eyes. For the sensory detection of such situations, the refrigerating or/and freezing apparatus may be equipped, for example, with an optical proximity sensor or/and with a camera. The proximity sensor emits a measuring beam (for example in the IR wavelength range) and detects the intensity of the returning IR radiation. The closer a reflecting object (e.g. the user's hand) is to the proximity sensor, the greater the returning radiation intensity. The detected intensity is thus a measure of the distance of the reflecting object from the proximity sensor. For this it can be determined whether the user is reaching with his or her hand, for example, into an upper compartment or into a lower compartment of the interior. The lighting device can then be controlled accordingly such that the compartment into which the user is reaching is illuminated more intensely. The same applies to a camera-based sensor system. A camera can also be used to detect where the user reaches with his or her hand into the interior of the refrigerating or/and freezing apparatus. Alternatively or additionally, the direction in which the user is looking can be detected by means of a camera and based on this a particular partial region of the interior of the refrigerating or/and freezing apparatus can be illuminated more intensely.
The state of the interior of the apparatus may relate, for example, to the degree of filling of the interior as a whole or of individual partial regions of the interior. Thus, it is conceivable that by image evaluation of camera-detected images the control unit determines, for example, those regions of the interior which are more heavily filled than other regions, and directs the lighting more intensely to the more heavily filled regions or leaves largely unlit at least those regions which are filled less or not at all.
The light-emitting element may be realized in light-emitting-diode technology.
A variable illumination of the apparatus interior may be realized not only via a variable interaction of the light-emitting element with at least part of the reflecting surface arrangement, but instead also via a variable interaction of the light-emitting element with at least one light-permeable element, through which at least part of the light of the light-emitting element travels. Accordingly, the lighting device can comprise, alternatively or additionally to the reflecting surface arrangement, at least one light-permeable element which influences the propagation of at least part of the light of the light-emitting element, the lighting device comprising an actuating device to change at least one of the radiating position and radiating direction of a light beam emitted by the light-emitting element relative to the light-permeable element. For example, the light-permeable element may have at least one of a lens function and a scattering function. When light permeability is referred to here, it is understood to mean both a permeability without transmission losses and a lossy permeability (i.e. translucence). The influencing of the light propagation may accordingly consist, for example, in at least one of a refraction, a diffraction, a scattering and an attenuation.
For the variation of at least one of the radiating position and radiating direction the same possibilities come into consideration as were explained above in connection with the reflecting surface arrangement. Thus, it is conceivable for either the light-emitting element or the light-permeable element or both to be positionally adjustably arranged. With regard to the concrete form of the positional adjustability, reference is made again to the variants explained above in connection with the reflecting surface arrangement. If there is only a variability of the radiating position and/or radiating direction of a light beam emitted by the light-emitting element relative to the light-permeable element, but not a variability of the radiating position and/or radiating direction of a light beam emitted by the light-emitting element relative to a reflecting surface arrangement, the actuating device specified in claim 1 can be dispensed with. If there is a variability of at least one of the radiating position and radiating direction of a light beam emitted by the light-emitting element relative to the light-permeable element and additionally thereto a variability of the radiating position and/or radiating direction of a light beam emitted by the light-emitting element relative to a reflecting surface arrangement, it is possible to use, at least partially, common components for the actuating device of claim 1 and for the actuating device of claim 16, for instance in the form of a common control unit.
The invention is explained in more detail below with reference to the appended drawings.
Reference is made firstly to
In the exemplary case shown, a shelf 28 and a drawer 30 are arranged in the interior 24 of the refrigerating or freezing apparatus 10. The shelf 28 serves as a placement plate in order to place thereon objects to be kept cool. It is understood that a plurality of shelves 28 may be provided, if necessary. The drawer 30 also serves for storing goods to be cooled. Again it is understood that two or more drawers 30 may be present, if necessary.
A lighting device, designated generally by 32, serves for illuminating the interior 24. When the door 26 is open, the lighting device 32 generates a light curtain which radiates from the top wall 16 downwards, i.e. in the direction of the bottom wall 14, and can pivot in the direction from the front towards the rear, so that selectively different regions of the interior 24 can be more intensely illuminated. Alternatively or additionally, it is conceivable to enable a pivoting of the light curtain in a plane parallel to the plane of the back wall 22 by suitable control of the lighting device 32. In this way too, it is possible for selectively different regions of the interior 24 to be more intensely illuminated.
In the exemplary case shown, the light-generating place of the light curtain is situated in the region of the top wall 16. Although in
Reference is now made additionally to
The lighting device 32 comprises a light module 42 which can be prefabricated to form a constructional unit and which has a module housing 44 serving as support for the light-emitting element 34 and the reflecting surface 36. The module housing 44 is designed (in a manner not shown in more detail) with suitable housing formations which allow the light module 42 to be fastened to the top wall 16 of the refrigerating or freezing apparatus 10. For example, these housing formations may comprise one or more fastening holes for inserting fastening screws. Alternatively or additionally, the housing formations may comprise, for example, one or more snap hooks, which allow a snap-latching of the light module 42 to the top wall 16 of the refrigerating or freezing apparatus 10. Expediently, there is formed in the top wall 16 an indentation or recess (not shown specifically in the drawings) which is adapted to the shape of the light module 42 and into which the light module 42 can be inserted for assembly. In the final-assembly state, the light module 42 projects, at most slightly, beyond the interior-side surface of the top wall 16.
The reflecting surface 36 is designed with a concave curvature, at least in the drawing plane of
Alternatively to a trough-like configuration of the reflecting surface 36, it is conceivable for the reflecting surface 36 to be of calotte-shaped form, for example in the shape of a spherical calotte or a paraboloid of revolution. With such a configuration, a light-emitting element is arranged expediently only in the calotte centre. If a plurality of light-emitting elements are to be provided distributed over the width of the interior 24, accordingly a plurality of reflecting calottes can be mounted distributed on the top wall 16 of the refrigerating or freezing apparatus 10.
The reflecting surface 36 can be formed, for example, by a metallization applied to a suitably shaped base body. Alternatively, it is conceivable for the reflecting surface 36 to be formed by a (optionally polished) surface of a reflecting body produced from a sufficiently bright, for example white, plastics material.
The light-emitting element 34, which is formed, for example, by an individual light-emitting diode (LED) or a group of different-colored light-emitting diodes, generates light in a wavelength spectrum which is suitable for illuminating the interior 24 of the refrigerating or freezing apparatus 10, and is mounted on a printed circuit board 46. If the reflecting surface 36 is of trough-like elongated design and a plurality of light-emitting elements 34 are arranged distributed in the trough longitudinal direction, the printed circuit board 46 can be designed as an elongated printed circuit board strip, on which all of the light-emitting element 34 are mounted. In the exemplary case shown, the printed circuit board 46 is movable, in the drawing plane of
For the positional adjustment of the printed circuit board 46, the lighting device 32 has a drive device 50, represented schematically in
The drive device 50 is controlled by a control unit 54 which also controls the light emission of the light-emitting element 34 and for this purpose is in electrical signal connection with the printed circuit board 46. Together with the drive unit 50, the control unit 54 is part of an actuating unit in the meaning of the invention. The control unit 54 is, for example, program-controlled and for this purpose can comprise a memory 56 with a control program 58 stored therein. In one embodiment, the control program 58 contains instructions which define a predetermined profile of how the printed circuit board 46 is to be moved in response to an initiating event (e.g. opening of the door 26). This movement profile at the same time corresponds to a variation profile for the light curtain radiated into the interior 24 of the refrigerating or freezing apparatus 10. As an alternative to a movement profile of the printed circuit board 46 which is always the same and independent of other conditions, a setting of the lighting device 32 which varies depending on the situation is conceivable. For this purpose, a sensor 60 connected to the control unit 54 is shown schematically in
It is understood that the movability of the printed circuit board 46 indicated by the double-headed arrow 48 is not the only possibility for influencing the light curtain emitted by the lighting device 32. Alternatively or additionally, a tilting of the printed circuit board 46 about a tilting axis normal to the drawing plane of
The different shades (levels of grey) in
It is understood that the intensity profiles shown in
The light module 42 further has a light-permeable covering plate 62 which covers the reflector cavity, delimited by the reflecting surface 36, in the direction of the interior 24 of the refrigerating or freezing apparatus 10. Light which is reflected at the reflecting surface 36 passes through the covering plate 62 before entering the interior 24. The covering plate 62 may be completely transparent. Alternatively, it may have a light-scattering effect. It is composed, for example, of glass or plastics material. The module housing 44 for its part is preferably a plastics part produced by injection molding which may be formed in one piece with a reflector body bearing the reflecting surface 36. Alternatively to this, such a reflector body may be formed separately from the module housing 44 and bonded, latched or otherwise connected thereto.
In
In the embodiment according to
The embodiment of
It is understood that in a modification of the embodiment according to
Although the preferred embodiments of the present invention have been described herein, the above description is merely illustrative. Further modification of the invention herein disclosed will occur to those skilled in the respective arts and all such modifications are deemed to be within the scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 016 919.7 | Nov 2014 | DE | national |