The present invention relates to refrigeration apparatuses, and more particularly to a measure to increase the coefficient of performance (COP) and space heating capacity.
A refrigeration apparatus including a refrigerant circuit in which intermediate-pressure gas refrigerant is injected into a compressor has been conventionally known, and is described in, for example, PATENT DOCUMENT 1. Specifically, the refrigerant circuit of the refrigeration apparatus includes a compressor, a heat-source-side heat exchanger, a first expansion valve, a gas-liquid separator, a second expansion valve, and a utilization-side heat exchanger sequentially connected together, and performs a two-stage expansion refrigeration cycle. The refrigerant circuit includes an injection pipe through which intermediate-pressure gas refrigerant in the gas-liquid separator is injected into the compressor. In the refrigeration apparatus, intermediate-pressure gas refrigerant is injected into the compressor to increase the amount of refrigerant circulating through the utilization-side heat exchanger during heating operation, thereby increasing the space heating capacity. This increases the coefficient of performance (COP) during heating operation, and enables energy efficient heating operation.
PATENT DOCUMENT 1: Japanese Unexamined Patent Publication No. 2009-222329
Incidentally, in areas where the outdoor air temperature is low, such as cold climate areas, there has been a demand for a refrigeration apparatus that performs energy efficient heating operation with increasing space heating capacity. To satisfy the demand, the above-described refrigeration apparatus of PATENT DOCUMENT 1 may include a liquid-gas heat exchanger configured to increase the degree of superheat of refrigerant sucked into the compressor. The liquid-gas heat exchanger exchanges heat between low-pressure gas refrigerant obtained by evaporating refrigerant in the heat-source-side heat exchanger and high-pressure liquid refrigerant obtained by condensing refrigerant in the utilization-side heat exchanger. The liquid-gas heat exchanger superheats the low-pressure gas refrigerant to increase the degree of superheat of the refrigerant sucked into the compressor. With increasing degree of superheat of the sucked refrigerant, the temperature of refrigerant discharged from the compressor increases. This increases the enthalpy of refrigerant in the utilization-side heat exchanger to increase the space heating capacity (heating capacity) of the utilization-side heat exchanger.
However, when the refrigeration apparatus of PATENT DOCUMENT 1 merely includes a liquid-gas heat exchanger, the effect of increasing the coefficient of performance (COP) by injecting intermediate-pressure gas refrigerant into the compressor is reduced. This problem will be specifically described with reference to
In the compressor, low-pressure gas refrigerant (the point a in each of
Through the above-described flow of refrigerant, when the high-pressure liquid refrigerant that has flowed out of the utilization-side heat exchanger is subcooled by the liquid-gas heat exchanger, this subcooling decreases the proportion of gas refrigerant in the intermediate-pressure refrigerant that is obtained by depressurizing the subcooled high-pressure liquid refrigerant through the first expansion valve and flows into the gas-liquid separator as illustrated in
It is therefore an object of the present invention to provide a refrigeration apparatus including a refrigerant circuit in which gas is injected through an intermediate-pressure gas-liquid separator into a compressor, and enabling energy efficient heating operation with increasing space heating capacity.
A first aspect of the invention is directed to a refrigeration apparatus including: a refrigerant circuit (20) including a compression mechanism (21), a utilization-side heat exchanger (22), a first expansion valve (23), a gas-liquid separator (24), a second expansion valve (26), and a heat-source-side heat exchanger (27) which are sequentially connected together to perform a two-stage expansion refrigeration cycle. The refrigerant circuit (20) further includes: a gas injection pipe (2c) through which gas refrigerant in the gas-liquid separator (24) flows into a portion of the compression mechanism (21) in which refrigerant is being compressed, and a liquid-gas heat exchanger (25) configured to exchange heat between gas refrigerant obtained by evaporating refrigerant in the heat-source-side heat exchanger (27) and travelling toward the compression mechanism (21) and liquid refrigerant travelling from the gas-liquid separator (24) toward the second expansion valve (26).
In the first aspect of the invention, when refrigerant circulates in a heating cycle, the utilization-side heat exchanger (22) functions as a condenser (radiator), and the heat-source-side heat exchanger (27) functions as an evaporator. In this case, high-pressure liquid refrigerant obtained by condensing the refrigerant in the utilization-side heat exchanger (22) is depressurized through the first expansion valve (23) to form intermediate-pressure refrigerant, and the gas-liquid separator (24) separates the intermediate-pressure refrigerant into an intermediate-pressure liquid refrigerant component and an intermediate-pressure gas refrigerant component. The resultant intermediate-pressure liquid refrigerant component flows into the liquid-gas heat exchanger (25). Furthermore, low-pressure gas refrigerant obtained by evaporating the refrigerant in the heat-source-side heat exchanger (27) exchanges heat with the intermediate-pressure liquid refrigerant component in the liquid-gas heat exchanger (25), and is superheated, and the superheated gas refrigerant is then sucked into the compressor (21).
According to a second aspect of the invention, the refrigeration apparatus of the first aspect of the invention may further include: an intermediate pressure setter (41) configured to determine an intermediate pressure value of the two-stage expansion refrigeration cycle such that a liquid-to-gas temperature difference between liquid refrigerant and gas refrigerant in the liquid-gas heat exchanger (25) is greater than or equal to a required liquid-to-gas temperature difference therebetween determined based on a required degree of superheat of refrigerant sucked into the compression mechanism (21), where the required degree of superheat corresponds to required heating capacity of the utilization-side heat exchanger (22), and such that an amount of gas refrigerant through the gas injection pipe (2c) is greatest; and a valve controller (45) configured to control at least one of the first or second expansion valve (23) or (26) such that an intermediate pressure of the two-stage expansion refrigeration cycle is equal to the intermediate pressure value determined by the intermediate pressure setter (41).
In the second aspect of the invention, the degree of superheat of the refrigerant sucked into the compression mechanism (21) is set at a value required to satisfy the required heating capacity (required space heating capacity) of the utilization-side heat exchanger (22). Then, the intermediate pressure value of the refrigeration cycle is determined such that the difference in temperature between intermediate-pressure liquid refrigerant and low-pressure gas refrigerant in the liquid-gas heat exchanger (25) (liquid-to-gas temperature difference) is greater than or equal to the temperature difference required to satisfy the required degree of superheat (required liquid-to-gas temperature difference), and such that the amount of intermediate-pressure gas refrigerant flowing through the gas-liquid separator (24) into the compressor (21) (gas injection amount) is greatest. The degree of opening of the first and/or second expansion valve (23) and/or (26) is adjusted such that the actual intermediate pressure of the refrigeration cycle is equal to the determined intermediate pressure value.
According to a third aspect of the invention, in the second aspect of the invention, the intermediate pressure setter (41) may includes: a temporary value setter (42) configured to determine a temporary intermediate pressure value of the two-stage expansion refrigeration cycle under which a coefficient of performance of the refrigeration cycle is greatest, based on the required degree of superheat of the refrigerant sucked into the compression mechanism (21); and a determiner (43) configured to calculate a required amount of heat to be exchanged between liquid refrigerant and gas refrigerant in the liquid-gas heat exchanger (25) based on a temperature of the gas refrigerant at an inlet of the liquid-gas heat exchanger (25) and a temperature of the gas refrigerant at an outlet of the liquid-gas heat exchanger (25) when, after the temporary value setter (42) has determined the temporary intermediate pressure value, a degree of superheat of the refrigerant sucked into the compression mechanism (21) reaches the required degree of superheat, calculate a required liquid-to-gas temperature difference between the liquid refrigerant and the gas refrigerant in the liquid-gas heat exchanger (25) based on the required amount of heat to be exchanged, select the temporary intermediate pressure value determined by the temporary value setter (42) as the intermediate pressure value of the two-stage expansion refrigeration cycle in a situation where an actual liquid-to-gas temperature difference between the liquid refrigerant and the gas refrigerant in the liquid-gas heat exchanger (25) is greater than the required liquid-to-gas temperature difference, and select the intermediate pressure value previously determined based on the required liquid-to-gas temperature difference as the intermediate pressure value of the two-stage expansion refrigeration cycle in a situation where the actual liquid-to-gas temperature difference is less than or equal to the required liquid-to-gas temperature difference. When the temporary value setter (42) determines the temporary intermediate pressure value, the valve controller (45) may control at least one of the first or second expansion valve (23) or (26) such that the intermediate pressure of the two-stage expansion refrigeration cycle is equal to the determined temporary intermediate pressure value, and when the determiner (43) determines the intermediate pressure value, the valve controller (45) may control at least one of the first or second expansion valve (23) or (26) such that the intermediate pressure of the two-stage expansion refrigeration cycle is equal to the determined intermediate pressure value.
In the third aspect of the invention, the temporary intermediate pressure value is set at a value that allows the coefficient of performance to be greatest, based on the required degree of superheat. When the temporary intermediate pressure value is determined, the degree of opening of the first and/or second expansion valve (23) and/or (26) is adjusted such that the actual intermediate pressure is equal to the determined temporary intermediate pressure value. Then, when the degree of superheat of the refrigerant sucked into the compressor (21) reaches the required degree of superheat, the required amount of heat to be exchanged between liquid refrigerant and gas refrigerant in the liquid-gas heat exchanger (25) is calculated based on the difference between the temperature of gas refrigerant at the inlet of the liquid-gas heat exchanger (25) and the temperature of gas refrigerant at the outlet thereof. Subsequently, the required liquid-to-gas temperature difference in the liquid-gas heat exchanger (25) for satisfying the required amount of heat to be exchanged is calculated. When the actual liquid-to-gas temperature difference is greater than the required liquid-to-gas temperature difference, the intermediate pressure value is set at the above-described determined temporary intermediate pressure value. When the actual liquid-to-gas temperature difference is less than or equal to the required liquid-to-gas temperature difference, the intermediate pressure value is set at a value corresponding to the required liquid-to-gas temperature difference.
As described above, the refrigeration apparatus of the present invention includes: a gas injection pipe (2c) through which intermediate-pressure gas refrigerant in the gas-liquid separator (24) flows into a portion of the compression mechanism (21) in which refrigerant is being compressed, and a liquid-gas heat exchanger (25) configured to exchange heat between low-pressure gas refrigerant obtained by evaporating refrigerant in the heat-source-side heat exchanger (27) and travelling toward the compression mechanism (21) and intermediate-pressure liquid refrigerant travelling from the gas-liquid separator (24) toward the second expansion valve (26). The above configuration enables the injection of a sufficient amount of gas refrigerant into the compressor (21), and can ensure a sufficient degree of superheat of refrigerant sucked into the compressor (21). This can adequately increase both of the coefficient of performance (COP) of the refrigeration cycle and space heating capacity. This increase enables energy efficient heating operation satisfying the required space heating capacity.
According to the refrigeration apparatus of the second aspect of the invention, the intermediate pressure value is determined such that the actual liquid-to-gas temperature difference is greater than or equal to the required liquid-to-gas temperature difference for allowing the degree of superheat of the refrigerant sucked into the compressor (21) to satisfy the required degree of superheat, and such that the amount of gas refrigerant injected through the gas injection pipe (2c) allows the coefficient of performance of the refrigeration cycle to be optimum. This enables the determination of the intermediate pressure value which satisfies the required space heating capacity and under which the coefficient of performance of the refrigeration cycle is optimum. This determination enables energy efficient heating operation satisfying the required capacity.
An embodiment of the present invention will be described in detail hereinafter with reference to the drawings. The following embodiment is merely a preferred example in nature, and is not intended to limit the scope, applications, and use of the disclosure.
As illustrated in
The air conditioning system (10) includes a refrigerant circuit (20) through which refrigerant circulates to perform a two-stage expansion refrigeration cycle. The refrigerant circuit (20) includes a compressor (21) serving as a compression mechanism for refrigerant, an indoor heat exchanger (22) serving as a utilization-side heat exchanger, a first expansion valve (23), a gas-liquid separator (24), a liquid-gas heat exchanger (25), a second expansion valve (26), and an outdoor heat exchanger (27) serving as a heat-source-side heat exchanger. The compressor (21), the indoor heat exchanger (22), the first expansion valve (23), the gas-liquid separator (24), the liquid-gas heat exchanger (25), the second expansion valve (26), and the outdoor heat exchanger (27) are sequentially connected through pipes. The refrigerant circuit (20) forms a closed circuit.
The compressor (21) has a compression chamber (not shown) into which refrigerant is sucked and in which the refrigerant is compressed, and is, for example, a scroll rotary compressor or a rolling piston rotary compressor. A discharge side of the compressor (21) is connected to a gas-side end of the indoor heat exchanger (22) through a discharge-side pipe (2b). A liquid-side end of the indoor heat exchanger (22) is connected to the gas-liquid separator (24) through the first expansion valve (23).
The liquid-gas heat exchanger (25) has a liquid-side channel (25a) and a gas-side channel (25b). One end of the liquid-side channel (25a) of the liquid-gas heat exchanger (25) is connected to the gas-liquid separator (24), and the other end thereof is connected to a liquid-side end of the outdoor heat exchanger (27) through the second expansion valve (26). One end of the gas-side channel (25b) of the liquid-gas heat exchanger (25) is connected to a gas-side end of the outdoor heat exchanger (27), and the other end thereof is connected to a suction side of the compressor (21) through a suction-side pipe (2a).
The indoor heat exchanger (22) and the outdoor heat exchanger (27) are air heat exchangers configured to exchange heat between refrigerant and delivered air. The liquid-gas heat exchanger (25) exchanges heat between liquid refrigerant flowing through the liquid-side channel (25a) and gas refrigerant flowing through the gas-side channel (25b). Specifically, the liquid-gas heat exchanger (25) is configured to exchange heat between gas refrigerant that is obtained by evaporating refrigerant in the outdoor heat exchanger (27) and travels toward the compressor (21) and liquid refrigerant that travels through the gas-liquid separator (24) toward the second expansion valve (26). The first and second expansion valves (23) and (26) are motor-operated valves each having an adjustable degree of opening.
The gas-liquid separator (24) separates refrigerant that has flowed thereinto through the first expansion valve (23) into a liquid refrigerant component and a gas refrigerant component. A gas injection pipe (2c) is connected between the gas-liquid separator (24) and the compressor (21). Specifically, an inlet end of the gas injection pipe (2c) communicates with a gas layer of the gas-liquid separator (24), and an outlet end thereof is connected to an intermediate port (not shown) of the compressor (21). The intermediate port of the compressor (21) communicates with the compression chamber in which refrigerant is being compressed. In other words, the gas refrigerant component in the gas-liquid separator (24) flows through the gas injection pipe (2c) into a portion of the compressor (21) in which refrigerant is being compressed.
The refrigerant circuit (20) includes various sensors. Specifically, a pipe near an inlet of the liquid-side channel (25a) of the liquid-gas heat exchanger (25) includes a first temperature sensor (31), and a pipe near an outlet of the gas-side channel (25b) (i.e., the suction-side pipe (2a)) includes a second temperature sensor (32). A pipe near an outlet of the outdoor heat exchanger (27) includes a third temperature sensor (33). The suction-side pipe (2a) further includes a pressure sensor (34). The first through third temperature sensors (31-33) sense the refrigerant temperature, and the pressure sensor (34) senses the refrigerant pressure.
The air conditioning system (10) includes a controller (40). The controller (40) controls the capacity of the compressor (21), and includes an intermediate pressure setter (41) and a valve controller (45). The intermediate pressure setter (41) is configured to determine the intermediate pressure value of a refrigeration cycle based on the required space heating capacity. The intermediate pressure setter (41) includes a temporary value setter (42) and a determiner (43). The valve controller (45) is configured to control the degree of opening of at least one of the first or second expansion valve (23) or (26) such that the intermediate pressure of the refrigeration cycle is equal to the value determined by the intermediate pressure setter (41). Determination operation of the intermediate pressure setter (41) will be described in detail below.
The refrigerant circuit (20) of this embodiment is filled with single component refrigerant containing HFO-1234yf (2,3,3,3-tetrafluoro-1-propene) as refrigerant. Note that a chemical formula of the HFO-1234yf is represented by an expression CF3—CF═CH2. That is, such refrigerant is a type of single component refrigerant containing refrigerant represented by a molecular formula of C3HmFn (where “m” and “n” are integers equal to or greater than 1 and equal to or less than 5, and a relationship represented by an expression m+n=6 is satisfied) and having a single double bond in a molecular structure.
—Operational Behavior—
Next, the behavior of the above-described air conditioning system (10) during heating operation will be described with reference to
In the compressor (21), low-pressure gas refrigerant (the point A in
The high-pressure refrigerant condensed in the indoor heat exchanger (22) is depressurized through the first expansion valve (23) to form intermediate-pressure refrigerant (the point D in
In the liquid-gas heat exchanger (25), the intermediate-pressure liquid refrigerant component that has flowed into the liquid-side channel (25a) exchanges heat with low-pressure gas refrigerant flowing through the gas-side channel (25b), and is subcooled (the point F in
As described above, the high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger (22) is depressurized through the first expansion valve (23), and then flows into the gas-liquid separator (24). This can ensure the adequate proportion of intermediate-pressure gas refrigerant in the gas-liquid separator (24) even in a situation where the intermediate pressure is not reduced so much. Furthermore, since the intermediate pressure does not need to be reduced so much, this can ensure the adequate difference between the intermediate pressure and the low pressure. Thus, a sufficient amount of gas refrigerant can be injected through the gas-liquid separator (24) into the compressor (21). This can increase the coefficient of performance (COP).
Since the low-pressure gas refrigerant that has flowed out of the outdoor heat exchanger (27) is superheated in the liquid-gas heat exchanger (25), this can increase the degree of superheat SH of refrigerant sucked into the compressor (21). This increases the temperature of refrigerant discharged from the compressor (21), thereby increasing the enthalpy of refrigerant in the indoor heat exchanger (22). This increases the space heating capacity.
The above configuration enables heating operation with increasing space heating capacity at a high coefficient of performance. Thus, while the required space heating capacity is satisfied, energy efficient operation can be performed.
—Determination of Intermediate Pressure Value—
Next, operation in which the intermediate pressure setter (41) determines an intermediate pressure value Pm (hereinafter simply referred to also as a set value Pm) will be described with reference to
The intermediate pressure setter (41) determines the intermediate pressure value Pm in accordance with a flow chart illustrated in
<Operation of Temporary Setter>
The temporary value setter (42) of the intermediate pressure setter (41) determines the temporary intermediate pressure value Pm1 as described above (step ST1). The temporary value setter (42) determines the temporary intermediate pressure value Pm1 in accordance with a flow chart illustrated in
Subsequently, the temporary value setter (42) determines the required degree of superheat SH corresponding to the required space heating capacity, based on such a table as illustrated in
Subsequently, the temporary value setter (42) determines the temporary intermediate pressure value Pm1 which corresponds to the required degree of superheat SH and under which which the coefficient of performance (COP) of the refrigeration cycle is greatest, based on such a table as illustrated in
When, in the refrigerant circuit (20) of this embodiment, intermediate-pressure gas refrigerant in the gas-liquid separator (24) is injected into the compressor (21), the amount of refrigerant circulating through the indoor heat exchanger (22) increases by the amount of the intermediate-pressure gas refrigerant injected thereinto, and the space heating capacity of the indoor heat exchanger (22), therefore, increases. This increases the coefficient of performance of the refrigeration cycle (an injection effect). In other words, with increasing gas injection amount, the space heating capacity increases, and the coefficient of performance of the refrigeration cycle increases. Here, as illustrated in
The intermediate-pressure gas refrigerant in the gas-liquid separator (24) has a lower temperature than refrigerant that is being compressed in the compressor (21). Thus, the injection of the intermediate-pressure gas refrigerant into the compressor (21) decreases the temperature of refrigerant discharged from the compressor (21). This decreases both of the value input to the compressor (21) and the space heating capacity of the indoor heat exchanger (22). The rate of decrease of the value input to the compressor (21) is higher than that of the space heating capacity, and the coefficient of performance of the refrigeration cycle, therefore, increases.
When the temporary intermediate pressure value Pm1 is determined in the foregoing manner, the degree of opening of the first and/or second expansion valve (23) and/or (26) is controlled such that the intermediate pressure of the refrigeration cycle is equal to the determined temporary intermediate pressure value Pm1 as described above (step ST2). Then, the intermediate pressure setter (41) determines whether or not the degree of superheat SH of refrigerant sucked into the compressor (21) (the degree of superheat SH of the sucked refrigerant) has reached the required degree of superheat SH (step ST3). When the degree of superheat SH of the sucked refrigerant has reached the required degree of superheat SH, the process proceeds to determination operation for the intermediate pressure value Pm (step ST4). Note that the degree of superheat SH of the refrigerant sucked into the compressor (21) is a value obtained by subtracting the saturation temperature corresponding to the pressure sensed by the pressure sensor (34) from the temperature sensed by the second temperature sensor (32).
<Operation of Determiner>
The determiner (43) of the intermediate pressure setter (41) determines the intermediate pressure value Pm (step ST4). The determiner (43) determines the intermediate pressure value Pm in accordance with a flow chart illustrated in
First, the third temperature sensor (33) and the second temperature sensor (32) respectively measure the refrigerant temperature at the outlet of the outdoor heat exchanger (27) and the refrigerant temperature at the outlet of a low-temperature-side portion of the liquid-gas heat exchanger (25), and the measured values are input to the determiner (43) (step ST41). The difference between the two outlet temperatures input to the determiner (43) determines the amount of heat exchanged in the liquid-gas heat exchanger (25) at this time. Note that the liquid-side channel (25a) of the liquid-gas heat exchanger (25) herein is referred to also as a high-temperature-side portion thereof, and the gas-side channel (25b) thereof is referred to also as a low-temperature-side portion thereof.
Subsequently, the determiner (43) calculates the shortage of space heating capacity based on the difference between the space heating capacity at this time and the required space heating capacity, and calculates the required amount of heat to be exchanged Q in the liquid-gas heat exchanger (25) (step ST42). The required amount of heat to be exchanged Q compensates for the shortage of space heating capacity. In other words, the required amount of heat to be exchanged Q is required to superheat gas refrigerant in the liquid-gas heat exchanger (25) to the required degree of superheat SH. For example, the temperature of refrigerant discharged from the compressor (21) is set at a value required to satisfy the required space heating capacity (target discharge temperature), and the degree of superheat SH is set at a value required to allow the temperature of the discharged refrigerant to reach the target discharge temperature (required degree of superheat SH).
Subsequently, the determiner (43) calculates the liquid refrigerant-to-gas refrigerant temperature difference required to allow the amount of heat exchanged in the liquid-gas heat exchanger (25) to be equal to the required amount of heat to be exchanged Q (hereinafter referred to as the required liquid-to-gas temperature difference ΔTmin) based on an expression described below (step ST43). In other words, the required liquid-to-gas temperature difference Δ Tmin is the liquid refrigerant-to-gas refrigerant temperature difference required to superheat gas refrigerant in the liquid-gas heat exchanger (25) to the required degree of superheat SH.
Δ Tmin=Q/KA
where K represents the overall heat transfer coefficient of the liquid-gas heat exchanger (25) (heat exchanger performance), and A represents the heat transfer area of the liquid-gas heat exchanger (25).
Subsequently, the determiner (43) determines whether or not the actual liquid-to-gas temperature difference ΔT is greater than the required liquid-to-gas temperature difference Δ Tmin (step ST44). The actual liquid-to-gas temperature difference Δ T is the difference between the refrigerant temperature at the inlet of the high-temperature-side portion of the liquid-gas heat exchanger (25) and the refrigerant temperature at the outlet of the low-temperature-side portion thereof. The refrigerant temperature at the inlet of the high-temperature-side portion of the liquid-gas heat exchanger (25) is measured with the first temperature sensor (31), and the refrigerant temperature at the outlet of the low-temperature-side portion thereof is measured with the second temperature sensor (32). In other words, the liquid-to-gas temperature difference ΔT is the difference between the temperature of liquid refrigerant at the inlet of the liquid-gas heat exchanger (25) and the temperature of gas refrigerant at the outlet thereof. As illustrated in
In a case where the actual liquid-to-gas temperature difference Δ T is greater than the required liquid-to-gas temperature difference Δ Tmin, the determiner (43) selects the above-described determined temporary intermediate pressure value Pm1 as the intermediate pressure value Pm (step ST46). This case corresponds to a “case 1” illustrated in
In the “case 1,” the actual liquid-to-gas temperature difference Δ T is greater than the required liquid-to-gas temperature difference Δ Tmin1. This shows that the space heating capacity of the indoor heat exchanger (22) is higher than required. To address this problem, if the intermediate pressure value Pm is set at a value corresponding to the required liquid-to-gas temperature difference Δ Tmin1 (a value lower than the temporary intermediate pressure value Pm1), such as the point M illustrated in
In a case where the actual liquid-to-gas temperature difference Δ T is less than or equal to the required liquid-to-gas temperature difference Δ Tmin, the determiner (43) repeats changing the determined temporary intermediate pressure value Pm1 to Pm1+α until the liquid-to-gas temperature difference Δ T exceeds the required liquid-to-gas temperature difference Δ Tmin (step ST45), and selects the changed temporary intermediate pressure value Pm1 as the intermediate pressure value Pm (step ST46). This case corresponds to a “case 2” or a “case 3” illustrated in
To address this problem, in this embodiment, the intermediate pressure value Pm is set at a value corresponding to the required liquid-to-gas temperature difference Δ Tmin2 or Δ Tmin3, such as the point K illustrated in
As described above, the intermediate pressure setter (41) of this embodiment determines the intermediate pressure value Pm such that the actual liquid-to-gas temperature difference Δ T is greater than or equal to the required liquid-to-gas temperature difference Δ Tmin required to allow the degree of superheat SH of refrigerant sucked into the compressor (21) to satisfy the required degree of superheat SH, and such that the gas injection amount allows the coefficient of performance of the refrigeration cycle to be optimum.
The refrigerant circuit (20) of this embodiment includes the gas injection pipe (2c) and the liquid-gas heat exchanger (25). Through the gas injection pipe (2c), intermediate-pressure gas refrigerant in the gas-liquid separator (24) flows into a portion of the compressor (21) in which refrigerant is being compressed. The liquid-gas heat exchanger (25) exchanges heat between low-pressure gas refrigerant that is obtained by evaporating refrigerant in the outdoor heat exchanger (27) and travels toward the compressor (21) and intermediate-pressure liquid refrigerant that travels from the gas-liquid separator (24) toward the second expansion valve (26). The above configuration enables the injection of a sufficient amount of gas refrigerant into the compressor (21), and can ensure a sufficient degree of superheat SH of refrigerant sucked into the compressor (21). This can adequately increase both of the coefficient of performance (COP) of the refrigeration cycle and space heating capacity.
The intermediate pressure setter (41) of this embodiment determines the intermediate pressure value Pm such that the actual liquid-to-gas temperature difference Δ T is greater than or equal to the required liquid-to-gas temperature difference Δ Tmin required to allow the degree of superheat SH of refrigerant sucked into the compressor (21) to satisfy the required degree of superheat SH, and such that the amount of gas refrigerant injected through the gas injection pipe (2c) allows the coefficient of performance of the refrigeration cycle to be optimum. This enables the selection of the intermediate pressure which satisfies the required space heating capacity and under which the coefficient of performance of the refrigeration cycle is optimum. This determination enables energy efficient heating operation satisfying the required capacity.
In this embodiment, single component refrigerant containing HFO-1234yf (2,3,3,3-tetrafluoro-1-propene) is used as refrigerant. The performance of the HFO-1234yf (2,3,3,3-tetrafluoro-1-propene) decreases at low temperature. Specifically, since the density of this type of refrigerant extremely decreases at low temperature, this causes a shortage of refrigerant circulating through the refrigerant circuit (20). As a result, when the outdoor air temperature is relatively low, it is difficult to satisfy the required space heating capacity. However, according to this embodiment, the required space heating capacity can be adequately satisfied as described above.
As described above, the present invention is useful for refrigeration apparatuses that perform a two-stage expansion refrigeration cycle.
Number | Date | Country | Kind |
---|---|---|---|
2011-190430 | Sep 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/005455 | 8/29/2012 | WO | 00 | 2/25/2014 |