Refrigeration apparatus

Information

  • Patent Grant
  • 11906207
  • Patent Number
    11,906,207
  • Date Filed
    Friday, June 26, 2020
    4 years ago
  • Date Issued
    Tuesday, February 20, 2024
    10 months ago
Abstract
A two-stage refrigeration apparatus (500) includes a first cycle (510) and a second cycle (520). The first cycle (510) includes a first compressor (511), a first condenser (512), a first expansion mechanism (513), and a first evaporator (514) that are arranged in such a manner as to be connected to the first cycle. A first refrigerant circulates through the first cycle. The second cycle (520) includes a second downstream-side condenser (523) and a second evaporator (527) that are arranged in such a manner as to be connected to the second cycle. A second refrigerant circulates through the second cycle. The first evaporator (514) and the second downstream-side condenser (523) constitute a cascade condenser (531). In the cascade condenser (531), heat is exchanged between the first refrigerant and the second refrigerant. At least one of the first refrigerant and the second refrigerant is a refrigerant mixture containing at least 1,2-difluoroethylene (HFO-1132(E)).
Description
TECHNICAL FIELD

The present disclosure relates to a refrigeration apparatus.


BACKGROUND ART

A refrigeration apparatus known in the art includes a high-temperature-side (primary-side) refrigeration cycle and a low-temperature-side (secondary-side) refrigeration cycle. For example, PTL 1 (International Publication No. 2014/045400) describes a two-stage refrigeration apparatus in which an HFC refrigerant (e.g., R410A and R32) or an HFO refrigerant is used as refrigerant for the high-temperature-side refrigeration cycle and a carbon dioxide refrigerant is used as refrigerant for the low-temperature-side refrigeration cycle.


SUMMARY OF THE INVENTION
Technical Problem

Such a two-stage refrigeration apparatus in which two cycles are used in combination is in need of improvement in operational efficiency.


Solution to Problem

A refrigeration apparatus according to a first aspect includes a first cycle and a second cycle. The first cycle includes a first compressor, a first radiator, a first expansion mechanism, and a first heat absorber that are arranged in such a manner as to be connected to the first cycle. A first refrigerant circulates through the first cycle. The second cycle includes a second radiator and a second heat absorber that are arranged in such a manner as to be connected to the second cycle. A second refrigerant circulates through the second cycle. The first heat absorber and the second radiator constitute a heat exchanger. In the heat exchanger, heat is exchanged between the first refrigerant flowing through the first heat absorber and the second radiator refrigerant through the second radiator. At least one of the first refrigerant and the second refrigerant is a refrigerant mixture containing at least 1,2-difluoroethylene (HFO-1132(E)).


The efficiency of heat exchange in the heat exchanger may be enhanced through the use of the refrigerant mixture.


A refrigeration apparatus according to a second aspect includes a first cycle and a second cycle. The first cycle includes a first compressor, a first radiator, a first expansion mechanism, and a first heat absorber that are arranged in such a manner as to be connected to the first cycle. A first refrigerant circulates through the first cycle. The second cycle includes a second radiator and a second heat absorber that are arranged in such a manner as to be connected to the second cycle. A second refrigerant circulates through the second cycle. The first radiator and the second heat absorber constitute a heat exchanger. In the heat exchanger, heat is exchanged between the first refrigerant flowing through the first radiator and the second refrigerant flowing through the second heat absorber. At least one of the first refrigerant and the second refrigerant is a refrigerant mixture containing at least 1,2-difluoroethylene (HFO-1132(E)).


The efficiency of heat exchange in the heat exchanger may be enhanced through the use of the refrigerant mixture.


A refrigeration apparatus according to a third aspect is the refrigeration apparatus according to the first aspect in which the second cycle further includes a second compressor and a second expansion mechanism that are arranged in such a manner as to be connected to the second cycle. The first refrigerant flowing through the first radiator of the first cycle releases heat into outside air. The first refrigerant is the refrigerant mixture. The second refrigerant is carbon dioxide.


A refrigeration apparatus according to a fourth aspect is the refrigeration apparatus according to the first aspect in which the second cycle further includes a second compressor and a second expansion mechanism that are arranged in such a manner as to be connected to the second cycle. The first refrigerant flowing through the first radiator of the first cycle releases heat into outside air. The first refrigerant is the refrigerant mixture. The second refrigerant is the refrigerant mixture.


A refrigeration apparatus according to a fifth aspect is the refrigeration apparatus according to the first aspect in which the second cycle further includes a second compressor and a second expansion mechanism that are arranged in such a manner as to be connected to the second cycle. The first refrigerant flowing through the first radiator of the first cycle releases heat into outside air. The first refrigerant is R32. The second refrigerant is the refrigerant mixture.


A refrigeration apparatus according to a sixth aspect is the refrigeration apparatus according to the first aspect in which the first refrigerant flowing through the first radiator of the first cycle releases heat into outside air. The first refrigerant is the refrigerant mixture. The second refrigerant is a liquid medium.


A refrigeration apparatus according to a seventh aspect is the refrigeration apparatus according to the second aspect in which the second cycle further includes a second compressor and a second expansion mechanism that are arranged in such a manner as to be connected to the second cycle. The first refrigerant flowing through the first heat absorber of the first cycle takes away heat from outside air. The first refrigerant is the refrigerant mixture. The second refrigerant is a refrigerant whose saturation pressure at a predetermined temperature is lower than a saturation pressure of the refrigerant mixture at the predetermined temperature.


A refrigeration apparatus according to a 8th aspect is the refrigeration apparatus according to any of the 1st through 7th aspects, wherein, the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).


In this refrigeration apparatus, the efficiency of heat exchange in the heat exchanger can be enhanced when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.


A refrigeration apparatus according to a 9th aspect is the refrigeration apparatus according to the 8th aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:

    • point A (68.6, 0.0, 31.4),
    • point A′ (30.6, 30.0, 39.4),
    • point B (0.0, 58.7, 41.3),
    • point D (0.0, 80.4, 19.6),
    • point C′ (19.5, 70.5, 10.0),
    • point C (32.9, 67.1, 0.0), and
    • point O (100.0, 0.0, 0.0),


      or on the above line segments (excluding the points on the line segments BD, CO, and OA);


the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments BD, CO, and OA are straight lines.


A refrigeration apparatus according to a 10th aspect is the refrigeration apparatus according to the 8th aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:

    • point G (72.0, 28.0, 0.0),
    • point I (72.0, 0.0, 28.0),
    • point A (68.6, 0.0, 31.4),
    • point A′ (30.6, 30.0, 39.4),
    • point B (0.0, 58.7, 41.3),
    • point D (0.0, 80.4, 19.6),
    • point C′ (19.5, 70.5, 10.0), and
    • point C (32.9, 67.1, 0.0),


      or on the above line segments (excluding the points on the line segments IA, BD, and CG);


the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments GI, IA, BD, and CG are straight lines.


A refrigeration apparatus according to a 11th aspect is the refrigeration apparatus according to the 8th aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:

    • point J (47.1, 52.9, 0.0),
    • point P (55.8, 42.0, 2.2),
    • point N (68.6, 16.3, 15.1),
    • point K (61.3, 5.4, 33.3),
    • point A′ (30.6, 30.0, 39.4),
    • point B (0.0, 58.7, 41.3),
    • point D (0.0, 80.4, 19.6),
    • point C′ (19.5, 70.5, 10.0), and
    • point C (32.9, 67.1, 0.0),


      or on the above line segments (excluding the points on the line segments BD and CJ);


the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),


the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments JP, BD, and CJ are straight lines.


A refrigeration apparatus according to a 12th aspect is the refrigeration apparatus according to the 8th aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:

    • point J (47.1, 52.9, 0.0),
    • point P (55.8, 42.0, 2.2),
    • point L (63.1, 31.9, 5.0),
    • point M (60.3, 6.2, 33.5),
    • point A′ (30.6, 30.0, 39.4),
    • point B (0.0, 58.7, 41.3),
    • point D (0.0, 80.4, 19.6),
    • point C′ (19.5, 70.5, 10.0), and
    • point C (32.9, 67.1, 0.0),


      or on the above line segments (excluding the points on the line segments BD and CJ);


the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43)


the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments JP, LM, BD, and CJ are straight lines.


A refrigeration apparatus according to a 13th aspect is the refrigeration apparatus according to the 8th aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:

    • point P (55.8, 42.0, 2.2),
    • point L (63.1, 31.9, 5.0),
    • point M (60.3, 6.2, 33.5),
    • point A′ (30.6, 30.0, 39.4),
    • point B (0.0, 58.7, 41.3),
    • point F (0.0, 61.8, 38.2), and
    • point T (35.8, 44.9, 19.3),


      or on the above line segments (excluding the points on the line segment BF);


the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),


the line segment TP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and


the line segments LM and BF are straight lines.


A refrigeration apparatus according to a 14th aspect is the refrigeration apparatus according to the 8th aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:

    • point P (55.8, 42.0, 2.2),
    • point L (63.1, 31.9, 5.0),
    • point Q (62.8, 29.6, 7.6), and
    • point R (49.8, 42.3, 7.9),


      or on the above line segments;


the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment RP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and


the line segments LQ and QR are straight lines.


A refrigeration apparatus according to a 15th aspect is the refrigeration apparatus according to the 8th aspect, wherein, when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:

    • point S (62.6, 28.3, 9.1),
    • point M (60.3, 6.2, 33.5),
    • point A′ (30.6, 30.0, 39.4),
    • point B (0.0, 58.7, 41.3),
    • point F (0.0, 61.8, 38.2), and
    • point T (35.8, 44.9, 19.3),


      or on the above line segments,


the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),


the line segment TS is represented by coordinates (x, 0.0017x2-0.7869x+70.888, −0.0017x2−0.2131x+29.112), and


the line segments SM and BF are straight lines.


A refrigeration apparatus according to a 16th aspect is the refrigeration apparatus according to any of the 1st through 7th aspects, wherein, the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprises 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire refrigerant.


In this refrigeration apparatus, the efficiency of heat exchange in the heat exchanger can be enhanced when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A refrigeration apparatus according to a 17th aspect is the refrigeration apparatus according to any of the 1st through 7th aspects, wherein, the refrigerant comprises HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and


the refrigerant comprises 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.


In this refrigeration apparatus, the efficiency of heat exchange in the heat exchanger can be enhanced when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A refrigeration apparatus according to a 18th aspect is the refrigeration apparatus according to any of the 1st through 7th aspects, wherein, the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32),


wherein


when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,


if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:

    • point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0),
    • point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0),
    • point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4),
    • point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
    • point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
    • point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),


      or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);


if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:

    • point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0),
    • point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895),
    • point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516),
    • point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and
    • point W (0.0, 100.0−a, 0.0),


      or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);


if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:

    • point G (0.0135a2-1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0),
    • point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273),
    • point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695),
    • point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and
    • point W (0.0, 100.0−a, 0.0),


      or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);


if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:

    • point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0),
    • point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014),
    • point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
    • point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and
    • point W (0.0, 100.0−a, 0.0),


      or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and


if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:

    • point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0),
    • point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098),
    • point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
    • point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and
    • point W (0.0, 100.0−a, 0.0),


      or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W).


In this refrigeration apparatus, the efficiency of heat exchange in the heat exchanger can be enhanced when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.


A refrigeration apparatus according to a 19th aspect is the refrigeration apparatus according to any of the 1st through 7th aspects, wherein, the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32), wherein


when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the refrigerant is respectively represented by x, y, z, and a,


if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:

    • point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0),
    • point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4),
    • point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
    • point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
    • point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),


      or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);


if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:

    • point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0),
    • point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636, −0.0105a2+0.8577a+33.177),
    • point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801), and
    • point W (0.0, 100.0−a, 0.0),


      or on the straight lines JK′ and K′B (excluding point J, point B, and point W);


if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:

    • point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0),
    • point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783),
    • point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682), and
    • point W (0.0, 100.0−a, 0.0),


      or on the straight lines JK′ and K′B (excluding point J, point B, and point W);


if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:

    • point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0),
    • point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05),
    • point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
    • point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714), and
    • point W (0.0, 100.0−a, 0.0),


      or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and


if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:

    • point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0),
    • point K′ (−0.1892a+29.443, 0.0, −0.8108a+70.557),
    • point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
    • point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05), and
    • point W (0.0, 100.0−a, 0.0),


      or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W).


In this refrigeration apparatus, the efficiency of heat exchange in the heat exchanger can be enhanced when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) and a coefficient of performance (COP) equal to those of R410A is used.


A refrigeration apparatus according to a 20th aspect is the refrigeration apparatus according to any of the 1st through 7th aspects, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),


wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:

    • point I (72.0, 0.0, 28.0),
    • point J (48.5, 18.3, 33.2),
    • point N (27.7, 18.2, 54.1), and
    • point E (58.3, 0.0, 41.7),


      or on these line segments (excluding the points on the line segment EI;


the line segment IJ is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);


the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and


the line segments IN and EI are straight lines.


In this refrigeration apparatus, the efficiency of heat exchange in the heat exchanger can be enhanced when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A refrigeration apparatus according to a 21st aspect is the refrigeration apparatus according to any of the 1st through 7th aspects, wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf,


wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:

    • point M (52.6, 0.0, 47.4),
    • point M′ (39.2, 5.0, 55.8),
    • point N (27.7, 18.2, 54.1),
    • point V (11.0, 18.1, 70.9), and
    • point G (39.6, 0.0, 60.4),


      or on these line segments (excluding the points on the line segment GM);


the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4);


the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);


the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and


the line segments NV and GM are straight lines.


In this refrigeration apparatus, the efficiency of heat exchange in the heat exchanger can be enhanced when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A refrigeration apparatus according to a 22nd aspect is the refrigeration apparatus according to any of the 1st through 7th aspects, wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf, wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:

    • point O (22.6, 36.8, 40.6),
    • point N (27.7, 18.2, 54.1), and
    • point U (3.9, 36.7, 59.4),


      or on these line segments;


the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);


the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and


the line segment UO is a straight line.


In this refrigeration apparatus, the efficiency of heat exchange in the heat exchanger can be enhanced when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A refrigeration apparatus according to a 23rd aspect is the refrigeration apparatus according to any of the 1st through 7th aspects, wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf,


wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:

    • point Q (44.6, 23.0, 32.4),
    • point R (25.5, 36.8, 37.7),
    • point T (8.6, 51.6, 39.8),
    • point L (28.9, 51.7, 19.4), and
    • point K (35.6, 36.8, 27.6),


      or on these line segments;


the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235);


the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);


the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);


the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and


the line segment TL is a straight line.


In this refrigeration apparatus, the efficiency of heat exchange in the heat exchanger can be enhanced when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A refrigeration apparatus according to a 24th aspect is the refrigeration apparatus according to any of the 1st through 7th aspects, wherein the refrigerant comprises HFO-1132(E), R32, and R1234yf,


wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:

    • point P (20.5, 51.7, 27.8),
    • point S (21.9, 39.7, 38.4), and
    • point T (8.6, 51.6, 39.8),


      or on these line segments;


the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);


the line segment ST is represented by coordinates (0.0082y−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and


the line segment TP is a straight line.


In this refrigeration apparatus, the efficiency of heat exchange in the heat exchanger can be enhanced when a refrigerant having a sufficiently low GWP, a refrigeration capacity (may also be referred to as a cooling capacity or a capacity) equal to those of R410A and classified with lower flammability (Class 2L) in the standard of The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is used.


A refrigeration apparatus according to a 25th aspect is the refrigeration apparatus according to any of the 1st through 7th aspects, wherein the refrigerant comprises trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32),


wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:

    • point I (72.0, 28.0, 0.0),
    • point K (48.4, 33.2, 18.4),
    • point B′ (0.0, 81.6, 18.4),
    • point H (0.0, 84.2, 15.8),
    • point R (23.1, 67.4, 9.5), and
    • point G (38.5, 61.5, 0.0),


      or on these line segments (excluding the points on the line segments B′H and GI);


the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),


the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments KB′ and GI are straight lines.


In this refrigeration apparatus, the efficiency of heat exchange in the heat exchanger can be enhanced when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.


A refrigeration apparatus according to a 26th aspect is the refrigeration apparatus according to any of the 1st through 7th aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,


wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IJ, JR, RG, and GI that connect the following 4 points:

    • point I (72.0, 28.0, 0.0),
    • point J (57.7, 32.8, 9.5),
    • point R (23.1, 67.4, 9.5), and
    • point G (38.5, 61.5, 0.0),


      or on these line segments (excluding the points on the line segment GI);


the line segment IJ is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments JR and GI are straight lines.


In this refrigeration apparatus, the efficiency of heat exchange in the heat exchanger can be enhanced when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.


A refrigeration apparatus according to a 27th aspect is the refrigeration apparatus according to any of the 1st through 7th aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,


wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:

    • point M (47.1, 52.9, 0.0),
    • point P (31.8, 49.8, 18.4),
    • point B′ (0.0, 81.6, 18.4),
    • point H (0.0, 84.2, 15.8),
    • point R (23.1, 67.4, 9.5), and
    • point G (38.5, 61.5, 0.0),


      or on these line segments (excluding the points on the line segments B′H and GM);


the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),


the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments PB′ and GM are straight lines.


In this refrigeration apparatus, the efficiency of heat exchange in the heat exchanger can be enhanced when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.


A refrigeration apparatus according to a 28th aspect is the refrigeration apparatus according to any of the 1st through 7th aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,


wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:

    • point M (47.1, 52.9, 0.0),
    • point N (38.5, 52.1, 9.5),
    • point R (23.1, 67.4, 9.5), and
    • point G (38.5, 61.5, 0.0),


      or on these line segments (excluding the points on the line segment GM);


the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments JR and GI are straight lines.


In this refrigeration apparatus, the efficiency of heat exchange in the heat exchanger can be enhanced when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.


A refrigeration apparatus according to a 29th aspect is the refrigeration apparatus according to any of the 1st through 7th aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,


wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:

    • point P (31.8, 49.8, 18.4),
    • point S (25.4, 56.2, 18.4), and
    • point T (34.8, 51.0, 14.2),


      or on these line segments;


the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z),


the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and


the line segment PS is a straight line.


In this refrigeration apparatus, the efficiency of heat exchange in the heat exchanger can be enhanced when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.


A refrigeration apparatus according to a 30th aspect is the refrigeration apparatus according to any of the 1st through 7th aspects, wherein the refrigerant comprises HFO-1132(E), HFO-1123, and R32,


wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:

    • point Q (28.6, 34.4, 37.0),
    • point B″ (0.0, 63.0, 37.0),
    • point D (0.0, 67.0, 33.0), and
    • point U (28.7, 41.2, 30.1),


      or on these line segments (excluding the points on the line segment B″D);


the line segment DU is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z),


the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and


the line segments QB″ and B″D are straight lines.


In this refrigeration apparatus, the efficiency of heat exchange in the heat exchanger can be enhanced when a refrigerant having a sufficiently low GWP, and a coefficient of performance (COP) equal to that of R410A is used.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of an instrument used for a flammability test.



FIG. 2 is a diagram showing points A to T and line segments that connect these points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass %.



FIG. 3 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass %.



FIG. 4 is a diagram showing points A to C, D′, G, I, J, and K′, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 92.9 mass % (the content of R32 is 7.1 mass %).



FIG. 5 is a diagram showing points A to C, D′, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 88.9 mass % (the content of R32 is 11.1 mass %).



FIG. 6 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 85.5 mass % (the content of R32 is 14.5 mass %).



FIG. 7 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 81.8 mass % (the content of R32 is 18.2 mass %).



FIG. 8 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 78.1 mass % (the content of R32 is 21.9 mass %).



FIG. 9 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 73.3 mass % (the content of R32 is 26.7 mass %).



FIG. 10 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 70.7 mass % (the content of R32 is 29.3 mass %).



FIG. 11 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 63.3 mass % (the content of R32 is 36.7 mass %).



FIG. 12 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 55.9 mass % (the content of R32 is 44.1 mass %).



FIG. 13 is a diagram showing points A, B, G, I, J, K′, and W, and line segments that connect these points to each other in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 52.2 mass % (the content of R32 is 47.8 mass %).



FIG. 14 is a view showing points A to C, E, G, and I to W; and line segments that connect points A to C, E, G, and I to W in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass %.



FIG. 15 is a view showing points A to U; and line segments that connect the points in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass %.



FIG. 16 is a schematic configuration diagram of a heat load treatment system that is a refrigeration apparatus according to a first embodiment.



FIG. 17 is a schematic diagram illustrating an installation layout of the heat load treatment system according to the first embodiment.



FIG. 18 illustrates a control block of the heat load treatment system according to the first embodiment.



FIG. 19 is a diagram illustrating refrigerant circuits included in a two-stage refrigeration apparatus that is a refrigeration apparatus according to a second embodiment.



FIG. 20 is a circuit configuration diagram of an air-conditioning hot water supply system that is a refrigeration apparatus according to the second embodiment.





DESCRIPTION OF EMBODIMENTS
(1) Definition of Terms

In the present specification, the term “refrigerant” includes at least compounds that are specified in ISO 817 (International Organization for Standardization), and that are given a refrigerant number (ASHRAE number) representing the type of refrigerant with “R” at the beginning; and further includes refrigerants that have properties equivalent to those of such refrigerants, even though a refrigerant number is not yet given. Refrigerants are broadly divided into fluorocarbon compounds and non-fluorocarbon compounds in terms of the structure of the compounds. Fluorocarbon compounds include chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC), and hydrofluorocarbons (HFC). Non-fluorocarbon compounds include propane (R290), propylene (R1270), butane (R600), isobutane (R600a), carbon dioxide (R744), ammonia (R717), and the like.


In the present specification, the phrase “composition comprising a refrigerant” at least includes (1) a refrigerant itself (including a mixture of refrigerants), (2) a composition that further comprises other components and that can be mixed with at least a refrigeration oil to obtain a working fluid for a refrigerating machine, and (3) a working fluid for a refrigerating machine containing a refrigeration oil. In the present specification, of these three embodiments, the composition (2) is referred to as a “refrigerant composition” so as to distinguish it from a refrigerant itself (including a mixture of refrigerants). Further, the working fluid for a refrigerating machine (3) is referred to as a “refrigeration oil-containing working fluid” so as to distinguish it from the “refrigerant composition.”


In the present specification, when the term “alternative” is used in a context in which the first refrigerant is replaced with the second refrigerant, the first type of “alternative” means that equipment designed for operation using the first refrigerant can be operated using the second refrigerant under optimum conditions, optionally with changes of only a few parts (at least one of the following: refrigeration oil, gasket, packing, expansion valve, dryer, and other parts) and equipment adjustment. In other words, this type of alternative means that the same equipment is operated with an alternative refrigerant. Embodiments of this type of “alternative” include “drop-in alternative,” “nearly drop-in alternative,” and “retrofit,” in the order in which the extent of changes and adjustment necessary for replacing the first refrigerant with the second refrigerant is smaller.


The term “alternative” also includes a second type of “alternative,” which means that equipment designed for operation using the second refrigerant is operated for the same use as the existing use with the first refrigerant by using the second refrigerant. This type of alternative means that the same use is achieved with an alternative refrigerant.


In the present specification, the term “refrigerating machine” refers to machines in general that draw heat from an object or space to make its temperature lower than the temperature of ambient air, and maintain a low temperature. In other words, refrigerating machines refer to conversion machines that gain energy from the outside to do work, and that perform energy conversion, in order to transfer heat from where the temperature is lower to where the temperature is higher.


In the present specification, a refrigerant having a “WCF lower flammability” means that the most flammable composition (worst case of formulation for flammability: WCF) has a burning velocity of 10 cm/s or less according to the US ANSI/ASHRAE Standard 34-2013. Further, in the present specification, a refrigerant having “ASHRAE lower flammability” means that the burning velocity of WCF is 10 cm/s or less, that the most flammable fraction composition (worst case of fractionation for flammability: WCFF), which is specified by performing a leakage test during storage, shipping, or use based on ANSI/ASHRAE 34-2013 using WCF, has a burning velocity of 10 cm/s or less, and that flammability classification according to the US ANSI/ASHRAE Standard 34-2013 is determined to classified as be “Class 2L.”


In the present specification, a refrigerant having an “RCL of x % or more” means that the refrigerant has a refrigerant concentration limit (RCL), calculated in accordance with the US ANSI/ASHRAE Standard 34-2013, of x % or more. RCL refers to a concentration limit in the air in consideration of safety factors. RCL is an index for reducing the risk of acute toxicity, suffocation, and flammability in a closed space where humans are present. RCL is determined in accordance with the ASHRAE Standard. More specifically, RCL is the lowest concentration among the acute toxicity exposure limit (ATEL), the oxygen deprivation limit (ODL), and the flammable concentration limit (FCL), which are respectively calculated in accordance with sections 7.1.1, 7.1.2, and 7.1.3 of the ASHRAE Standard.


In the present specification, temperature glide refers to an absolute value of the difference between the initial temperature and the end temperature in the phase change process of a composition containing the refrigerant of the present disclosure in the heat exchanger of a refrigerant system.


(2) Refrigerant
(2-1) Refrigerant Component

Any one of various refrigerants such as refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E, details of these refrigerant are to be mentioned later, can be used as the refrigerant.


(2-2) Use of Refrigerant

The refrigerant according to the present disclosure can be preferably used as a working fluid in a refrigerating machine.


The composition according to the present disclosure is suitable for use as an alternative refrigerant for HFC refrigerant such as R410A, R407C and R404 etc, or HCFC refrigerant such as R22 etc.


(3) Refrigerant Composition

The refrigerant composition according to the present disclosure comprises at least the refrigerant according to the present disclosure, and can be used for the same use as the refrigerant according to the present disclosure. Moreover, the refrigerant composition according to the present disclosure can be further mixed with at least a refrigeration oil to thereby obtain a working fluid for a refrigerating machine.


The refrigerant composition according to the present disclosure further comprises at least one other component in addition to the refrigerant according to the present disclosure. The refrigerant composition according to the present disclosure may comprise at least one of the following other components, if necessary. As described above, when the refrigerant composition according to the present disclosure is used as a working fluid in a refrigerating machine, it is generally used as a mixture with at least a refrigeration oil. Therefore, it is preferable that the refrigerant composition according to the present disclosure does not substantially comprise a refrigeration oil. Specifically, in the refrigerant composition according to the present disclosure, the content of the refrigeration oil based on the entire refrigerant composition is preferably 0 to 1 mass %, and more preferably 0 to 0.1 mass %.


(3-1) Water

The refrigerant composition according to the present disclosure may contain a small amount of water. The water content of the refrigerant composition is preferably 0.1 mass % or less based on the entire refrigerant. A small amount of water contained in the refrigerant composition stabilizes double bonds in the molecules of unsaturated fluorocarbon compounds that can be present in the refrigerant, and makes it less likely that the unsaturated fluorocarbon compounds will be oxidized, thus increasing the stability of the refrigerant composition.


(3-2) Tracer

A tracer is added to the refrigerant composition according to the present disclosure at a detectable concentration such that when the refrigerant composition has been diluted, contaminated, or undergone other changes, the tracer can trace the changes.


The refrigerant composition according to the present disclosure may comprise a single tracer, or two or more tracers.


The tracer is not limited, and can be suitably selected from commonly used tracers. Preferably, a compound that cannot be an impurity inevitably mixed in the refrigerant of the present disclosure is selected as the tracer.


Examples of tracers include hydrofluorocarbons, hydrochlorofluorocarbons, chlorofluorocarbons, hydrochlorocarbons, fluorocarbons, deuterated hydrocarbons, deuterated hydrofluorocarbons, perfluorocarbons, fluoroethers, brominated compounds, iodinated compounds, alcohols, aldehydes, ketones, and nitrous oxide (N2O). The tracer is particularly preferably a hydrofluorocarbon, a hydrochlorofluorocarbon, a chlorofluorocarbon, a fluorocarbon, a hydrochlorocarbon, a fluorocarbon, or a fluoroether.


The following compounds are preferable as the tracer.


FC-14 (tetrafluoromethane, CF4)


HCC-40 (chloromethane, CH3Cl)


HFC-23 (trifluoromethane, CHF3)


HFC-41 (fluoromethane, CH3Cl)


HFC-125 (pentafluoroethane, CF3CHF2)


HFC-134a (1,1,1,2-tetrafluoroethane, CF3CH2F)


HFVC-134 (1,1,2,2-tetrafluoroethane, CHF2CHF2)


HFC-143a (1,1,1-trifluoroethane, CF3CH3)


HFC-143 (1,1,2-trifluoroethane, CHF2CH2F)


HFC-152a (1,1-difluoroethane, CHF2CH3)


HFVC-152 (1,2-difluoroethane, CH2FCH2F)


HFC-161 (fluoroethane, CH3CH2F)


HFC-245fa (1,1,1,3,3-pentafluoropropane, CF3CH2CHF2)


HFC-236fa (1,1,1,3,3,3-hexafluoropropane, CF3CH2CF3)


HFC-236ea (1,1,1,2,3,3-hexafluoropropane, CF3CHFCHF2)


HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane, CF3CHFCF3)


HCFC-22 (chlorodifluoromethane, CHCF2)


HCFC-31 (chlorofluoromethane, CH2ClF)


CFC-1113 (chlorotrifluoroethylene, CF2═CClF)


HFE-125 (trifluoromethyl-difluoromethyl ether, CF3OCHF2)


HFE-134a (trifluoromethyl-fluoromethyl ether, CF3OCH2F)


HFE-143a (trifluoromethyl-methyl ether, CF3OCH3)


HFE-227ea (trifluoromethyl-tetrafluoroethyl ether, CF3OCHFCF3)


HFE-236fa (trifluoromethyl-trifluoroethyl ether, CF3OCH2CF3)


The tracer compound may be present in the refrigerant composition at a total concentration of about 10 parts per million (ppm) to about 1000 ppm. Preferably, the tracer compound is present in the refrigerant composition at a total concentration of about 30 ppm to about 500 ppm, and most preferably, the tracer compound is present at a total concentration of about 50 ppm to about 300 ppm.


(3-3) Ultraviolet Fluorescent Dye

The refrigerant composition according to the present disclosure may comprise a single ultraviolet fluorescent dye, or two or more ultraviolet fluorescent dyes.


The ultraviolet fluorescent dye is not limited, and can be suitably selected from commonly used ultraviolet fluorescent dyes.


Examples of ultraviolet fluorescent dyes include naphthalimide, coumarin, anthracene, phenanthrene, xanthene, thioxanthene, naphthoxanthene, fluorescein, and derivatives thereof. The ultraviolet fluorescent dye is particularly preferably either naphthalimide or coumarin, or both.


(3-4) Stabilizer

The refrigerant composition according to the present disclosure may comprise a single stabilizer, or two or more stabilizers.


The stabilizer is not limited, and can be suitably selected from commonly used stabilizers.


Examples of stabilizers include nitro compounds, ethers, and amines.


Examples of nitro compounds include aliphatic nitro compounds, such as nitromethane and nitroethane; and aromatic nitro compounds, such as nitro benzene and nitro styrene.


Examples of ethers include 1,4-dioxane.


Examples of amines include 2,2,3,3,3-pentafluoropropylamine and diphenylamine.


Examples of stabilizers also include butylhydroxyxylene and benzotriazole.


The content of the stabilizer is not limited. Generally, the content of the stabilizer is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.


(3-5) Polymerization Inhibitor

The refrigerant composition according to the present disclosure may comprise a single polymerization inhibitor, or two or more polymerization inhibitors.


The polymerization inhibitor is not limited, and can be suitably selected from commonly used polymerization inhibitors.


Examples of polymerization inhibitors include 4-methoxy-1-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol, 2,6-di-tert-butyl-p-cresol, and benzotriazole.


The content of the polymerization inhibitor is not limited. Generally, the content of the polymerization inhibitor is preferably 0.01 to 5 mass %, and more preferably 0.05 to 2 mass %, based on the entire refrigerant.


(4) Refrigeration Oil-Containing Working Fluid

The refrigeration oil-containing working fluid according to the present disclosure comprises at least the refrigerant or refrigerant composition according to the present disclosure and a refrigeration oil, for use as a working fluid in a refrigerating machine. Specifically, the refrigeration oil-containing working fluid according to the present disclosure is obtained by mixing a refrigeration oil used in a compressor of a refrigerating machine with the refrigerant or the refrigerant composition. The refrigeration oil-containing working fluid generally comprises 10 to 50 mass % of refrigeration oil.


(4-1) Refrigeration Oil

The refrigeration oil is not limited, and can be suitably selected from commonly used refrigeration oils. In this case, refrigeration oils that are superior in the action of increasing the miscibility with the mixture and the stability of the mixture, for example, are suitably selected as necessary.


The base oil of the refrigeration oil is preferably, for example, at least one member selected from the group consisting of polyalkylene glycols (PAG), polyol esters (POE), and polyvinyl ethers (PVE).


The refrigeration oil may further contain additives in addition to the base oil. The additive may be at least one member selected from the group consisting of antioxidants, extreme-pressure agents, acid scavengers, oxygen scavengers, copper deactivators, rust inhibitors, oil agents, and antifoaming agents.


A refrigeration oil with a kinematic viscosity of 5 to 400 cSt at 40° C. is preferable from the standpoint of lubrication.


The refrigeration oil-containing working fluid according to the present disclosure may further optionally contain at least one additive. Examples of additives include compatibilizing agents described below.


(4-2) Compatibilizing Agent

The refrigeration oil-containing working fluid according to the present disclosure may comprise a single compatibilizing agent, or two or more compatibilizing agents.


The compatibilizing agent is not limited, and can be suitably selected from commonly used compatibilizing agents.


Examples of compatibilizing agents include polyoxyalkylene glycol ethers, amides, nitriles, ketones, chlorocarbons, esters, lactones, aryl ethers, fluoroethers, and 1,1,1-trifluoroalkanes. The compatibilizing agent is particularly preferably a polyoxyalkylene glycol ether.


(5) Various Refrigerants

Hereinafter, the refrigerants A to E, which are the refrigerants used in the present embodiment, will be described in detail.


In addition, each description of the following refrigerant A, refrigerant B, refrigerant C, refrigerant D, and refrigerant E is each independent. The alphabet which shows a point or a line segment, the number of an Examples, and the number of a comparative examples are all independent of each other among the refrigerant A, the refrigerant B, the refrigerant C, the refrigerant D, and the refrigerant E. For example, the first embodiment of the refrigerant A and the first embodiment of the refrigerant B are different embodiment from each other.


(5-1) Refrigerant A

The refrigerant A according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).


The refrigerant A according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.


The refrigerant A according to the present disclosure is a composition comprising HFO-1132(E) and R1234yf, and optionally further comprising HFO-1123, and may further satisfy the following requirements. This refrigerant also has various properties desirable as an alternative refrigerant for R410A; i.e., it has a refrigerating capacity and a coefficient of performance that are equivalent to those of R410A, and a sufficiently low GWP.


Requirements


Preferable refrigerant A is as follows:


When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:

    • point A (68.6, 0.0, 31.4),
    • point A′ (30.6, 30.0, 39.4),
    • point B (0.0, 58.7, 41.3),
    • point D (0.0, 80.4, 19.6),
    • point C′ (19.5, 70.5, 10.0),
    • point C (32.9, 67.1, 0.0), and
    • point O (100.0, 0.0, 0.0),


      or on the above line segments (excluding the points on the line CO);


the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3,


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments BD, CO, and OA are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A.


When the mass % of HFO-1132(E), HFO-1123, and R1234yf, based on their sum in the refrigerant A according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within a figure surrounded by line segments GI, IA, AA′, A′B, BD, DC′, C′C, and CG that connect the following 8 points:

    • point G (72.0, 28.0, 0.0),
    • point I (72.0, 0.0, 28.0),
    • point A (68.6, 0.0, 31.4),
    • point A′ (30.6, 30.0, 39.4),
    • point B (0.0, 58.7, 41.3),
    • point D (0.0, 80.4, 19.6),
    • point C′ (19.5, 70.5, 10.0), and
    • point C (32.9, 67.1, 0.0),


      or on the above line segments (excluding the points on the line segment CG);


the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments GI, IA, BD, and CG are straight lines.


When the requirements above are satisfied, the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant A has a WCF lower flammability according to the ASHRAE Standard (the WCF composition has a burning velocity of 10 cm/s or less).


When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PN, NK, KA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:

    • point J (47.1, 52.9, 0.0),
    • point P (55.8, 42.0, 2.2),
    • point N (68.6, 16.3, 15.1),
    • point K (61.3, 5.4, 33.3),
    • point A′ (30.6, 30.0, 39.4),
    • point B (0.0, 58.7, 41.3),
    • point D (0.0, 80.4, 19.6),
    • point C′ (19.5, 70.5, 10.0), and
    • point C (32.9, 67.1, 0.0),


      or on the above line segments (excluding the points on the line segment CJ);


the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91),


the line segment KA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments JP, BD, and CJ are straight lines.


When the requirements above are satisfied, the refrigerant A according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant exhibits a lower flammability (Class 2L) according to the ASHRAE Standard (the WCF composition and the WCFF composition have a burning velocity of 10 cm/s or less).


When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments JP, PL, LM, MA′, A′B, BD, DC′, C′C, and CJ that connect the following 9 points:

    • point J (47.1, 52.9, 0.0),
    • point P (55.8, 42.0, 2.2),
    • point L (63.1, 31.9, 5.0),
    • point M (60.3, 6.2, 33.5),
    • point A′ (30.6, 30.0, 39.4),
    • point B (0.0, 58.7, 41.3),
    • point D (0.0, 80.4, 19.6),
    • point C′ (19.5, 70.5, 10.0), and
    • point (32.9, 67.1, 0.0),


      or on the above line segments (excluding the points on the line segment CJ);


the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


the line segments JP, LM, BD, and CJ are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 92.5% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m3 or more.


When the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant A according to the present disclosure is respectively represented by x, y, and z, the refrigerant is preferably a refrigerant wherein coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LM, MA′, A′B, BF, FT, and TP that connect the following 7 points:

    • point P (55.8, 42.0, 2.2),
    • point L (63.1, 31.9, 5.0),
    • point M (60.3, 6.2, 33.5),
    • point A′ (30.6, 30.0, 39.4),
    • point B (0.0, 58.7, 41.3),
    • point F (0.0, 61.8, 38.2), and
    • point T (35.8, 44.9, 19.3),


      or on the above line segments (excluding the points on the line segment BF);


the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),


the line segment TP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and


the line segments LM and BF are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP of 95% or more relative to that of R410A; furthermore, the refrigerant has an RCL of 40 g/m3 or more.


The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PL, LQ, QR, and RP that connect the following 4 points:

    • point P (55.8, 42.0, 2.2),
    • point L (63.1, 31.9, 5.0),
    • point Q (62.8, 29.6, 7.6), and
    • point R (49.8, 42.3, 7.9),


      or on the above line segments;


the line segment PL is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


the line segment RP is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and


the line segments LQ and QR are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m3 or more, furthermore, the refrigerant has a condensation temperature glide of 1° C. or less.


The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments SM, MA′, A′B, BF, FT, and TS that connect the following 6 points:

    • point S (62.6, 28.3, 9.1),
    • point M (60.3, 6.2, 33.5),
    • point A′ (30.6, 30.0, 39.4),
    • point B (0.0, 58.7, 41.3),
    • point F (0.0, 61.8, 38.2), and
    • point T (35.8, 44.9, 19.3),


      or on the above line segments,


the line segment MA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2),


the line segment TS is represented by coordinates (x, 0.0017x2−0.7869x+70.888, −0.0017x2−0.2131x+29.112), and


the line segments SM and BF are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to that of R410A, a COP of 95% or more relative to that of R410A, and an RCL of 40 g/m3 or more furthermore, the refrigerant has a discharge pressure of 105% or more relative to that of R410A.


The refrigerant A according to the present disclosure is preferably a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, dg, gh, and hO that connect the following 4 points:

    • point d (87.6, 0.0, 12.4),
    • point g (18.2, 55.1, 26.7),
    • point h (56.7, 43.3, 0.0), and
    • point o (100.0, 0.0, 0.0),


      or on the line segments Od, dg, gh, and hO (excluding the points O and h);


the line segment dg is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),


the line segment gh is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and


the line segments hO and Od are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A.


The refrigerant A according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf, based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments lg, gh, hi, and il that connect the following 4 points:

    • point l (72.5, 10.2, 17.3),
    • point g (18.2, 55.1, 26.7),
    • point h (56.7, 43.3, 0.0), and
    • point i (72.5, 27.5, 0.0) or


      on the line segments lg, gh, and il (excluding the points h and i);


the line segment lg is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),


the line gh is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and


the line segments hi and il are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.


The refrigerant A according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Od, de, ef, and fO that connect the following 4 points:

    • point d (87.6, 0.0, 12.4),
    • point e (31.1, 42.9, 26.0),
    • point f (65.5, 34.5, 0.0), and
    • point O (100.0, 0.0, 0.0),


      or on the line segments Od, de, and ef (excluding the points O and f);


the line segment de is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),


the line segment ef is represented by coordinates (−0.0064z2−1.1565z+65.501, 0.0064z2+0.1565z+34.499, z), and


the line segments fO and Od are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A.


The refrigerant A according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,


coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments le, ef, fi, and il that connect the following 4 points:

    • point l (72.5, 10.2, 17.3),
    • point e (31.1, 42.9, 26.0),
    • point f (65.5, 34.5, 0.0), and
    • point i (72.5, 27.5, 0.0),


      or on the line segments le, ef, and il (excluding the points f and i);


the line segment le is represented by coordinates (0.0047y2−1.5177y+87.598, y, −0.0047y2+0.5177y+12.402),


the line segment ef is represented by coordinates (−0.0134z2−1.0825z+56.692, 0.0134z2+0.0825z+43.308, z), and


the line segments fi and il are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 93.5% or more relative to that of R410A, and a COP ratio of 93.5% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.


The refrigerant A according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments Oa, ab, bc, and cO that connect the following 4 points:

    • point a (93.4, 0.0, 6.6),
    • point b (55.6, 26.6, 17.8),
    • point c (77.6, 22.4, 0.0), and
    • point O (100.0, 0.0, 0.0),


      or on the line segments Oa, ab, and bc (excluding the points O and c);


the line segment ab is represented by coordinates (0.0052y2−1.5588y+93.385, y, −0.0052y2+0.5588y+6.615),


the line segment be is represented by coordinates (−0.0032z2−1.1791z+77.593, 0.0032z2+0.1791z+22.407, z), and


the line segments cO and Oa are straight lines.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.


The refrigerant A according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,


coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments kb, bj, and jk that connect the following 3 points:

    • point k (72.5, 14.1, 13.4),
    • point b (55.6, 26.6, 17.8), and
    • point j (72.5, 23.2, 4.3),


      or on the line segments kb, bj, and jk;


the line segment kb is represented by coordinates (0.0052y2−1.5588y+93.385, y, and −0.0052y2+0.5588y+6.615),


the line segment bj is represented by coordinates (−0.0032z2−1.1791z+77.593, 0.0032z2+0.1791z+22.407, z), and


the line segment jk is a straight line.


When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A; furthermore, the refrigerant has a lower flammability (Class 2L) according to the ASHRAE Standard.


The refrigerant according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R1234yf, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.


The refrigerant according to the present disclosure may comprise HFO-1132(E), HFO-1123, and R1234yf in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.


Additional refrigerants are not particularly limited and can be widely selected. The mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.


Examples of Refrigerant A

The present disclosure is described in more detail below with reference to Examples of refrigerant A. However, refrigerant A is not limited to the Examples.


The GWP of R1234yf and a composition consisting of a mixed refrigerant R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in WO2015/141678). The refrigerating capacity of R410A and compositions each comprising a mixture of HFO-1132(E), HFO-1123, and R1234yf was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.


Further, the RCL of the mixture was calculated with the LFL of HFO-1132(E) being 4.7 vol. %, the LFL of FO-1123 being 10 vol. %, and the LFL of R1234yf being 6.2 vol. %, in accordance with the ASHRAE Standard 34-2013.


Evaporating temperature: 5° C.


Condensation temperature: 45° C.


Degree of superheating: 5K


Degree of subcooling: 5K


Compressor efficiency: 70


Tables to 34 show these values together with the GWP of each mixed refrigerant.

















TABLE 1








Comp.
Comp.

Example

Comp.




Comp.
Ex. 2
Ex. 3
Example
2
Example
Ex. 4


Item
Unit
Ex. 1
O
A
1
A′
3
B























HFO-1132(E)
mass %
R410A
100.0
68.6
49.0
30.6
14.1
0.0


HFO-1123
mass %

0.0
0.0
14.9
30.0
44.8
58.7


R1234yf
mass %

0.0
31.4
36.1
39.4
41.1
41.3


GWP

2088
1
2
2
2
2
2


COP ratio
% (relative
100
99.7
100.0
98.6
97.3
96.3
95.5



to 410A)









Refrigerating
% (relative
100
98.3
85.0
85.0
85.0
85.0
85.0


capacity ratio
to 410A)









Condensation
° C.
0.1
0.00
1.98
3.36
4.46
5.15
5.35


glide










Discharge
% (relative
100.0
99.3
87.1
88.9
90.6
92.1
93.2


pressure
to 410A)









RCL
g/m3

30.7
37.5
44.0
52.7
64.0
78.6

























TABLE 2







Comp.

Example

Comp.
Comp.
Example
Comp.




Ex. 5
Example
5
Example
Ex. 6
Ex. 7
7
Ex. 8


Item
Unit
C
4
C′
6
D
E
E′
F
























HFO-1132(E)
mass %
32.9
26.6
19.5
10.9
0.0
58.0
23.4
0.0


HFO-1123
mass %
67.1
68.4
70.5
74.1
80.4
42.0
48.5
61.8


R1234yf
mass %
0.0
5.0
10.0
15.0
19.6
0.0
28.1
38.2


GWP

1
1
1
1
2
1
2
2


COP ratio
% (relative
92.5
92.5
92.5
92.5
92.5
95.0
95.0
95.0



to 410A)










Refrigerating
% (relative
107.4
105.2
102.9
100.5
97.9
105.0
92.5
86.9


capacity ratio
to 410A)










Condensation
° C.
0.16
0.52
0.94
1.42
1.90
0.42
3.16
4.80


glide











Discharge
% (relative
119.5
117.4
115.3
113.0
115.9
112.7
101.0
95.8


pressure
to 410A)










RCL
g/m3
53.5
57.1
62.0
69.1
81.3
41.9
46.3
79.0























TABLE 3







Comp.
Example
Example
Example
Example
Example




Ex. 9
8
9
10
11
12


Item
Unit
J
P
L
N
N′
K






















HFO-1132(E)
mass %
47.1
55.8
63.1
68.6
65.0
61.3


HFO-1123
mass %
52.9
42.0
31.9
16.3
7.7
5.4


R1234yf
mass %
0.0
2.2
5.0
15.1
27.3
33.3


GWP

1
1
1
1
2
2


COP ratio
% (relative to
93.8
95.0
96.1
97.9
99.1
99.5



410A)








Refrigerating
% (relative to
106.2
104.1
101.6
95.0
88.2
85.0


capacity ratio
410A)








Condensation glide
° C.
0.31
0.57
0.81
1.41
2.11
2.51


Discharge pressure
% (relative to
115.8
111.9
107.8
99.0
91.2
87.7



410A)








RCL
g/m3
46.2
42.6
40.0
38.0
38.7
39.7
























TABLE 4







Example
Example
Example
Example
Example
Example
Example




13
14
15
16
17
18
19


Item
Unit
L
M
Q
R
S
S′
T























HFO-1132(E)
mass %
63.1
60.3
62.8
49.8
62.6
50.0
35.8


HFO-1123
mass %
31.9
6.2
29.6
42.3
28.3
35.8
44.9


R1234yf
mass %
5.0
33.5
7.6
7.9
9.1
14.2
19.3


GWP

1
2
1
1
1
1
2


COP ratio
% (relative to
96.1
99.4
96.4
95.0
96.6
95.8
95.0



410A)









Refrigerating
% (relative to
101.6
85.0
100.2
101.7
99.4
98.1
96.7


capacity ratio
410A)









Condensation glide
° C.
0.81
2.58
1.00
1.00
1.10
1.55
2.07


Discharge pressure
% (relative to
107.8
87.9
106.0
109.6
105.0
105.0
105.0



410A)









RCL
g/m3
40.0
40.0
40.0
44.8
40.0
44.4
50.8




















TABLE 5







Comp.
Example
Example




Ex. 10
20
21


Item
Unit
G
H
I



















HFO-1132(E)
mass %
72.0
72.0
72.0


HFO-1123
mass %
28.0
14.0
0.0


R1234yf
mass %
0.0
14.0
28.0


GWP

1
1
2


COP ratio
% (relative
96.6
98.2
99.9



to 410A)


Refrigerating
% (relative
103.1
95.1
86.6


capacity ratio
to 410A)


Condensation
° C.
0.46
1.27
1.71


glide


Discharge
% (relative
108.4
98.7
88.6


pressure
to 410A)


RCL
g/m3
37.4
37.0
36.6

























TABLE 6







Comp.
Comp.
Example
Example
Example
Example
Example
Comp.


Item
Unit
Ex. 11
Ex. 12
22
23
24
25
26
Ex. 13
























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


HFO-1123
mass %
85.0
75.0
65.0
55.0
45.0
35.0
25.0
15.0


R1234yf
mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


GWP

1
1
1
1
1
1
1
1


COP ratio
% (relative to
91.4
92.0
92.8
93.7
94.7
95.8
96.9
98.0



410A)










Refrigerating
% (relative to
105.7
105.5
105.0
104.3
103.3
102.0
100.6
99.1


capacity ratio
410A)










Condensation
° C.
0.40
0.46
0.55
0.66
0.75
0.80
0.79
0.67


glide











Discharge
% (relative to
120.1
118.7
116.7
114.3
111.6
108.7
105.6
102.5


pressure
410A)










RCL
g/m3
71.0
61.9
54.9
49.3
44.8
41.0
37.8
35.1

























TABLE 7







Comp.
Example
Example
Example
Example
Example
Example
Comp.


Item
Unit
Ex. 14
27
28
29
30
31
32
Ex. 15
























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


HFO-1123
mass %
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0


R1234yf
mass %
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0


GWP

1
1
1
1
1
1
1
1


COP ratio
% (relative to
91.9
92.5
93.3
94.3
95.3
96.4
97.5
98.6



410A)










Refrigerating
% (relative to
103.2
102.9
102.4
101.5
100.5
99.2
97.8
96.2


capacity ratio
410A)










Condensation
° C.
0.87
0.94
1.03
1.12
1.18
1.18
1.09
0.88


glide











Discharge
% (relative to
116.7
115.2
113.2
110.8
108.1
105.2
102.1
99.0


pressure
410A)










RCL
g/m3
70.5
61.6
54.6
49.1
44.6
40.8
37.7
35.0

























TABLE 8







Comp.
Example
Example
Example
Example
Example
Example
Comp.


Item
Unit
Ex. 16
33
34
35
36
37
38
Ex. 17
























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


HFO-1123
mass %
75.0
65.0
55.0
45.0
35.0
25.0
15.0
5.0


R1234yf
mass %
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


GWP

1
1
1
1
1
1
1
1


COP ratio
% (relative to
92.4
93.1
93.9
94.8
95.9
97.0
98.1
99.2



410A)










Refrigerating
% (relative to
100.5
100.2
99.6
98.7
97.7
96.4
94.9
93.2


capacity ratio
410A)










Condensation
° C.
1.41
1.49
1.56
1.62
1.63
1.55
1.37
1.05


glide











Discharge
% (relative to
113.1
111.6
109.6
107.2
104.5
101.6
98.6
95.5


pressure
410A)










RCL
g/m3
70.0
61.2
54.4
48.9
44.4
40.7
37.5
34.8
























TABLE 9







Example
Example
Example
Example
Example
Example
Example


Item
Unit
39
40
41
42
43
44
45























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0


HFO-1123
mass %
70.0
60.0
50.0
40.0
30.0
20.0
10.0


R1234yf
mass %
20.0
20.0
20.0
20.0
20.0
20.0
20.0


GWP

2
2
2
2
2
2
2


COP ratio
% (relative to
93.0
93.7
94.5
95.5
96.5
97.6
98.7



410A)









Refrigerating
% (relative to
97.7
97.4
96.8
95.9
94.7
93.4
91.9


capacity ratio
410A)









Condensation
° C.
2.03
2.09
2.13
2.14
2.07
1.91
1.61


glide










Discharge
% (relative to
109.4
107.9
105.9
103.5
100.8
98.0
95.0


pressure
410A)









RCL
g/m3
69.6
60.9
54.1
48.7
44.2
40.5
37.4
























TABLE 10







Example
Example
Example
Example
Example
Example
Example


Item
Unit
46
47
48
49
50
51
52























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0


HFO-1123
mass %
65.0
55.0
45.0
35.0
25.0
15.0
5.0


R1234yf
mass %
25.0
25.0
25.0
25.0
25.0
25.0
25.0


GWP

2
2
2
2
2
2
2


COP ratio
% (relative
93.6
94.3
95.2
96.1
97.2
98.2
99.3



to 410A)









Refrigerating
% (relative
94.8
94.5
93.8
92.9
91.8
90.4
88.8


capacity ratio
to 410A)









Condensation
° C.
2.71
2.74
2.73
2.66
2.50
2.22
1.78


glide










Discharge
% (relative
105.5
104.0
102.1
99.7
97.1
94.3
91.4


pressure
to 410A)









RCL
g/m3
69.1
60.5
53.8
48.4
44.0
40.4
37.3























TABLE 11







Example
Example
Example
Example
Example
Example


Item
Unit
53
54
55
56
57
58






















HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0


HFO-1123
mass %
60.0
50.0
40.0
30.0
20.0
10.0


R1234yf
mass %
30.0
30.0
30.0
30.0
30.0
30.0


GWP

2
2
2
2
2
2


COP ratio
% (relative to
94.3
95.0
95.9
96.8
97.8
98.9



410A)








Refrigerating
% (relative to
91.9
91.5
90.8
89.9
88.7
87.3


capacity ratio
410A)








Condensation glide
° C.
3.46
3.43
3.35
3.18
2.90
2.47


Discharge pressure
% (relative to
101.6
100.1
98.2
95.9
93.3
90.6



410A)








RCL
g/m3
68.7
60.2
53.5
48.2
43.9
40.2























TABLE 12







Example
Example
Example
Example
Example
Comp.


Item
Unit
59
60
61
62
63
Ex. 18






















HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0


HFO-1123
mass %
55.0
45.0
35.0
25.0
15.0
5.0


R1234yf
mass %
35.0
35.0
35.0
35.0
35.0
35.0


GWP

2
2
2
2
2
2


COP ratio
% (relative to
95.0
95.8
96.6
97.5
98.5
99.6



410A)








Refrigerating
% (relative to
88.9
88.5
87.8
86.8
85.6
84.1


capacity ratio
410A)








Condensation glide
° C.
4.24
4.15
3.96
3.67
3.24
2.64


Discharge pressure
% (relative to
97.6
96.1
94.2
92.0
89.5
86.8



410A)








RCL
g/m3
68.2
59.8
53.2
48.0
43.7
40.1






















TABLE 13









Comp. Ex.
Comp. Ex.
Comp. Ex.


Item
Unit
Example 64
Example 65
19
20
21





















HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0


HFO-1123
mass %
50.0
40.0
30.0
20.0
10.0


R1234yf
mass %
40.0
40.0
40.0
40.0
40.0


GWP

2
2
2
2
2


COP ratio
% (relative to
95.9
96.6
97.4
98.3
99.2



410A)







Refrigerating
% (relative to
85.8
85.4
84.7
83.6
82.4


capacity ratio
410A)







Condensation glide
° C.
5.05
4.85
4.55
4.10
3.50


Discharge pressure
% (relative to
93.5
92.1
90.3
88.1
85.6



410A)







RCL
g/m3
67.8
59.5
53.0
47.8
43.5

























TABLE 14







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
66
67
68
69
70
71
72
73
























HFO-1132(E)
mass %
54.0
56.0
58.0
62.0
52.0
54.0
56.0
58.0


HFO-1123
mass %
41.0
39.0
37.0
33.0
41.0
39.0
37.0
35.0


R1234yf
mass %
5.0
5.0
5.0
5.0
7.0
7.0
7.0
7.0


GWP

1
1
1
1
1
1
1
1


COP ratio
% (relative
95.1
95.3
95.6
96.0
95.1
95.4
95.6
95.8



to 410A)










Refrigerating
% (relative
102.8
102.6
102.3
101.8
101.9
101.7
101.5
101.2


capacity ratio
to 410A)










Condensation
° C.
0.78
0.79
0.80
0.81
0.93
0.94
0.95
0.95


glide











Discharge
% (relative
110.5
109.9
109.3
108.1
109.7
109.1
108.5
107.9


pressure
to 410A)










RCL
g/m3
43.2
42.4
41.7
40.3
43.9
43.1
42.4
41.6

























TABLE 15







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
74
75
76
77
78
79
80
81
























HFO-1132(E)
mass %
60.0
62.0
61.0
58.0
60.0
62.0
52.0
54.0


HFO-1123
mass %
33.0
31.0
29.0
30.0
28.0
26.0
34.0
32.0


R1234yf
mass %
7.0
7.0
10.0
12.0
12.0
12.0
14.0
14.0


GWP

1
1
1
1
1
1
1
1


COP ratio
% (relative
96.0
96.2
96.5
96.4
96.6
96.8
96.0
96.2



to 410A)










Refrigerating
% (relative
100.9
100.7
99.1
98.4
98.1
97.8
98.0
97.7


capacity ratio
to 410A)










Condensation
° C.
0.95
0.95
1.18
1.34
1.33
1.32
1.53
1.53


glide











Discharge
% (relative
107.3
106.7
104.9
104.4
103.8
103.2
104.7
104.1


pressure
to 410A)










RCL
g/m3
40.9
40.3
40.5
41.5
40.8
40.1
43.6
42.9

























TABLE 16







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
82
83
84
85
86
87
88
89
























HFO-1132(E)
mass %
56.0
58.0
60.0
48.0
50.0
52.0
54.0
56.0


HFO-1123
mass %
30.0
28.0
26.0
36.0
34.0
32.0
30.0
28.0


R1234yf
mass %
14.0
14.0
14.0
16.0
16.0
16.0
16.0
16.0


GWP

1
1
1
1
1
1
1
1


COP ratio
% (relative
96.4
96.6
96.9
95.8
96.0
96.2
96.4
96.7



to 410A)










Refrigerating
% (relative
97.5
97.2
96.9
97.3
97.1
96.8
96.6
96.3


capacity ratio
to 410A)










Condensation
° C.
1.51
1.50
1.48
1.72
1.72
1.71
1.69
1.67


glide











Discharge
% (relative
103.5
102.9
102.3
104.3
103.8
103.2
102.7
102.1


pressure
to 410A)










RCL
g/m3
42.1
41.4
40.7
45.2
44.4
43.6
42.8
42.1

























TABLE 17







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
90
91
92
93
94
95
96
97
























HFO-1132(E)
mass %
58.0
60.0
42.0
44.0
46.0
48.0
50.0
52.0


HFO-1123
mass %
26.0
24.0
40.0
38.0
36.0
34.0
32.0
30.0


R1234yf
mass %
16.0
16.0
18.0
18.0
18.0
18.0
18.0
18.0


GWP

1
1
2
2
2
2
2
2


COP ratio
% (relative
96.9
97.1
95.4
95.6
95.8
96.0
96.3
96.5



to 410A)










Refrigerating
% (relative
96.1
95.8
96.8
96.6
96.4
96.2
95.9
95.7


capacity ratio
to 410A)










Condensation
° C.
1.65
1.63
1.93
1.92
1.92
1.91
1.89
1.88


glide











Discharge
% (relative
101.5
100.9
104.5
103.9
103.4
102.9
102.3
101.8


pressure
to 410A)










RCL
g/m3
41.4
40.7
47.8
46.9
46.0
45.1
44.3
43.5

























TABLE 18







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
98
99
100
101
102
103
104
105
























HFO-1132(E)
mass %
54.0
56.0
58.0
60.0
36.0
38.0
42.0
44.0


HFO-1123
mass %
28.0
26.0
24.0
22.0
44.0
42.0
38.0
36.0


R1234yf
mass %
18.0
18.0
18.0
18.0
20.0
20.0
20.0
20.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.7
96.9
97.1
97.3
95.1
95.3
95.7
95.9



to 410A)










Refrigerating
% (relative
95.4
95.2
94.9
94.6
96.3
96.1
95.7
95.4


capacity ratio
to 410A)










Condensation
° C.
1.86
1.83
1.80
1.77
2.14
2.14
2.13
2.12


glide











Discharge
% (relative
101.2
100.6
100.0
99.5
104.5
104.0
103.0
102.5


pressure
to 410A)










RCL
g/m3
42.7
42.0
41.3
40.6
50.7
49.7
47.7
46.8

























TABLE 19







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
106
107
108
109
110
111
112
113
























HFO-1132(E)
mass %
46.0
48.0
52.0
54.0
56.0
58.0
34.0
36.0


HFO-1123
mass %
34.0
32.0
28.0
26.0
24.0
22.0
44.0
42.0


R1234yf
mass %
20.0
20.0
20.0
20.0
20.0
20.0
22.0
22.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.1
96.3
96.7
96.9
97.2
97.4
95.1
95.3



to 410A)










Refrigerating
% (relative
95.2
95.0
94.5
94.2
94.0
93.7
95.3
95.1


capacity ratio
to 410A)










Condensation
° C.
2.11
2.09
2.05
2.02
1.99
1.95
2.37
2.36


glide











Discharge
% (relative
101.9
101.4
100.3
99.7
99.2
98.6
103.4
103.0


pressure
to 410A)










RCL
g/m3
45.9
45.0
43.4
42.7
41.9
41.2
51.7
50.6

























TABLE 20







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
114
115
116
117
118
119
120
121
























HFO-1132(E)
mass %
38.0
40.0
42.0
44.0
46.0
48.0
50.0
52.0


HFO-1123
mass %
40.0
38.0
36.0
34.0
32.0
30.0
28.0
26.0


R1234yf
mass %
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
95.5
95.7
95.9
96.1
96.4
96.6
96.8
97.0



to 410A)










Refrigerating
% (relative
94.9
94.7
94.5
94.3
94.0
93.8
93.6
93.3


capacity ratio
to 410A)










Condensation
° C.
2.36
2.35
2.33
2.32
2.30
2.27
2.25
2.21


glide











Discharge
% (relative
102.5
102.0
101.5
101.0
100.4
99.9
99.4
98.8


pressure
to 410A)










RCL
g/m3
49.6
48.6
47.6
46.7
45.8
45.0
44.1
43.4

























TABLE 21







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
122
123
124
125
126
127
128
129
























HFO-1132(E)
mass %
54.0
56.0
58.0
60.0
32.0
34.0
36.0
38.0


HFO-1123
mass %
24.0
22.0
20.0
18.0
44.0
42.0
40.0
38.0


R1234yf
mass %
22.0
22.0
22.0
22.0
24.0
24.0
24.0
24.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
97.2
97.4
97.6
97.9
95.2
95.4
95.6
95.8



to 410A)










Refrigerating
% (relative
93.0
92.8
92.5
92.2
94.3
94.1
93.9
93.7


capacity ratio
to 410A)










Condensation
° C.
2.18
2.14
2.09
2.04
2.61
2.60
2.59
2.58


glide











Discharge
% (relative
98.2
97.7
97.1
96.5
102.4
101.9
101.5
101.0


pressure
to 410A)










RCL
g/m3
42.6
41.9
41.2
40.5
52.7
51.6
50.5
49.5

























TABLE 22







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
130
131
132
133
134
135
136
137
























HFO-1132(E)
mass %
40.0
42.0
44.0
46.0
48.0
50.0
52.0
54.0


HFO-1123
mass %
36.0
34.0
32.0
30.0
28.0
26.0
24.0
22.0


R1234yf
mass %
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.0
96.2
96.4
96.6
96.8
97.0
97.2
97.5



to 410A)










Refrigerating
% (relative
93.5
93.3
93.1
92.8
92.6
92.4
92.1
91.8


capacity ratio
to 410A)










Condensation
° C.
2.56
2.54
2.51
2.49
2.45
2.42
2.38
2.33


glide











Discharge
% (relative
100.5
100.0
99.5
98.9
98.4
97.9
97.3
96.8


pressure
to 410A)










RCL
g/m3
48.5
47.5
46.6
45.7
44.9
44.1
43.3
42.5

























TABLE 23







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
138
139
140
141
142
143
144
145
























HFO-1132(E)
mass %
56.0
58.0
60.0
30.0
32.0
34.0
36.0
38.0


HFO-1123
mass %
20.0
18.0
16.0
44.0
42.0
40.0
38.0
36.0


R1234yf
mass %
24.0
24.0
24.0
26.0
26.0
26.0
26.0
26.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
97.7
97.9
98.1
95.3
95.5
95.7
95.9
96.1



to 410A)










Refrigerating
% (relative
91.6
91.3
91.0
93.2
93.1
92.9
92.7
92.5


capacity ratio
to 410A)










Condensation
° C.
2.28
2.22
2.16
2.86
2.85
2.83
2.81
2.79


glide











Discharge
% (relative
96.2
95.6
95.1
101.3
100.8
100.4
99.9
99.4


pressure
to 410A)










RCL
g/m3
41.8
41.1
40.4
53.7
52.6
51.5
50.4
49.4

























TABLE 24







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
146
147
148
149
150
151
152
153
























HFO-1132(E)
mass %
40.0
42.0
44.0
46.0
48.0
50.0
52.0
54.0


HFO-1123
mass %
34.0
32.0
30.0
28.0
26.0
24.0
22.0
20.0


R1234yf
mass %
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.3
96.5
96.7
96.9
97.1
97.3
97.5
97.7



to 410A)










Refrigerating
% (relative
92.3
92.1
91.9
91.6
91.4
91.2
90.9
90.6


capacity ratio
to 410A)










Condensation
° C.
2.77
2.74
2.71
2.67
2.63
2.59
2.53
2.48


glide











Discharge
% (relative
99.0
98.5
97.9
97.4
96.9
96.4
95.8
95.3


pressure
to 410A)










RCL
g/m3
48.4
47.4
46.5
45.7
44.8
44.0
43.2
42.5

























TABLE 25







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
154
155
156
157
158
159
160
161
























HFO-1132(E)
mass %
56.0
58.0
60.0
30.0
32.0
34.0
36.0
38.0


HFO-1123
mass %
18.0
16.0
14.0
42.0
40.0
38.0
36.0
34.0


R1234yf
mass %
26.0
26.0
26.0
28.0
28.0
28.0
28.0
28.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
97.9
98.2
98.4
95.6
95.8
96.0
96.2
96.3



to 410A)










Refrigerating
% (relative
90.3
90.1
89.8
92.1
91.9
91.7
91.5
91.3


capacity ratio
to 410A)










Condensation
° C.
2.42
2.35
2.27
3.10
3.09
3.06
3.04
3.01


glide











Discharge
% (relative
94.7
94.1
93.6
99.7
99.3
98.8
98.4
97.9


pressure
to 410A)










RCL
g/m3
41.7
41.0
40.3
53.6
52.5
51.4
50.3
49.3

























TABLE 26







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
162
163
164
165
166
167
168
169
























HFO-1132(E)
mass %
40.0
42.0
44.0
46.0
48.0
50.0
52.0
54.0


HFO-1123
mass %
32.0
30.0
28.0
26.0
24.0
22.0
20.0
18.0


R1234yf
mass %
28.0
28.0
28.0
28.0
28.0
28.0
28.0
28.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.5
96.7
96.9
97.2
97.4
97.6
97.8
98.0



to 410A)










Refrigerating
% (relative
91.1
90.9
90.7
90.4
90.2
89.9
89.7
89.4


capacity ratio
to 410A)










Condensation
° C.
2.98
2.94
2.90
2.85
2.80
2.75
2.68
2.62


glide











Discharge
% (relative
97.4
96.9
96.4
95.9
95.4
94.9
94.3
93.8


pressure
to 410A)










RCL
g/m3
48.3
47.4
46.4
45.6
44.7
43.9
43.1
42.4

























TABLE 27







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
170
171
172
173
174
175
176
177
























HFO-1132(E)
mass %
56.0
58.0
60.0
32.0
34.0
36.0
38.0
42.0


HFO-1123
mass %
16.0
14.0
12.0
38.0
36.0
34.0
32.0
28.0


R1234yf
mass %
28.0
28.0
28.0
30.0
30.0
30.0
30.0
30.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
98.2
98.4
98.6
96.1
96.2
96.4
96.6
97.0



to 410A)










Refrigerating
% (relative
89.1
88.8
88.5
90.7
90.5
90.3
90.1
89.7


capacity ratio
to 410A)










Condensation
° C.
2.54
2.46
2.38
3.32
3.30
3.26
3.22
3.14


glide











Discharge
% (relative
93.2
92.6
92.1
97.7
97.3
96.8
96.4
95.4


pressure
to 410A)










RCL
g/m3
41.7
41.0
40.3
52.4
51.3
50.2
49.2
47.3

























TABLE 28







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
178
179
180
181
182
183
184
185
























HFO-1132(E)
mass %
44.0
46.0
48.0
50.0
52.0
54.0
56.0
58.0


HFO-1123
mass %
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0


R1234yf
mass %
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
97.2
97.4
97.6
97.8
98.0
98.3
98.5
98.7



to 410A)










Refrigerating
% (relative
89.4
89.2
89.0
88.7
88.4
88.2
87.9
87.6


capacity ratio
to 410A)










Condensation
° C.
3.08
3.03
2.97
2.90
2.83
2.75
2.66
2.57


glide











Discharge
% (relative
94.9
94.4
93.9
93.3
92.8
92.3
91.7
91.1


pressure
to 410A)










RCL
g/m3
46.4
45.5
44.7
43.9
43.1
42.3
41.6
40.9

























TABLE 29







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
186
187
188
189
190
191
192
193
























HFO-1132(E)
mass %
30.0
32.0
34.0
36.0
38.0
40.0
42.0
44.0


HFO-1123
mass %
38.0
36.0
34.0
32.0
30.0
28.0
26.0
24.0


R1234yf
mass %
32.0
32.0
32.0
32.0
32.0
32.0
32.0
32.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.2
96.3
96.5
96.7
96.9
97.1
97.3
97.5



to 410A)










Refrigerating
% (relative
89.6
89.5
89.3
89.1
88.9
88.7
88.4
88.2


capacity ratio
to 410A)










Condensation
° C.
3.60
3.56
3.52
3.48
3.43
3.38
3.33
3.26


glide











Discharge
% (relative
96.6
96.2
95.7
95.3
94.8
94.3
93.9
93.4


pressure
to 410A)










RCL
g/m3
53.4
52.3
51.2
50.1
49.1
48.1
47.2
46.3

























TABLE 30







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
194
195
196
197
198
199
200
201
























HFO-1132(E)
mass %
46.0
48.0
50.0
52.0
54.0
56.0
58.0
60.0


HFO-1123
mass %
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0


R1234yf
mass %
32.0
32.0
32.0
32.0
32.0
32.0
32.0
32.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
97.7
97.9
98.1
98.3
98.5
98.7
98.9
99.2



to 410A)










Refrigerating
% (relative
88.0
87.7
87.5
87.2
86.9
86.6
86.3
86.0


capacity ratio
to 410A)










Condensation
° C.
3.20
3.12
3.04
2.96
2.87
2.77
2.66
2.55


glide











Discharge
% (relative
92.8
92.3
91.8
91.3
90.7
90.2
89.6
89.1


pressure
to 410A)










RCL
g/m3
45.4
44.6
43.8
43.0
42.3
41.5
40.8
40.2

























TABLE 31







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
202
203
204
205
206
207
208
209
























HFO-1132(E)
mass %
30.0
32.0
34.0
36.0
38.0
40.0
42.0
44.0


HFO-1123
mass %
36.0
34.0
32.0
30.0
28.0
26.0
24.0
22.0


R1234yf
mass %
34.0
34.0
34.0
34.0
34.0
34.0
34.0
34.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
96.5
96.6
96.8
97.0
97.2
97.4
97.6
97.8



to 410A)










Refrigerating
% (relative
88.4
88.2
88.0
87.8
87.6
87.4
87.2
87.0


capacity ratio
to 410A)










Condensation
° C.
3.84
3.80
3.75
3.70
3.64
3.58
3.51
3.43


glide











Discharge
% (relative
95.0
94.6
94.2
93.7
93.3
92.8
92.3
91.8


pressure
to 410A)










RCL
g/m3
53.3
52.2
51.1
50.0
49.0
48.0
47.1
46.2

























TABLE 32







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
210
211
212
213
214
215
216
217
























HFO-1132(E)
mass %
46.0
48.0
50.0
52.0
54.0
30.0
32.0
34.0


HFO-1123
mass %
20.0
18.0
16.0
14.0
12.0
34.0
32.0
30.0


R1234yf
mass %
34.0
34.0
34.0
34.0
34.0
36.0
36.0
36.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
98.0
98.2
98.4
98.6
98.8
96.8
96.9
97.1



to 410A)










Refrigerating
% (relative
86.7
86.5
86.2
85.9
85.6
87.2
87.0
86.8


capacity ratio
to 410A)










Condensation
° C.
3.36
3.27
3.18
3.08
2.97
4.08
4.03
3.97


glide











Discharge
% (relative
91.3
90.8
90.3
89.7
89.2
93.4
93.0
92.6


pressure
to 410A)










RCL
g/m3
45.3
44.5
43.7
42.9
42.2
53.2
52.1
51.0

























TABLE 33







Example
Example
Example
Example
Example
Example
Example
Example


Item
Unit
218
219
220
221
222
223
224
225
























HFO-1132(E)
mass %
36.0
38.0
40.0
42.0
44.0
46.0
30.0
32.0


HFO-1123
mass %
28.0
26.0
24.0
22.0
20.0
18.0
32.0
30.0


R1234yf
mass %
36.0
36.0
36.0
36.0
36.0
36.0
38.0
38.0


GWP

2
2
2
2
2
2
2
2


COP ratio
% (relative
97.3
97.5
97.7
97.9
98.1
98.3
97.1
97.2



to 410A)










Refrigerating
% (relative
86.6
86.4
86.2
85.9
85.7
85.5
85.9
85.7


capacity ratio
to 410A)










Condensation
° C.
3.91
3.84
3.76
3.68
3.60
3.50
4.32
4.25


glide











Discharge
% (relative
92.1
91.7
91.2
90.7
90.3
89.8
91.9
91.4


pressure
to 410A)










RCL
g/m3
49.9
48.9
47.9
47.0
46.1
45.3
53.1
52.0



















TABLE 34





Item
Unit
Example 226
Example 227


















HFO-1132(E)
mass %
34.0
36.0


HFO-1123
mass %
28.0
26.0


R1234yf
mass %
38.0
38.0


GWP

2
2


COP ratio
% (relative
97.4
97.6



to 410A)


Refrigerating
% (relative
85.6
85.3


capacity ratio
to 410A)


Condensation glide
° C.
4.18
4.11


Discharge pressure
% (relative
91.0
90.6



to 410A)


RCL
g/m3
50.9
49.8









These results indicate that under the condition that the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AA′, A′B, BD, DC′, C′C, CO, and OA that connect the following 7 points:

    • point A (68.6, 0.0, 31.4),
    • point A′ (30.6, 30.0, 39.4),
    • point B (0.0, 58.7, 41.3),
    • point D (0.0, 80.4, 19.6),
    • point C′ (19.5, 70.5, 10.0),
    • point C (32.9, 67.1, 0.0), and
    • point O (100.0, 0.0, 0.0),


      or on the above line segments (excluding the points on the line segment CO);


      the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


      the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3,


      the line segment DC′ is represented by coordinates (x, 0.0082x2−0.6671x+80.4, −0.0082x2−0.3329x+19.6),


      the line segment C′C is represented by coordinates (x, 0.0067x2−0.6034x+79.729, −0.0067x2−0.3966x+20.271), and


      the line segments BD, CO, and OA are straight lines,


      the refrigerant has a refrigerating capacity ratio of 85% or more relative to that of R410A,


      and a COP of 92.5% or more relative to that of R410A.


The point on the line segment AA′ was determined by obtaining an approximate curve connecting point A, Example 1, and point A′ by the least square method.


The point on the line segment A′B was determined by obtaining an approximate curve connecting point A′, Example 3, and point B by the least square method.


The point on the line segment DC′ was determined by obtaining an approximate curve connecting point D, Example 6, and point C′ by the least square method.


The point on the line segment C′C was determined by obtaining an approximate curve connecting point C′, Example 4, and point C by the least square method.


Likewise, the results indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments AA′, A′B, BF, FT, TE, EO, and OA that connect the following 7 points:

    • point A (68.6, 0.0, 31.4),
    • point A′ (30.6, 30.0, 39.4),
    • point B (0.0, 58.7, 41.3),
    • point F (0.0, 61.8, 38.2),
    • point T (35.8, 44.9, 19.3),
    • point E (58.0, 42.0, 0.0) and
    • point O (100.0, 0.0, 0.0), or on the above line segments (excluding the points on the line EO);


      the line segment AA′ is represented by coordinates (x, 0.0016x2−0.9473x+57.497, −0.0016x2−0.0527x+42.503),


      the line segment A′B is represented by coordinates (x, 0.0029x2−1.0268x+58.7, −0.0029x2+0.0268x+41.3),


      the line segment FT is represented by coordinates (x, 0.0078x2−0.7501x+61.8, −0.0078x2−0.2499x+38.2), and


the line segment TE is represented by coordinates (x, 0.00672x2−0.7607x+63.525, −0.00672x2−0.2393x+36.475), and


the line segments BF, FO, and OA are straight lines,


the refrigerant has a refrigerating capacity ratio of 85% or more relative to that of R410A,


and a COP of 95% or more relative to that of R410A.


The point on the line segment FT was determined by obtaining an approximate curve connecting three points, i.e., points T, E′, and F, by the least square method.


The point on the line segment TE was determined by obtaining an approximate curve connecting three points, i.e., points E, R, and T, by the least square method.


The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which the sum of these components is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below the line segment LM connecting point L (63.1, 31.9, 5.0) and point M (60.3, 6.2, 33.5), the refrigerant has an RCL of 40 g/m3 or more.


The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123 and R1234yf in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on the line segment QR connecting point Q (62.8, 29.6, 7.6) and point R (49.8, 42.3, 7.9) or on the left side of the line segment, the refrigerant has a temperature glide of 1° C. or less.


The results in Tables 1 to 34 clearly indicate that in a ternary composition diagram of the mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on the line segment ST connecting point S (62.6, 28.3, 9.1) and point T (35.8, 44.9, 19.3) or on the right side of the line segment, the refrigerant has a discharge pressure of 105% or less relative to that of 410A.


In these compositions, R1234yf contributes to reducing flammability, and suppressing deterioration of polymerization etc. Therefore, the composition preferably contains R1234yf.


Further, the burning velocity of these mixed refrigerants whose mixed formulations were adjusted to WCF concentrations was measured according to the ANSI/ASHRAE Standard 34-2013. Compositions having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”


A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. In FIG. 1, reference numeral 901 refers to a sample cell, 902 refers to a high-speed camera, 903 refers to a xenon lamp, 904 refers to a collimating lens, 905 refers to a collimating lens, and 906 refers to a ring filter. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.


Each WCFF concentration was obtained by using the WCF concentration as the initial concentration and performing a leak simulation using NIST Standard Reference Database REFLEAK Version 4.0.


Tables 35 and 36 show the results.













TABLE 35





Item
Unit
G
H
I




















WCF
HFO-1132(E)
mass %
72.0
72.0
72.0



HFO-1123
mass %
28.0
9.6
0.0



R1234yf
mass %
0.0
18.4
28.0











Burning velocity (WCF)
cm/s
10
10
10























TABLE 36





Item
Unit
J
P
L
N
N'
K























WCF
HFO-1132
mass %
47.1
55.8
63.1
68.6
65.0
61.3



(E)










HFO-1123
mass %
52.9
42.0
31.9
16.3
 7.7
 5.4



R1234yf
mass %
 0.0
 2.2
 5.0
15.1
27.3
33.3













Leak condition
Storage/
Storage/
Storage/
Storage/
Storage/
Storage/


that results in WCFF
Shipping
Shipping
Shipping
Shipping
Shipping
Shipping,



−40° C., 92%
−40° C., 90%
−40° C., 90%
−40° C., 66%
−40° C., 12%
−40° C., 0%



release,
release,
release,
release,
release,
release,



liquid
liquid
gas phase
gas phase
gas phase
gas phase



phase side
phase side
side
side
side
side















WCFF
HFO-1132
mass %
72.0
72.0
72.0
72.0
72.0
72.0



(E)










HFO-1123
mass %
28.0
17.8
17.4
13.6
12.3
 9.8



R1234yf
mass %
 0.0
10.2
10.6
14.4
15.7
18.2














Burning
cm/s
8 or less
8 or less
8 or less
 9
 9
8 or less


velocity (WCF)









Burning
cm/s
10
10
10
10
10
10


velocity (WCFF)









The results in Table 35 clearly indicate that when a mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf contains HFO-1132(E) in a proportion of 72.0 mass % or less based on their sum, the refrigerant can be determined to have a WCF lower flammability.


The results in Tables 36 clearly indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R1234yf in which their sum is 100 mass %, and a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, when coordinates (x,y,z) are on or below the line segments JP, PN, and NK connecting the following 6 points:

    • point J (47.1, 52.9, 0.0),
    • point P (55.8, 42.0, 2.2),
    • point L (63.1, 31.9, 5.0)
    • point N (68.6, 16.3, 15.1)
    • point N′ (65.0, 7.7, 27.3) and
    • point K (61.3, 5.4, 33.3),


      the refrigerant can be determined to have a WCF lower flammability, and a WCFF lower flammability.


      In the diagram, the line segment PN is represented by coordinates (x, −0.1135x2+12.112x−280.43, 0.1135x2−13.112x+380.43),


      and the line segment NK is represented by coordinates (x, 0.2421x2−29.955x+931.91, −0.2421x2+28.955x−831.91).


The point on the line segment PN was determined by obtaining an approximate curve connecting three points, i.e., points P, L, and N, by the least square method.


The point on the line segment NK was determined by obtaining an approximate curve connecting three points, i.e., points N, N′, and K, by the least square method.


(5-2) Refrigerant B

The refrigerant B according to the present disclosure is


a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)) and trifluoroethylene (HFO-1123) in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 62.0 mass % to 72.0 mass % or 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant, or


a mixed refrigerant comprising HFO-1132(E) and HFO-1123 in a total amount of 99.5 mass % or more based on the entire refrigerant, and the refrigerant comprising 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire refrigerant.


The refrigerant B according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., (1) a coefficient of performance equivalent to that of R410A, (2) a refrigerating capacity equivalent to that of R410A, (3) a sufficiently low GWP, and (4) a lower flammability (Class 2L) according to the ASHRAE standard.


When the refrigerant B according to the present disclosure is a mixed refrigerant comprising 72.0 mass % or less of HFO-1132(E), it has WCF lower flammability. When the refrigerant B according to the present disclosure is a composition comprising 47.1% or less of HFO-1132(E), it has WCF lower flammability and WCFF lower flammability, and is determined to be “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard, and which is further easier to handle.


When the refrigerant B according to the present disclosure comprises 62.0 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 95% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved. When the refrigerant B according to the present disclosure comprises 45.1 mass % or more of HFO-1132(E), it becomes superior with a coefficient of performance of 93% or more relative to that of R410A, the polymerization reaction of HFO-1132(E) and/or HFO-1123 is further suppressed, and the stability is further improved.


The refrigerant B according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E) and HFO-1123, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E) and HFO-1123 in a total amount of 99.75 mass % or more, and more preferably 99.9 mass % or more, based on the entire refrigerant.


Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.


Examples of Refrigerant B

The present disclosure is described in more detail below with reference to Examples of refrigerant B. However, the refrigerant B is not limited to the Examples.


Mixed refrigerants were prepared by mixing HFO-1132(E) and HFO-1123 at mass % based on their sum shown in Tables 37 and 38.


The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in WO2015/141678). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.


Evaporating temperature: 5° C.


Condensation temperature: 45° C.


Superheating temperature: 5 K


Subcooling temperature: 5 K


Compressor efficiency: 70%


The composition of each mixture was defined as WCF. A leak simulation was performed using NIST Standard Reference Data Base Refleak Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.


Tables 1 and 2 show GWP, COP, and refrigerating capacity, which were calculated based on these results. The COP and refrigerating capacity are ratios relative to R410A.


The coefficient of performance (COP) was determined by the following formula.

COP=(refrigerating capacity or heating capacity)/power consumption


For the flammability, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be “Class 2L (lower flammability).”


A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.



















TABLE 37







Comparative
Comparative











Example 1
Example 2
Comparative
Example
Example
Example
Example
Example
Comparative


Item
Unit
R410A
HFO-1132E
Example 3
1
2
3
4
5
Example 4

























HFO-1132E
mass %

100
80
72
70
68
65
62
60


(WCF)












HFO-1123
mass %

0
20
28
30
32
35
38
40


(WCF)












GWP

2088
1
1
1
1
1
1
1
1


COP ratio
%
100
99.7
97.5
96.6
96.3
96.1
95.8
95.4
95.2



(relative












to R410A)











Refrigerating
%
100
98.3
101.9
103.1
103.4
103.8
104.1
104.5
104.8


capacity
(relative











ratio
to R410A)











Discharge
Mpa
2.73
2.71
2.89
2.96
2.98
3.00
3.02
3.04
3.06


pressure












Burning
cm/sec
Non-
20
13
10
9
9
8
8 or less
8 or less


velocity

flammable










(WCF)




































TABLE 38















Comparative




Comparative
Comparative
Example
Example
Example
Comparative
Comparative
Comparative
Example 10


Item
Unit
Example 5
Example 6
7
8
9
Example 7
Example 8
Example 9
HFO-1123

























HFO-1132E
mass %
50
48
47.1
46.1
45.1
43
40
25
0


(WCF)












HFO-1123
mass %
50
52
52.9
53.9
54.9
57
60
75
100


(WCF)












GWP

1
1
1
1
1
1
1
1
1


COP ratio
%
94.1
93.9
93.8
93.7
93.6
93.4
93.1
91.9
90.6



(relative












to












R410A)











Refrigerating
%
105.9
106.1
106.2
106.3
106.4
106.6
106.9
107.9
108.0


capacity
(relative











ratio
to












R410A)











Discharge
Mpa
3.14
3.16
3.16
3.17
3.18
3.20
3.21
3.31
3.39


pressure


























Leakage test
Storage/
Storage/
Storage/
Storage/
Storage/
Storage/
Storage/
Storage/



conditions (WCFF)
Shipping
Shipping
Shipping
Shipping
Shipping
Shipping
Shipping
Shipping




















−40° C.,
−40° C.,
−40° C.,
−40° C.,
−40° C.,
−40° C.,
−40° C.,
−40° C.,





92%
92%
92%
92%
92%
92%
92%
90%





release,
release,
release,
release,
release,
release,
release,
release,





liquid
liquid
liquid
liquid
liquid
liquid
liquid
liquid





phase
phase
phase
phase
phase
phase
phase
phase





side
side
side
side
side
side
side
side



HFO-1132E
mass %
74
73
72
71
70
67
63
38



(WCFF)












HFO-1123
mass %
26
27
28
29
30
33
37
62



(WCFF)












Burning
cm/sec
8 or less
8 or less
8 or less
8 or less
8 or less
8 or less
8 or less
8 or less
5


velocity












(WCF)












Burning
cm/sec
11
10.5
10.0
9.5
9.5
8.5
8 or less
8 or less



velocity












(WCFF)


























ASHRAE flammability
2
2
2 L
2 L
2 L
2 L
2 L
2 L
2 L


classification


















The compositions each comprising 62.0 mass % to 72.0 mass % of HFO-1132(E) based on the entire composition are stable while having a low GWP (GWP=1), and they ensure WCF lower flammability. Further, surprisingly, they can ensure performance equivalent to that of R410A. Moreover, compositions each comprising 45.1 mass % to 47.1 mass % of HFO-1132(E) based on the entire composition are stable while having a low GWP (GWP=1), and they ensure WCFF lower flammability. Further, surprisingly, they can ensure performance equivalent to that of R410A.


(5-3) Refrigerant C

The refrigerant C according to the present disclosure is a composition comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), 2,3,3,3-tetrafluoro-1-propene (R1234yf), and difluoromethane (R32), and satisfies the following requirements. The refrigerant C according to the present disclosure has various properties that are desirable as an alternative refrigerant for R410A; i.e. it has a coefficient of performance and a refrigerating capacity that are equivalent to those of R410A, and a sufficiently low GWP.


Requirements


Preferable refrigerant C is as follows:


When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,


if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % are within the range of a figure surrounded by straight lines GI, IA, AB, BD′, D′C, and CG that connect the following 6 points:

    • point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0),
    • point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0),
    • point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4),
    • point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
    • point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
    • point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),


      or on the straight lines GI, AB, and D′C (excluding point G, point I, point A, point B, point D′, and point C);


if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:

    • point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0),
    • point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895),
    • point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516),
    • point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801) and
    • point W (0.0, 100.0−a, 0.0),


      or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);


if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:

    • point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0),
    • point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273),
    • point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695),
    • point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682) and
    • point W (0.0, 100.0−a, 0.0),


      or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W);


if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:

    • point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0),
    • point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014),
    • point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
    • point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714) and
    • point W (0.0, 100.0−a, 0.0),


      or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W); and


if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines GI, IA, AB, BW, and WG that connect the following 5 points:

    • point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0),
    • point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098),
    • point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
    • point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05) and
    • point W (0.0, 100.0−a, 0.0),


      or on the straight lines GI and AB (excluding point G, point I, point A, point B, and point W). When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A, and further ensures a WCF lower flammability.


The refrigerant C according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R1234yf based on their sum is respectively represented by x, y, and z,


if 0<a≤11.1, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % are within the range of a figure surrounded by straight lines JK′, K′B, BD′, D′C, and CJ that connect the following 5 points:

    • point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0),
    • point K′ (0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4),
    • point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3),
    • point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6), and
    • point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0),


      or on the straight lines JK′, K′B, and D′C (excluding point J, point B, point D′, and point C);


if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:

    • point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0),
    • point K′ (0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636, −0.0105a2+0.8577a+33.177),
    • point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801) and
    • point W (0.0, 100.0−a, 0.0),


      or on the straight lines JK′ and K′B (excluding point J, point B, and point W);


if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′B, BW, and WJ that connect the following 4 points:

    • point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0),
    • point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783),
    • point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682) and
    • point W (0.0, 100.0−a, 0.0),


      or on the straight lines JK′ and K′B (excluding point J, point B, and point W);


if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:

    • point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0),
    • point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05),
    • point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207),
    • point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714) and
    • point W (0.0, 100.0−a, 0.0),


      or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W); and


if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines JK′, K′A, AB, BW, and WJ that connect the following 5 points:

    • point J (−0.0134a2+1.0956a+7.13, 0.0134a2−2.0956a+92.87, 0.0),
    • point K′ (−0.1892a+29.443, 0.0, −0.8108a+70.557),
    • point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9),
    • point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05) and
    • point W (0.0, 100.0−a, 0.0),


      or on the straight lines JK′, K′A, and AB (excluding point J, point B, and point W). When the refrigerant according to the present disclosure satisfies the above requirements, it has a refrigerating capacity ratio of 85% or more relative to that of R410A, and a COP ratio of 92.5% or more relative to that of R410A. Additionally, the refrigerant has a WCF lower flammability and a WCFF lower flammability, and is classified as “Class 2L,” which is a lower flammable refrigerant according to the ASHRAE standard.


When the refrigerant C according to the present disclosure further contains R32 in addition to HFO-1132 (E), HFO-1123, and R1234yf, the refrigerant may be a refrigerant wherein when the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a,


if 0<a≤10.0, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % are within the range of a figure surrounded by straight lines that connect the following 4 points:

    • point a (0.02a2−2.46a+93.4, 0, −0.02a2+2.46a+6.6),
    • point b′ (−0.008a2−1.38a+56, 0.018a2−0.53a+26.3, −0.01a2+1.91a+17.7),
    • point c (−0.016a2+1.02a+77.6, 0.016a2−1.02a+22.4, 0), and
    • point o (100.0−a, 0.0, 0.0)


      or on the straight lines oa, ab′, and b′c (excluding point o and point c);


if 10.0<a≤16.5, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines that connect the following 4 points:

    • point a (0.0244a2−2.5695a+94.056, 0, −0.0244a2+2.5695a+5.944),
    • point b′ (0.1161a2−1.9959a+59.749, 0.014a2−0.3399a+24.8, −0.1301a2+2.3358a+15.451),
    • point c (−0.0161a2+1.02a+77.6, 0.0161a2−1.02a+22.4, 0), and
    • point o (100.0−a, 0.0, 0.0),


      or on the straight lines oa, ab′, and b′c (excluding point o and point c); or


if 16.5<a≤21.8, coordinates (x,y,z) in the ternary composition diagram are within the range of a figure surrounded by straight lines that connect the following 4 points:

    • point a (0.0161a2−2.3535a+92.742, 0, −0.0161a2+2.3535a+7.258),
    • point b′ (−0.0435a2−0.0435a+50.406, 0.0304a2+1.8991a−0.0661, 0.0739a2−1.8556a+49.6601),
    • point c (−0.0161a2+0.9959a+77.851, 0.0161a2−0.9959a+22.149, 0), and
    • point o (100.0−a, 0.0, 0.0),


      or on the straight lines oa, ab′, and b′c (excluding point o and point c). Note that when point b in the ternary composition diagram is defined as a point where a refrigerating capacity ratio of 95% relative to that of R410A and a COP ratio of 95% relative to that of R410A are both achieved, point b′ is the intersection of straight line ab and an approximate line formed by connecting the points where the COP ratio relative to that of R410A is 95%. When the refrigerant according to the present disclosure meets the above requirements, the refrigerant has a refrigerating capacity ratio of 95% or more relative to that of R410A, and a COP ratio of 95% or more relative to that of R410A.


The refrigerant C according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, R1234yf, and R32 as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more, based on the entire refrigerant.


The refrigerant C according to the present disclosure may comprise HFO-1132(E), HFO-1123, R1234yf, and R32 in a total amount of 99.5 mass % or more, 99.75 mass % or more, or 99.9 mass % or more, based on the entire refrigerant.


Additional refrigerants are not particularly limited and can be widely selected. The mixed refrigerant may contain one additional refrigerant, or two or more additional refrigerants.


Examples of Refrigerant C

The present disclosure is described in more detail below with reference to Examples of refrigerant C. However, the refrigerant C is not limited to the Examples.


Mixed refrigerants were prepared by mixing HFO-1132(E), HFO-1123, R1234yf, and R32 at mass % based on their sum shown in Tables 39 to 96.


The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in WO2015/141678). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.


For each of these mixed refrigerants, the COP ratio and the refrigerating capacity ratio relative to those of R410 were obtained. Calculation was conducted under the following conditions.


Evaporating temperature: 5° C.


Condensation temperature: 45° C.


Superheating temperature: 5 K


Subcooling temperature: 5 K


Compressor efficiency: 70%


Tables 39 to 96 show the resulting values together with the GWP of each mixed refrigerant. The COP and refrigerating capacity are ratios relative to R410A.


The coefficient of performance (COP) was determined by the following formula.

COP=(refrigerating capacity or heating capacity)/power consumption



















TABLE 39








Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.





Comp.
Ex. 2
Ex. 3
Ex. 4
Ex. 5
Ex. 6
Ex. 7
Ex. 8
Ex. 1


Item
Unit
Ex. 1
A
B
C
D′
G
I
J
K′

























HFO-1132(E)
Mass %
R410A
68.6
0.0
32.9
0.0
72.0
72.0
47.1
61.7


HFO-1123
Mass %

0.0
58.7
67.1
75.4
28.0
0.0
52.9
5.9


R1234yf
Mass %

31.4
41.3
0.0
24.6
0.0
28.0
0.0
32.4


R32
Mass %

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0


GWP

2088
2
2
1
2
1
2
1
2


COP ratio
% (relative
100
100.0
95.5
92.5
93.1
96.6
99.9
93.8
99.4



to R410A)











Refrigerating
% (relative
100
85.0
85.0
107.4
95.0
103.1
86.6
106.2
85.5


capacity ratio
to R410A)


































TABLE 40







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.





Ex. 9
Ex. 10
Ex. 11
Ex. 12
Ex. 13
Ex. 14
Ex. 15
Ex. 2


Item
Unit
A
B
C
D′
G
I
J
K′
























HFO-1132
Mass %
55.3
0.0
18.4
0.0
60.9
60.9
40.5
47.0


(E)











HFO-1123
Mass %
0.0
47.8
74.5
83.4
32.0
0.0
52.4
7.2


R1234yf
Mass %
37.6
45.1
0.0
9.5
0.0
32.0
0.0
38.7


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

50
50
49
49
49
50
49
50


COP ratio
%
99.8
96.9
92.5
92.5
95.9
99.6
94.0
99.2



(relative











to











R410A)










Refrigerating
%
85.0
85.0
110.5
106.0
106.5
87.7
108.9
85.5


capacity ratio
(relative











to











R410A)
























TABLE 41







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.





Ex. 16
Ex. 17
Ex. 18
Ex. 19
Ex. 20
Ex. 21
Ex. 3


Item
Unit
A
B
C = D′
G
I
J
K′























HFO-1132(E)
Mass %
48.4
0.0
0.0
55.8
55.8
37.0
41.0


HFO-1123
Mass %
0.0
42.3
88.9
33.1
0.0
51.9
6.5


R1234yf
Mass %
40.5
46.6
0.0
0.0
33.1
0.0
41.4


R32
Mass %
11.1
11.1
11.1
11.1
11.1
11.1
11.1


GWP

77
77
76
76
77
76
77


COP ratio
%
99.8
97.6
92.5
95.8
99.5
94.2
99.3



(relative










to R410A)









Refrigerating
%
85.0
85.0
112.0
108.0
88.6
110.2
85.4


capacity ratio
(relative










to R410A)























TABLE 42







Comp.
Comp.
Comp.
Comp.
Comp.





Ex. 22
Ex. 23
Ex. 24
Ex. 25
Ex. 26
Ex. 4


Item
Unit
A
B
G
I
J
K′






















HFO-1132(E)
Mass %
42.8
0.0
52.1
52.1
34.3
36.5


HFO-1123
Mass %
0.0
37.8
33.4
0.0
51.2
5.6


R1234yf
Mass %
42.7
47.7
0.0
33.4
0.0
43.4


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5


GWP

100
100
99
100
99
100


COP ratio
% (relative to R410A)
99.9
98.1
95.8
99.5
94.4
99.5


Refrigerating
% (relative to R410A)
85.0
85.0
109.1
89.6
111.1
85.3


capacity ratio






























TABLE 43







Comp.
Comp.
Comp.
Comp.
Comp.





Ex. 27
Ex. 28
Ex. 29
Ex. 30
Ex. 31
Ex. 5


Item
Unit
A
B
G
I
J
K′






















HFO-1132(E)
Mass %
37.0
0.0
48.6
48.6
32.0
32.5


HFO-1123
Mass %
0.0
33.1
33.2
0.0
49.8
4.0


R1234yf
Mass %
44.8
48.7
0.0
33.2
0.0
45.3


R32
Mass %
18.2
18.2
18.2
18.2
18.2
18.2


GWP

125
125
124
125
124
125


COP ratio
% (relative to R410A)
100.0
98.6
95.9
99.4
94.7
99.8


Refrigerating
% (relative to R410A)
85.0
85.0
110.1
90.8
111.9
85.2


capacity ratio






























TABLE 44







Comp.
Comp.
Comp.
Comp.
Comp.





Ex. 32
Ex. 33
Ex. 34
Ex. 35
Ex. 36
Ex. 6


Item
Unit
A
B
G
I
J
K′






















HFO-1132(E)
Mass %
31.5
0.0
45.4
45.4
30.3
28.8


HFO-1123
Mass %
0.0
28.5
32.7
0.0
47.8
2.4


R1234yf
Mass %
46.6
49.6
0.0
32.7
0.0
46.9


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9


GWP

150
150
149
150
149
150


COP ratio
% (relative to R410A)
100.2
99.1
96.0
99.4
95.1
100.0


Refrigerating
% (relative to R410A)
85.0
85.0
111.0
92.1
112.6
85.1


capacity ratio






























TABLE 45







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.




Ex. 37
Ex. 38
Ex. 39
Ex. 40
Ex. 41
Ex. 42


Item
Unit
A
B
G
I
J
K′






















HFO-1132(E)
Mass %
24.8
0.0
41.8
41.8
29.1
24.8


HFO-1123
Mass %
0.0
22.9
31.5
0.0
44.2
0.0


R1234yf
Mass %
48.5
50.4
0.0
31.5
0.0
48.5


R32
Mass %
26.7
26.7
26.7
26.7
26.7
26.7


GWP

182
182
181
182
181
182


COP ratio
% (relative to R410A)
100.4
99.8
96.3
99.4
95.6
100.4


Refrigerating
% (relative to R410A)
85.0
85.0
111.9
93.8
113.2
85.0


capacity ratio






























TABLE 46







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.




Ex. 43
Ex. 44
Ex. 45
Ex. 46
Ex. 47
Ex. 48


Item
Unit
A
B
G
I
J
K′






















HFO-1132(E)
Mass %
21.3
0.0
40.0
40.0
28.8
24.3


HFO-1123
Mass %
0.0
19.9
30.7
0.0
41.9
0.0


R1234yf
Mass %
49.4
50.8
0.0
30.7
0.0
46.4


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3


GWP

200
200
198
199
198
200


COP ratio
% (relative to R410A)
100.6
100.1
96.6
99.5
96.1
100.4


Refrigerating
% (relative to R410A)
85.0
85.0
112.4
94.8
113.6
86.7


capacity ratio






























TABLE 47







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.




Ex. 49
Ex. 50
Ex. 51
Ex. 52
Ex. 53
Ex. 54


Item
Unit
A
B
G
I
J
K′






















HFO-1132(E)
Mass %
12.1
0.0
35.7
35.7
29.3
22.5


HFO-1123
Mass %
0.0
11.7
27.6
0.0
34.0
0.0


R1234yf
Mass %
51.2
51.6
0.0
27.6
0.0
40.8


R32
Mass %
36.7
36.7
36.7
36.7
36.7
36.7


GWP

250
250
248
249
248
250


COP ratio
%(relative to R410A)
101.2
101.0
96.4
99.6
97.0
100.4


Refrigerating
% (relative to R410A)
85.0
85.0
113.2
97.6
113.9
90.9


capacity ratio






























TABLE 48







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.




Ex. 55
Ex. 56
Ex. 57
Ex. 58
Ex. 59
Ex. 60


Item
Unit
A
B
G
I
J
K′






















HFO-1132(E)
Mass %
3.8
0.0
32.0
32.0
29.4
21.1


HFO-1123
Mass %
0.0
3.9
23.9
0.0
26.5
0.0


R1234yf
Mass %
52.1
52.0
0.0
23.9
0.0
34.8


R32
Mass %
44.1
44.1
44.1
44.1
44.1
44.1


GWP

300
300
298
299
298
299


COP ratio
% (relative to R410A)
101.8
101.8
97.9
99.8
97.8
100.5


Refrigerating
% (relative to R410A)
85.0
85.0
113.7
100.4
113.9
94.9


capacity ratio





























TABLE 49







Comp.
Comp.
Comp.
Comp.
Comp.




Ex. 61
Ex. 62
Ex. 63
Ex. 64
Ex. 65


Item
Unit
A = B
G
I
J
K′





















HFO-1132(E)
Mass %
0.0
30.4
30.4
28.9
20.4


HFO-1123
Mass %
0.0
21.8
0.0
23.3
0.0


R1234yf
Mass %
52.2
0.0
21.8
0.0
31.8


R32
Mass %
47.8
47.8
47.8
47.8
47.8


GWP

325
323
324
323
324


COP ratio
% (relative
102.1
98.2
100.0
98.2
100.6



to R410A)







Refrigerating
% (relative
85.0
113.8
101.8
113.9
96.8


capacity ratio
to R410A)






























TABLE 50







Comp.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
Ex. 66
7
8
9
10
11
12
13
























HFO-1132(E)
Mass %
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0


HFO-1123
Mass %
82.9
77.9
72.9
67.9
62.9
57.9
52.9
47.9


R1234yf
Mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
49
49
49
49
49
49
49


COP ratio
% (relative to
92.4
92.6
92.8
93.1
93.4
93.7
94.1
94.5



R410A)










Refrigerating
% (relative to
108.4
108.3
108.2
107.9
107.6
107.2
106.8
106.3


capacity ratio
R410A)

































TABLE 51







Ex.
Ex.
Ex.
Ex.
Comp.
Ex.
Ex.
Ex.


Item
Unit
14
15
16
17
Ex. 67
18
19
20
























HFO-1132(E)
Mass %
45.0
50.0
55.0
60.0
65.0
10.0
15.0
20.0


HFO-1123
Mass %
42.9
37.9
32.9
27.9
22.9
72.9
67.9
62.9


R1234yf
Mass %
5.0
5.0
5.0
5.0
5.0
10.0
10.0
10.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
49
49
49
49
49
49
49


COP ratio
% (relative to
95.0
95.4
95.9
96.4
96.9
93.0
93.3
93.6



R410A)










Refrigerating
% (relative to
105.8
105.2
104.5
103.9
103.1
105.7
105.5
105.2


capacity ratio
R410A)

































TABLE 52





Item
Unit
Ex. 21
Ex. 22
Ex. 23
Ex. 24
Ex. 25
Ex. 26
Ex. 27
Ex. 28
























HFO-1132(E)
Mass %
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0


HFO-1123
Mass %
57.9
52.9
47.9
42.9
37.9
32.9
27.9
22.9


R1234yf
Mass %
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
49
49
49
49
49
49
49


COP ratio
% (relative to
93.9
94.2
94.6
95.0
95.5
96.0
96.4
96.9



R410A)










Refrigerating
% (relative to
104.9
104.5
104.1
103.6
103.0
102.4
101.7
101.0


capacity
R410A)










ratio

























TABLE 53







Comp.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
Ex. 68
29
30
31
32
33
34
35
























HFO-1132(E)
Mass %
65.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0


HFO-1123
Mass %
17.9
67.9
62.9
57.9
52.9
47.9
42.9
37.9


R1234yf
Mass %
10.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
49
49
49
49
49
49
49


COP ratio
% (relative to
97.4
93.5
93.8
94.1
94.4
94.8
95.2
95.6



R410A)










Refrigerating
% (relative to
100.3
102.9
102.7
102.5
102.1
101.7
101.2
100.7


capacity
R410A)










ratio

























TABLE 54







Ex.
Ex.
Ex.
Ex.
Comp.
Ex.
Ex.
Ex.


Item
Unit
36
37
38
39
Ex. 69
40
41
42
























HFO-1132(E)
Mass %
45.0
50.0
55.0
60.0
65.0
10.0
15.0
20.0


HFO-1123
Mass %
32.9
27.9
22.9
17.9
12.9
62.9
57.9
52.9


R1234yf
Mass %
15.0
15.0
15.0
15.0
15.0
20.0
20.0
20.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
49
49
49
49
49
49
49


COP ratio
% (relative to
96.0
96.5
97.0
97.5
98.0
94.0
94.3
94.6



R410A)










Refrigerating
% (relative to
100.1
99.5
98.9
98.1
97.4
100.1
99.9
99.6


capacity
R410A)










ratio

























TABLE 55





Item
Unit
Ex. 43
Ex. 44
Ex. 45
Ex. 46
Ex. 47
Ex. 48
Ex. 49
Ex. 50
























HFO-1132(E)
Mass %
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0


HFO-1123
Mass %
47.9
42.9
37.9
32.9
27.9
22.9
17.9
12.9


R1234yf
Mass %
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
49
49
49
49
49
49
49


COP ratio
% (relative to
95.0
95.3
95.7
96.2
96.6
97.1
97.6
98.1



R410A)










Refrigerating
% (relative to
99.2
98.8
98.3
97.8
97.2
96.6
95.9
95.2


capacity
R410A)










ratio

























TABLE 56







Comp.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
Ex. 70
51
52
53
54
55
56
57
























HFO-1132(E)
Mass %
65.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0


HFO-1123
Mass %
7.9
57.9
52.9
47.9
42.9
37.9
32.9
27.9


R1234yf
Mass %
20.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

49
50
50
50
50
50
50
50


COP ratio
% (relative to
98.6
94.6
94.9
95.2
95.5
95.9
96.3
96.8



R410A)










Refrigerating
% (relative to
94.4
97.1
96.9
96.7
96.3
95.9
95.4
94.8


capacity
R410A)










ratio

























TABLE 57







Ex.
Ex.
Ex.
Ex.
Comp.
Ex.
Ex.
Ex.


Item
Unit
58
59
60
61
Ex. 71
62
63
64
























HFO-1132(E)
Mass %
45.0
50.0
55.0
60.0
65.0
10.0
15.0
20.0


HFO-1123
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


R1234yf
Mass %
25.0
25.0
25.0
25.0
25.0
30.0
30.0
30.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

50
50
50
50
50
50
50
50


COP ratio
% (relative to
97.2
97.7
98.2
98.7
99.2
95.2
95.5
95.8



R410A)










Refrigerating
% (relative to
94.2
93.6
92.9
92.2
91.4
94.2
93.9
93.7


capacity
R410A)










ratio

























TABLE 58





Item
Unit
Ex. 65
Ex. 66
Ex. 67
Ex. 68
Ex. 69
Ex. 70
Ex. 71
Ex. 72
























HFO-1132(E)
Mass %
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0


HFO-1123
Mass %
37.9
32.9
27.9
22.9
17.9
12.9
7.9
2.9


R1234yf
Mass %
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

50
50
50
50
50
50
50
50


COP ratio
% (relative to
96.2
96.6
97.0
97.4
97.9
98.3
98.8
99.3



R410A)










Refrigerating
% (relative to
93.3
92.9
92.4
91.8
91.2
90.5
89.8
89.1


capacity
R410A)










ratio

























TABLE 59





Item
Unit
Ex. 73
Ex. 74
Ex. 75
Ex. 76
Ex. 77
Ex. 78
Ex. 79
Ex. 80
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
47.9
42.9
37.9
32.9
27.9
22.9
17.9
12.9


R1234yf
Mass %
35.0
35.0
35.0
35.0
35.0
35.0
35.0
35.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

50
50
50
50
50
50
50
50


COP ratio
% (relative to
95.9
96.2
96.5
96.9
97.2
97.7
98.1
98.5



R410A)










Refrigerating
% (relative to
91.1
90.9
90.6
90.2
89.8
89.3
88.7
88.1


capacity
R410A)










ratio

























TABLE 60





Item
Unit
Ex. 81
Ex. 82
Ex. 83
Ex. 84
Ex. 85
Ex. 86
Ex. 87
Ex. 88
























HFO-1132(E)
Mass %
50.0
55.0
10.0
15.0
20.0
25.0
30.0
35.0


HFO-1123
Mass %
7.9
2.9
42.9
37.9
32.9
27.9
22.9
17.9


R1234yf
Mass %
35.0
35.0
40.0
40.0
40.0
40.0
40.0
40.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

50
50
50
50
50
50
50
50


COP ratio
% (relative to
99.0
99.4
96.6
96.9
97.2
97.6
98.0
98.4



R410A)










Refrigerating
% (relative
87.4
86.7
88.0
87.8
87.5
87.1
86.6
86.1


capacity
to R410A)










ratio

























TABLE 61







Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.
Comp.


Item
Unit
Ex. 72
Ex. 73
Ex. 74
Ex. 75
Ex. 76
Ex. 77
Ex. 78
Ex. 79
























HFO-1132(E)
Mass %
40.0
45.0
50.0
10.0
15.0
20.0
25.0
30.0


HFO-1123
Mass %
12.9
7.9
2.9
37.9
32.9
27.9
22.9
17.9


R1234yf
Mass %
40.0
40.0
40.0
45.0
45.0
45.0
45.0
45.0


R32
Mass %
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1


GWP

50
50
50
50
50
50
50
50


COP ratio
% (relative to
98.8
99.2
99.6
97.4
97.7
98.0
98.3
98.7



R410A)










Refrigerating
% (relative to
85.5
84.9
84.2
84.9
84.6
84.3
83.9
83.5


capacity
R410A)










ratio




















TABLE 62







Comp.
Comp.
Comp.


Item
Unit
Ex. 80
Ex. 81
Ex. 82



















HFO-1132(E)
Mass %
35.0
40.0
45.0


HFO-1123
Mass %
12.9
7.9
2.9


R1234yf
Mass %
45.0
45.0
45.0


R32
Mass %
7.1
7.1
7.1


GWP

50
50
50


COP ratio
% (relative
99.1
99.5
99.9



to R410A)


Refrigerating
% (relative
82.9
82.3
81.7


capacity ratio
to R410A)

























TABLE 63





Item
Unit
Ex. 89
Ex. 90
Ex. 91
Ex. 92
Ex. 93
Ex. 94
Ex. 95
Ex. 96
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
70.5
65.5
60.5
55.5
50.5
45.5
40.5
35.5


R1234yf
Mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
99
99
99
99
99
99


COP ratio
% (relative to
93.7
93.9
94.1
94.4
94.7
95.0
95.4
95.8



R410A)










Refrigerating
% (relative to
110.2
110.0
109.7
109.3
108.9
108.4
107.9
107.3


capacity
R410A)










ratio

























TABLE 64







Ex.
Comp.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
97
Ex. 83
98
99
100
101
102
103
























HFO-1132(E)
Mass %
50.0
55.0
10.0
15.0
20.0
25.0
30.0
35.0


HFO-1123
Mass %
30.5
25.5
65.5
60.5
55.5
50.5
45.5
40.5


R1234yf
Mass %
5.0
5.0
10.0
10.0
10.0
10.0
10.0
10.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
99
99
99
99
99
99


COP ratio
% (relative to
96.2
96.6
94.2
94.4
94.6
94.9
95.2
95.5



R410A)










Refrigerating
% (relative to
106.6
106.0
107.5
107.3
107.0
106.6
106.1
105.6


capacity
R410A)










ratio

























TABLE 65







Ex.
Ex.
Ex.
Comp.
Ex.
Ex.
Ex.
Ex.


Item
Unit
104
105
106
Ex. 84
107
108
109
110
























HFO-1132(E)
Mass %
40.0
45.0
50.0
55.0
10.0
15.0
20.0
25.0


HFO-1123
Mass %
35.5
30.5
25.5
20.5
60.5
55.5
50.5
45.5


R1234yf
Mass %
10.0
10.0
10.0
10.0
15.0
15.0
15.0
15.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
99
99
99
99
99
99


COP ratio
% (relative to
95.9
96.3
96.7
97.1
94.6
94.8
95.1
95.4



R410A)










Refrigerating
% (relative to
105.1
104.5
103.8
103.1
104.7
104.5
104.1
103.7


capacity
R410A)










ratio

























TABLE 66







Ex.
Ex.
Ex.
Ex.
Ex.
Comp.
Ex.
Ex.


Item
Unit
111
112
113
114
115
Ex. 85
116
117
























HFO-1132(E)
Mass %
30.0
35.0
40.0
45.0
50.0
55.0
10.0
15.0


HFO-1123
Mass %
40.5
35.5
30.5
25.5
20.5
15.5
55.5
50.5


R1234yf
Mass %
15.0
15.0
15.0
15.0
15.0
15.0
20.0
20.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
99
99
99
99
99
99


COP ratio
% (relative to
95.7
96.0
96.4
96.8
97.2
97.6
95.1
95.3



R410A)










Refrigerating
% (relative to
103.3
102.8
102.2
101.6
101.0
100.3
101.8
101.6


capacity
R410A)










ratio

























TABLE 67







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Comp.


Item
Unit
118
119
120
121
122
123
124
Ex. 86
























HFO-1132(E)
Mass %
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0


HFO-1123
Mass %
45.5
40.5
35.5
30.5
25.5
20.5
15.5
10.5


R1234yf
Mass %
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
99
99
99
99
99
99


COP ratio
% (relative to
95.6
95.9
96.2
96.5
96.9
97.3
97.7
98.2



R410A)










Refrigerating
% (relative to
101.2
100.8
100.4
99.9
99.3
98.7
98.0
97.3


capacity
R410A)










ratio

























TABLE 68







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
125
126
127
128
129
130
131
132
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
50.5
45.5
40.5
35.5
30.5
25.5
20.5
15.5


R1234yf
Mass %
25.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
99
99
99
99
99
99


COP ratio
% (relative to
95.6
95.9
96.1
96.4
96.7
97.1
97.5
97.9



R410A)










Refrigerating capacity
% (relative to
98.9
98.6
98.3
97.9
97.4
96.9
96.3
95.7


ratio
R410A)

























TABLE 69







Ex.
Comp. Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
133
87
134
135
136
137
138
139
























HFO-1132(E)
Mass %
50.0
55.0
10.0
15.0
20.0
25.0
30.0
35.0


HFO-1123
Mass %
10.5
5.5
45.5
40.5
35.5
30.5
25.5
20.5


R1234yf
Mass %
25.0
25.0
30.0
30.0
30.0
30.0
30.0
30.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

99
99
100
100
100
100
100
100


COP ratio
% (relative to
98.3
98.7
96.2
96.4
96.7
97.0
97.3
97.7



R410A)










Refrigerating capacity
% (relative to
95.0
94.3
95.8
95.6
95.2
94.8
94.4
93.8


ratio
R410A)

























TABLE 70







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
140
141
142
143
144
145
146
147
























HFO-1132(E)
Mass %
40.0
45.0
50.0
10.0
15.0
20.0
25.0
30.0


HFO-1123
Mass %
15.5
10.5
5.5
40.5
35.5
30.5
25.5
20.5


R1234yf
Mass %
30.0
30.0
30.0
35.0
35.0
35.0
35.0
35.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

100
100
100
100
100
100
100
100


COP ratio
% (relative to
98.1
98.5
98.9
96.8
97.0
97.3
97.6
97.9



R410A)










Refrigerating capacity
% (relative to
93.3
92.6
92.0
92.8
92.5
92.2
91.8
91.3


ratio
R410A)

























TABLE 71







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
148
149
150
151
152
153
154
155
























HFO-1132(E)
Mass %
35.0
40.0
45.0
10.0
15.0
20.0
25.0
30.0


HFO-1123
Mass %
15.5
10.5
5.5
35.5
30.5
25.5
20.5
15.5


R1234yf
Mass %
35.0
35.0
35.0
40.0
40.0
40.0
40.0
40.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

100
100
100
100
100
100
100
100


COP ratio
% (relative to
98.3
98.7
99.1
97.4
97.7
98.0
98.3
98.6



R410A)










Refrigerating capacity
% (relative to
90.8
90.2
89.6
89.6
89.4
89.0
88.6
88.2


ratio
R410A)

























TABLE 72







Ex.
Ex.
Ex.
Ex.
Ex.
Comp. Ex.
Comp. Ex.
Comp. Ex.


Item
Unit
156
157
158
159
160
88
89
90
























HFO-1132(E)
Mass %
35.0
40.0
10.0
15.0
20.0
25.0
30.0
35.0


HFO-1123
Mass %
10.5
5.5
30.5
25.5
20.5
15.5
10.5
5.5


R1234yf
Mass %
40.0
40.0
45.0
45.0
45.0
45.0
45.0
45.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5


GWP

100
100
100
100
100
100
100
100


COP ratio
% (relative to
98.9
99.3
98.1
98.4
98.7
98.9
99.3
99.6



R410A)










Refrigerating capacity
% (relative to
87.6
87.1
86.5
86.2
85.9
85.5
85.0
84.5


ratio
R410A)






















TABLE 73







Comp. Ex.
Comp. Ex.
Comp. Ex.
Comp. Ex.
Comp. Ex.


Item
Unit
91
92
93
94
95





















HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0


HFO-1123
Mass %
25.5
20.5
15.5
10.5
5.5


R1234yf
Mass %
50.0
50.0
50.0
50.0
50.0


R32
Mass %
14.5
14.5
14.5
14.5
14.5


GWP

100
100
100
100
100


COP ratio
% (relative to
98.9
99.1
99.4
99.7
100.0



R410A)







Refrigerating capacity
% (relative to
83.3
83.0
82.7
82.2
81.8


ratio
R410A)

























TABLE 74







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
161
162
163
164
165
166
167
168
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
63.1
58.1
53.1
48.1
43.1
38.1
33.1
28.1


R1234yf
Mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9


GWP

149
149
149
149
149
149
149
149


COP ratio
% (relative to
94.8
95.0
95.2
95.4
95.7
95.9
96.2
96.6



R410A)










Refrigerating capacity
% (relative to
111.5
111.2
110.9
110.5
110.0
109.5
108.9
108.3


ratio
R410A)

























TABLE 75







Comp. Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
96
169
170
171
172
173
174
175
























HFO-1132(E)
Mass %
50.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0


HFO-1123
Mass %
23.1
58.1
53.1
48.1
43.1
38.1
33.1
28.1


R1234yf
Mass %
5.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9


GWP

149
149
149
149
149
149
149
149


COP ratio
% (relative to
96.9
95.3
95.4
95.6
95.8
96.1
96.4
96.7



R410A)










Refrigerating capacity
% (relative to
107.7
108.7
108.5
108.1
107.7
107.2
106.7
106.1


ratio
R410A)

























TABLE 76







Ex.
Comp. Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
176
97
177
178
179
180
181
182
























HFO-1132(E)
Mass %
45.0
50.0
10.0
15.0
20.0
25.0
30.0
35.0


HFO-1123
Mass %
23.1
18.1
53.1
48.1
43.1
38.1
33.1
28.1


R1234yf
Mass %
10.0
10.0
15.0
15.0
15.0
15.0
15.0
15.0


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9


GWP

149
149
149
149
149
149
149
149


COP ratio
% (relative to
97.0
97.4
95.7
95.9
96.1
96.3
96.6
96.9



R410A)










Refrigerating capacity
% (relative to
105.5
104.9
105.9
105.6
105.3
104.8
104.4
103.8


ratio
R410A)

























TABLE 77







Ex.
Ex.
Comp. Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
183
184
98
185
186
187
188
189
























HFO-1132(E)
Mass %
40.0
45.0
50.0
10.0
15.0
20.0
25.0
30.0


HFO-1123
Mass %
23.1
18.1
13.1
48.1
43.1
38.1
33.1
28.1


R1234yf
Mass %
15.0
15.0
15.0
20.0
20.0
20.0
20.0
20.0


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9


GWP

149
149
149
149
149
149
149
149


COP ratio
% (relative to
97.2
97.5
97.9
96.1
96.3
96.5
96.8
97.1



R410A)










Refrigerating capacity
% (relative to
103.3
102.6
102.0
103.0
102.7
102.3
101.9
101.4


ratio
R410A)

























TABLE 78







Ex.
Ex.
Ex.
Comp. Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
190
191
192
99
193
194
195
196
























HFO-1132(E)
Mass %
35.0
40.0
45.0
50.0
10.0
15.0
20.0
25.0


HFO-1123
Mass %
23.1
18.1
13.1
8.1
43.1
38.1
33.1
28.1


R1234yf
Mass %
20.0
20.0
20.0
20.0
25.0
25.0
25.0
25.0


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9


GWP

149
149
149
149
149
149
149
149


COP ratio
% (relative to
97.4
97.7
98.0
98.4
96.6
96.8
97.0
97.3



R410A)










Refrigerating capacity
% (relative to
100.9
100.3
99.7
99.1
100.0
99.7
99.4
98.9


ratio
R410A)

























TABLE 79







Ex.
Ex.
Ex.
Ex.
Comp. Ex.
Ex.
Ex.
Ex.


Item
Unit
197
198
199
200
100
201
202
203
























HFO-1132(E)
Mass %
30.0
35.0
40.0
45.0
50.0
10.0
15.0
20.0


HFO-1123
Mass %
23.1
18.1
13.1
8.1
3.1
38.1
33.1
28.1


R1234yf
Mass %
25.0
25.0
25.0
25.0
25.0
30.0
30.0
30.0


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9


GWP

149
149
149
149
149
150
150
150


COP ratio
% (relative to
97.6
97.9
98.2
98.5
98.9
97.1
97.3
97.6



R410A)










Refrigerating capacity
% (relative to
98.5
97.9
97.4
96.8
96.1
97.0
96.7
96.3


ratio
R410A)

























TABLE 80







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
204
205
206
207
208
209
210
211
























HFO-1132(E)
Mass %
25.0
30.0
35.0
40.0
45.0
10.0
15.0
20.0


HFO-1123
Mass %
23.1
18.1
13.1
8.1
3.1
33.1
28.1
23.1


R1234yf
Mass %
30.0
30.0
30.0
30.0
30.0
35.0
35.0
35.0


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9


GWP

150
150
150
150
150
150
150
150


COP ratio
% (relative to
97.8
98.1
98.4
98.7
99.1
97.7
97.9
98.1



R410A)










Refrigerating capacity
% (relative to
95.9
95.4
94.9
94.4
93.8
93.9
93.6
93.3


ratio
R410A)

























TABLE 81







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
212
213
214
215
216
217
218
219
























HFO-1132(E)
Mass %
25.0
30.0
35.0
40.0
10.0
15.0
20.0
25.0


HFO-1123
Mass %
18.1
13.1
8.1
3.1
28.1
23.1
18.1
13.1


R1234yf
Mass %
35.0
35.0
35.0
35.0
40.0
40.0
40.0
40.0


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9


GWP

150
150
150
150
150
150
150
150


COP ratio
% (relative to
98.4
98.7
99.0
99.3
98.3
98.5
98.7
99.0



R410A)










Refrigerating capacity
% (relative to
92.9
92.4
91.9
91.3
90.8
90.5
90.2
89.7


ratio
R410A)

























TABLE 82







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Comp. Ex.


Item
Unit
220
221
222
223
224
225
226
101
























HFO-1132(E)
Mass %
30.0
35.0
10.0
15.0
20.0
25.0
30.0
10.0


HFO-1123
Mass %
8.1
3.1
23.1
18.1
13.1
8.1
3.1
18.1


R1234yf
Mass %
40.0
40.0
45.0
45.0
45.0
45.0
45.0
50.0


R32
Mass %
21.9
21.9
21.9
21.9
21.9
21.9
21.9
21.9


GWP

150
150
150
150
150
150
150
150


COP ratio
% (relative to
99.3
99.6
98.9
99.1
99.3
99.6
99.9
99.6



R410A)










Refrigerating capacity
% (relative to
89.3
88.8
87.6
87.3
87.0
86.6
86.2
84.4


ratio
R410A)




















TABLE 83







Comp.
Comp.
Comp.


Item
Unit
Ex. 102
Ex. 103
Ex. 104



















HFO-1132(E)
Mass %
15.0
20.0
25.0


HFO-1123
Mass %
13.1
8.1
3.1


R1234yf
Mass %
50.0
50.0
50.0


R32
Mass %
21.9
21.9
21.9


GWP

150
150
150


COP ratio
% (relative
99.8
100.0
100.2



to R410A)


Refrigerating
% (relative
84.1
83.8
83.4


capacity ratio
to R410A)

























TABLE 84







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Comp. Ex.


Item
Unit
227
228
229
230
231
232
233
105
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
55.7
50.7
45.7
40.7
35.7
30.7
25.7
20.7


R1234yf
Mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

199
199
199
199
199
199
199
199


COP ratio
% (relative to
95.9
96.0
96.2
96.3
96.6
96.8
97.1
97.3



R410A)










Refrigerating capacity
% (relative to
112.2
111.9
111.6
111.2
110.7
110.2
109.6
109.0


ratio
R410A)

























TABLE 85







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Comp. Ex.


Item
Unit
234
235
236
237
238
239
240
106
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
50.7
45.7
40.7
35.7
30.7
25.7
20.7
15.7


R1234yf
Mass %
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

199
199
199
199
199
199
199
199


COP ratio
% (relative to
96.3
96.4
96.6
96.8
97.0
97.2
97.5
97.8



R410A)










Refrigerating capacity
% (relative to
109.4
109.2
108.8
108.4
107.9
107.4
106.8
106.2


ratio
R410A)

























TABLE 86







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Comp. Ex.


Item
Unit
241
242
243
244
245
246
247
107
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
45.7
40.7
35.7
30.7
25.7
20.7
15.7
10.7


R1234yf
Mass %
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

199
199
199
199
199
199
199
199


COP ratio
% (relative to
96.7
96.8
97.0
97.2
97.4
97.7
97.9
98.2



R410A)










Refrigerating capacity
% (relative to
106.6
106.3
106.0
105.5
105.1
104.5
104.0
103.4


ratio
R410A)

























TABLE 87







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Comp. Ex.


Item
Unit
248
249
250
251
252
253
254
108
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0


HFO-1123
Mass %
40.7
35.7
30.7
25.7
20.7
15.7
10.7
5.7


R1234yf
Mass %
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

199
199
199
199
199
199
199
199


COP ratio
% (relative to
97.1
97.3
97.5
97.7
97.9
98.1
98.4
98.7



R410A)










Refrigerating capacity
% (relative to
103.7
103.4
103.0
102.6
102.2
101.6
101.1
100.5


ratio
R410A)

























TABLE 88







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
255
256
257
258
259
260
261
262
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
40.0
10.0


HFO-1123
Mass %
35.7
30.7
25.7
20.7
15.7
10.7
5.7
30.7


R1234yf
Mass %
25.0
25.0
25.0
25.0
25.0
25.0
25.0
30.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

199
199
199
199
199
199
199
199


COP ratio
% (relative to
97.6
97.7
97.9
98.1
98.4
98.6
98.9
98.1



R410A)










Refrigerating capacity
% (relative to
100.7
100.4
100.1
99.7
99.2
98.7
98.2
97.7


ratio
R410A)

























TABLE 89







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
263
264
265
266
267
268
269
270
























HFO-1132(E)
Mass %
15.0
20.0
25.0
30.0
35.0
10.0
15.0
20.0


HFO-1123
Mass %
25.7
20.7
15.7
10.7
5.7
25.7
20.7
15.7


R1234yf
Mass %
30.0
30.0
30.0
30.0
30.0
35.0
35.0
35.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

199
199
199
199
199
200
200
200


COP ratio
% (relative to
98.2
98.4
98.6
98.9
99.1
98.6
98.7
98.9



R410A)










Refrigerating capacity
% (relative to
97.4
97.1
96.7
96.2
95.7
94.7
94.4
94.0


ratio
R410A)

























TABLE 90







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
271
272
273
274
275
276
277
278
























HFO-1132(E)
Mass %
25.0
30.0
10.0
15.0
20.0
25.0
10.0
15.0


HFO-1123
Mass %
10.7
5.7
20.7
15.7
10.7
5.7
15.7
10.7


R1234yf
Mass %
35.0
35.0
40.0
40.0
40.0
40.0
45.0
45.0


R32
Mass %
29.3
29.3
29.3
29.3
29.3
29.3
29.3
29.3


GWP

200
200
200
200
200
200
200
200


COP ratio
% (relative to
99.2
99.4
99.1
99.3
99.5
99.7
99.7
99.8



R410A)










Refrigerating capacity
% (relative to
93.6
93.2
91.5
91.3
90.9
90.6
88.4
88.1


ratio
R410A)





















TABLE 91







Ex.
Ex.
Comp.
Comp.


Item
Unit
279
280
Ex. 109
Ex. 110




















HFO-1132(E)
Mass %
20.0
10.0
15.0
10.0


HFO-1123
Mass %
5.7
10.7
5.7
5.7


R1234yf
Mass %
45.0
50.0
50.0
55.0


R32
Mass %
29.3
29.3
29.3
29.3


GWP

200
200
200
200


COP ratio
% (relative
100.0
100.3
100.4
100.9



to R410A)


Refrigerating
% (relative
87.8
85.2
85.0
82.0


capacity ratio
to R410A)

























TABLE 92







Ex.
Ex.
Ex.
Ex.
Ex.
Comp. Ex.
Ex.
Ex.


Item
Unit
281
282
283
284
285
111
286
287
























HFO-1132(E)
Mass %
10.0
15.0
20.0
25.0
30.0
35.0
10.0
15.0


HFO-1123
Mass %
40.9
35.9
30.9
25.9
20.9
15.9
35.9
30.9


R1234yf
Mass %
5.0
5.0
5.0
5.0
5.0
5.0
10.0
10.0


R32
Mass %
44.1
44.1
44.1
44.1
44.1
44.1
44.1
44.1


GWP

298
298
298
298
298
298
299
299


COP ratio
% (relative to
97.8
97.9
97.9
98.1
98.2
98.4
98.2
98.2



R410A)










Refrigerating capacity
% (relative to
112.5
112.3
111.9
111.6
111.2
110.7
109.8
109.5


ratio
R410A)

























TABLE 93







Ex.
Ex.
Ex.
Comp. Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
288
289
290
112
291
292
293
294
























HFO-1132(E)
Mass %
20.0
25.0
30.0
35.0
10.0
15.0
20.0
25.0


HFO-1123
Mass %
25.9
20.9
15.9
10.9
30.9
25.9
20.9
15.9


R1234yf
Mass %
10.0
10.0
10.0
10.0
15.0
15.0
15.0
15.0


R32
Mass %
44.1
44.1
44.1
44.1
44.1
44.1
44.1
44.1


GWP

299
299
299
299
299
299
299
299


COP ratio
% (relative to
98.3
98.5
98.6
98.8
98.6
98.6
98.7
98.9



R410A)










Refrigerating capacity
% (relative to
109.2
108.8
108.4
108.0
107.0
106.7
106.4
106.0


ratio
R410A)

























TABLE 94







Ex.
Comp. Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
295
113
296
297
298
299
300
301
























HFO-1132(E)
Mass %
30.0
35.0
10.0
15.0
20.0
25.0
30.0
10.0


HFO-1123
Mass %
10.9
5.9
25.9
20.9
15.9
10.9
5.9
20.9


R1234yf
Mass %
15.0
15.0
20.0
20.0
20.0
20.0
20.0
25.0


R32
Mass %
44.1
44.1
44.1
44.1
44.1
44.1
44.1
44.1


GWP

299
299
299
299
299
299
299
299


COP ratio
% (relative to
99.0
99.2
99.0
99.0
99.2
99.3
99.4
99.4



R410A)










Refrigerating capacity
% (relative to
105.6
105.2
104.1
103.9
103.6
103.2
102.8
101.2


ratio
R410A)

























TABLE 95







Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.
Ex.


Item
Unit
302
303
304
305
306
307
308
309
























HFO-1132(E)
Mass %
15.0
20.0
25.0
10.0
15.0
20.0
10.0
15.0


HFO-1123
Mass %
15.9
10.9
5.9
15.9
10.9
5.9
10.9
5.9


R1234yf
Mass %
25.0
25.0
25.0
30.0
30.0
30.0
35.0
35.0


R32
Mass %
44.1
44.1
44.1
44.1
44.1
44.1
44.1
44.1


GWP

299
299
299
299
299
299
299
299


COP ratio
% (relative to
99.5
99.6
99.7
99.8
99.9
100.0
100.3
100.4



R410A)










Refrigerating capacity
% (relative to
101.0
100.7
100.3
98.3
98.0
97.8
95.3
95.1


ratio
R410A)




















TABLE 96







Item
Unit
Ex. 400




















HFO-1132(E)
Mass %
10.0



HFO-1123
Mass %
5.9



R1234yf
Mass %
40.0



R32
Mass %
44.1



GWP

299



COP ratio
% (relative
100.7




to R410A)



Refrigerating
% (relative
92.3



capacity ratio
to R410A)










The above results indicate that the refrigerating capacity ratio relative to R410A is 85% or more in the following cases:


When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass %, a straight line connecting a point (0.0, 100.0−a, 0.0) and a point (0.0, 0.0, 100.0−a) is the base, and the point (0.0, 100.0−a, 0.0) is on the left side, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0134a2−1.9681a+68.6, 0.0, −0.0134a2+0.9681a+31.4) and point B (0.0, 0.0144a2−1.6377a+58.7, −0.0144a2+0.6377a+41.3);


if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0112a2−1.9337a+68.484, 0.0, −0.0112a2+0.9337a+31.516) and point B (0.0, 0.0075a2−1.5156a+58.199, −0.0075a2+0.5156a+41.801);


if 18.2a<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0107a2−1.9142a+68.305, 0.0, −0.0107a2+0.9142a+31.695) and point B (0.0, 0.009a2−1.6045a+59.318, −0.009a2+0.6045a+40.682);


if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0103a2−1.9225a+68.793, 0.0, −0.0103a2+0.9225a+31.207) and point B (0.0, 0.0046a2−1.41a+57.286, −0.0046a2+0.41a+42.714); and


if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are on, or on the left side of, a straight line AB that connects point A (0.0085a2−1.8102a+67.1, 0.0, −0.0085a2+0.8102a+32.9) and point B (0.0, 0.0012a2−1.1659a+52.95, −0.0012a2+0.1659a+47.05).


Actual points having a refrigerating capacity ratio of 85% or more form a curved line that connects point A and point B in FIG. 3, and that extends toward the 1234yf side. Accordingly, when coordinates are on, or on the left side of, the straight line AB, the refrigerating capacity ratio relative to R410A is 85% or more.


Similarly, it was also found that in the ternary composition diagram, if 0<a≤11.1, when coordinates (x,y,z) are on, or on the left side of, a straight line D′C that connects point D′ (0.0, 0.0224a2+0.968a+75.4, −0.0224a2−1.968a+24.6) and point C (−0.2304a2−0.4062a+32.9, 0.2304a2−0.5938a+67.1, 0.0); or if 11.1<a≤46.7, when coordinates are in the entire region, the COP ratio relative to that of R410A is 92.5% or more.


In FIG. 3, the COP ratio of 92.5% or more forms a curved line CD. In FIG. 3, an approximate line formed by connecting three points: point C (32.9, 67.1, 0.0) and points (26.6, 68.4, 5) (19.5, 70.5, 10) where the COP ratio is 92.5% when the concentration of R1234yf is 5 mass % and 10 mass was obtained, and a straight line that connects point C and point D′ (0, 75.4, 24.6), which is the intersection of the approximate line and a point where the concentration of HFO-1132(E) is 0.0 mass % was defined as a line segment D′C. In FIG. 4, point D′ (0, 83.4, 9.5) was similarly obtained from an approximate curve formed by connecting point C (18.4, 74.5, 0) and points (13.9, 76.5, 2.5) (8.7, 79.2, 5) where the COP ratio is 92.5%, and a straight line that connects point C and point D′ was defined as the straight line D′C.


The composition of each mixture was defined as WCF. A leak simulation was performed using NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.


For the flammability, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. Both WCF and WCFF having a burning velocity of 10 cm/s or less were determined to be classified as “Class 2L (lower flammability).”


A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.


The results are shown in Tables 97 to 104.















TABLE 97






Comp. Ex.
Comp. Ex.
Comp. Ex.
Comp. Ex.
Comp. Ex.
Comp. Ex.


Item
6
13
19
24
29
34























WC
HFO-1132(E)
Mass
72.0
60.9
55.8
52.1
48.6
45.4


F

%









HFO-
Mass
28.0
32.0
33.1
33.4
33.2
32.7



1123
%









R1234yf
Mass
0.0
0.0
0.0
0
0
0




%









R32
Mass
0.0
7.1
11.1
14.5
18.2
21.9




%




















Burning
cm/s
10
10
10
10
10
10


velocity









(WCF)























TABLE 98








Comp.
Comp.
Comp.
Comp.
Comp.





Ex.
Ex.
Ex.
Ex.
Ex.


Item


39
45
51
57
62






















WCF
HFO-
Mass
41.8
40
35.7
32
30.4



1132(E)
%








HFO-
Mass
31.5
30.7
23.6
23.9
21.8



1123
%








R1234yf
Mass
0
0
0
0
0




%








R32
Mass
26.7
29.3
36.7
44.1
47.8




%


















Burning
cm/s
10
10
10
10
10


velocity








(WCF)
























TABLE 99










Comp. Ex.
Comp. Ex.
Comp. Ex.
Comp. Ex.
Comp. Ex.
Comp. Ex.













Item
7
14
20
25
30
35


















WC
HFO-1132(E)
Mass
72.0
60.9
55.8
52.1
48.6
45.4


F

%









HFO-1123
Mass
0.0
0.0
0.0
0
0
0




%









R1234yf
Mass
28.0
32.0
33.1
33.4
33.2
32.7




%









R32
Mass
0.0
7.1
11.1
14.5
18.2
21.9




%




















Burning velocity (WCF)
cm/s
10
10
10
10
10
10





















TABLE 100






Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 40
Ex. 46
Ex. 52
Ex. 58
Ex. 63






















WCF
HFO-
Mass
41.8
40
35.7
32
30.4



1132(E)
%








HFO-
Mass
0
0
0
0
0



1123
%








R1234yf
Mass
31.5
30.7
23.6
23.9
21.8




%








R32
Mass
26.7
29.3
36.7
44.1
47.8




%


















Burning
cm/s
10
10
10
10
10


velocity








(WCF)






















TABLE 101






Comp.
Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 8
Ex. 15
Ex. 21
Ex. 26
Ex. 31
Ex. 36























WCF
HFO-1132(E)
Mass %
47.1
40.5
37.0
34.3
32.0
30.3



HFO-1123
Mass %
52.9
52.4
51.9
51.2
49.8
47.8



R1234yf
Mass %
0.0
0.0
0.0
0.0
0.0
0.0



R32
Mass %
0.0
7.1
11.1
14.5
18.2
21.9













Leak condition
Storage/
Storage/
Storage/
Storage/
Storage/
Storage/


that results
Shipping
Shipping
Shipping
Shipping
Shipping
Shipping


in WCFF
−40° C.,
−40° C.,
−40° C.,
−40° C.,
−40° C.,
−40° C.,



92% release,
92% release,
92% release,
92% release,
92% release,
92% release,



liquid phase
liquid phase
liquid phase
liquid phase
liquid phase
liquid phase



side
side
side
side
side
side















WCFF
HFO-1132(E)
Mass %
72.0
62.4
56.2
50.6
45.1
40.0



HFO-1123
Mass %
28.0
31.6
33.0
33.4
32.5
30.5



R1234yf
Mass %
0.0
0.0
0.0
20.4
0.0
0.0



R32
Mass %
0.0
50.9
10.8
16.0
22.4
29.5














Burning velocity
cm/s
8 or less
8 or less
8 or less
8 or less
8 or less
8 or less


(WCF)









Burning velocity
cm/s
10
10
10
10
10
10


(WCFF)





















TABLE 102






Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 41
Ex. 47
Ex. 53
Ex. 59
Ex. 64






















WCF
HFO-1132(E)
Mass %
29.1
28.8
29.3
29.4
28.9



HFO-1123
Mass %
44.2
41.9
34.0
26.5
23.3



R1234yf
Mass %
0.0
0.0
0.0
0.0
0.0



R32
Mass %
26.7
29.3
36.7
44.1
47.8












Leak condition
Storage/
Storage/
Storage/
Storage/
Storage/


that results
Shipping
Shipping
Shipping
Shipping
Shipping


in WCFF
−40° C.,
−40° C.,
−40° C.,
−40° C.,
−40° C.,



92% release,
92% release,
92% release,
90% release,
86% release,



liquid phase
liquid phase
liquid phase
gas phase
gas phase



side
side
side
side
side














WCFF
HFO-1132(E)
Mass %
34.6
32.2
27.7
28.3
27.5



HFO-1123
Mass %
26.5
23.9
17.5
18.2
16.7



R1234yf
Mass %
0.0
0.0
0.0
0.0
0.0



R32
Mass %
38.9
43.9
54.8
53.5
55.8













Burning velocity
cm/s
8 or less
8 or less
8.3
9.3
9.6


(WCF)








Burning velocity
cm/s
10
10
10
10
10


(WCFF)






















TABLE 103






Comp.
Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 9
Ex. 16
Ex. 22
Ex. 27
Ex. 32
Ex. 37























WCF
HFO-1132(E)
Mass %
61.7
47.0
41.0
36.5
32.5
28.8



HFO-1123
Mass %
5.9
7.2
6.5
5.6
4.0
2.4



R1234yf
Mass %
32.4
38.7
41.4
43.4
45.3
46.9



R32
Mass %
0.0
7.1
11.1
14.5
18.2
21.9













Leak condition
Storage/
Storage/
Storage/
Storage/
Storage/
Storage/


that results
Shipping
Shipping
Shipping
Shipping
Shipping
Shipping


in WCFF
−40° C.,
−40° C.,
−40° C.,
−40° C.,
−40° C.,
−40° C.,



0% release,
0% release,
0% release,
92% release,
0% release,
0% release,



gas phase
gas phase
gas phase
liquid phase
gas phase
gas phase



side
side
side
side
side
side















WCFF
HFO-1132(E)
Mass %
72.0
56.2
50.4
46.0
42.4
39.1



HFO-1123
Mass %
10.5
12.6
11.4
10.1
7.4
4.4



R1234yf
Mass %
17.5
20.4
21.8
22.9
24.3
25.7



R32
Mass %
0.0
10.8
16.3
21.0
25.9
30.8














Burning velocity
cm/s
8 or less
8 or less
8 or less
8 or less
8 or less
8 or less


(WCF)









Burning velocity
cm/s
10
10
10
10
10
10


(WCFF)





















TABLE 104






Comp.
Comp.
Comp.
Comp.
Comp.


Item
Ex. 42
Ex. 48
Ex. 54
Ex. 60
Ex. 65






















WCF
HFO-1132(E)
Mass %
24.8
24.3
22.5
21.1
20.4



HFO-1123
Mass %
0.0
0.0
0.0
0.0
0.0



R1234yf
Mass %
48.5
46.4
40.8
34.8
31.8



R32
Mass %
26.7
29.3
36.7
44.1
47.8












Leak condition
Storage/
Storage/
Storage/
Storage/
Storage/


that results
Shipping
Shipping
Shipping
Shipping
Shipping


in WCFF
−40° C.,
−40° C.,
−40° C.,
−40° C.,
−40° C.,



0% release,
0% release,
0% release,
0% release,
0% release,



gas phase
gas phase
gas phase
gas phase
gas phase



side
side
side
side
side














WCFF
HFO-1132(E)
Mass %
35.3
34.3
31.3
29.1
28.1



HFO-1123
Mass %
0.0
0.0
0.0
0.0
0.0



R1234yf
Mass %
27.4
26.2
23.1
19.8
18.2



R32
Mass %
37.3
39.6
45.6
51.1
53.7













Burning velocity
cm/s
8 or less
8 or less
8 or less
8 or less
8 or less


(WCF)








Burning velocity
cm/s
10
10
10
10
10


(WCFF)









The results in Tables 97 to 100 indicate that the refrigerant has a WCF lower flammability in the following cases:


When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the mixed refrigerant of HFO-1132(E), HFO-1123, R1234yf, and R32 is respectively represented by x, y, z, and a, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % and a straight line connecting a point (0.0, 100.0-a, 0.0) and a point (0.0, 0.0, 100.0-a) is the base, if 0<a≤11.1, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.026a2−1.7478a+72.0, −0.026a2+0.7478a+28.0, 0.0) and point I (0.026a2−1.7478a+72.0, 0.0, −0.026a2+0.7478a+28.0);


if 11.1<a≤18.2, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.02a2−1.6013a+71.105, −0.02a2+0.6013a+28.895, 0.0) and point I (0.02a2−1.6013a+71.105, 0.0, −0.02a2+0.6013a+28.895); if 18.2<a≤26.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0135a2−1.4068a+69.727, −0.0135a2+0.4068a+30.273, 0.0) and point I (0.0135a2−1.4068a+69.727, 0.0, −0.0135a2+0.4068a+30.273); if 26.7<a≤36.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0111a2−1.3152a+68.986, −0.0111a2+0.3152a+31.014, 0.0) and point I (0.0111a2−1.3152a+68.986, 0.0, −0.0111a2+0.3152a+31.014); and if 36.7<a≤46.7, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line GI that connects point G (0.0061a2−0.9918a+63.902, −0.0061a2−0.0082a+36.098, 0.0) and point I (0.0061a2−0.9918a+63.902, 0.0, −0.0061a2−0.0082a+36.098).


Three points corresponding to point G (Table 105) and point I (Table 106) were individually obtained in each of the following five ranges by calculation, and their approximate expressions were obtained.












TABLE 105







Item
11.1 ≥ R32 > 0
18.2 ≥ R32 ≥ 11.1
26.7 ≥ R32 ≥ 18.2



















R32
0
7.1
11.1
11.1
14.5
18.2
18.2
21.9
26.7


HFO-1132(E)
72.0
60.9
55.8
55.8
52.1
48.6
48.6
45.4
41.8


HFO-1123
28.0
32.0
33.1
33.1
33.4
33.2
33.2
32.7
31.5


R1234yf
0
0
0
0
0
0
0
0
0










R32
a
a
a


HFO-1132(E)
0.026a2 − 1.7478a + 72.0
0.02a2 − 1.6013a + 71.105
0.0135a2 − 1.4068a + 69.727


Approximate





expression





HFO-1123
−0.026a2 + 0.7478a + 28.0
−0.02a2 + 0.6013a + 28.895
−0.0135a2 + 0.4068a + 30.273


Approximate





expression





R1234yf
0
0
0


Approximate





expression












Item
36.7 ≥ R32 ≥ 26.7
46.7 ≥ R32 ≥ 36.7
















R32
26.7
29.3
36.7
36.7
44.1
47.8


HFO-1132(E)
41.8
40.0
35.7
35.7
32.0
30.4


HFO-1123
31.5
30.7
27.6
27.6
23.9
21.8


R1234yf
0
0
0
0
0
0









R32
a
a


HFO-1132(E)
0.0111a2 − 1.3152a + 68.986
0.0061a2 − 0.9918a + 63.902


Approximate




expression




HFO-1123
−0.0111a2 + 0.3152a + 31.014
−0.0061a2 − 0.0082a + 36.098


Approximate




expression




R1234yf
0
0


Approximate




expression



















TABLE 106







Item
11.1 ≥ R32 > 0
18.2 ≥ R32 ≥ 11.1
26.7 ≥ R32 ≥ 18.2



















R32
0
7.1
11.1
11.1
14.5
18.2
18.2
21.9
26.7


HFO-1132(E)
72.0
60.9
55.8
55.8
52.1
48.6
48.6
45.4
41.8


HFO-1123
0
0
0
0
0
0
0
0
0


R1234yf
28.0
32.0
33.1
33.1
33.4
33.2
33.2
32.7
31.5










R32
a
a
a


HFO-1132(E)
0.026a2 − 1.7478a + 72.0
0.02a2 − 1.6013a + 71.105
0.0135a2 − 1.4068a + 69.727


Approximate





expression





HFO-1123
0
0
0


Approximate





expression





R1234yf
−0.026a2 + 0.7478a + 28.0
−0.02a2 + 0.6013a + 28.895
−0.0135a2 + 0.4068a + 30.273


Approximate





expression












Item
36.7 ≥ R32 ≥ 26.7
46.7 ≥ R32 ≥ 36.7
















R32
26.7
29.3
36.7
36.7
44.1
47.8


HFO-1132(E)
41.8
40.0
35.7
35.7
32.0
30.4


HFO-1123
0
0
0
0
0
0


R1234yf
31.5
30.7
23.6
23.6
23.5
21.8









R32
x
x


HFO-1132(E)
0.0111a2 − 1.3152a + 68.986
0.0061a2 − 0.9918a + 63.902


Approximate




expression




HFO-1123
0
0


Approximate




expression




R1234yf
−0.0111a2 + 0.3152a + 31.014
−0.0061a2 − 0.0082a + 36.098


Approximate




expression









The results in Tables 101 to 104 indicate that the refrigerant is determined to have a WCFF lower flammability, and the flammability classification according to the ASHRAE Standard is “2L (flammability)” in the following cases:


When the mass % of HFO-1132(E), HFO-1123, R1234yf, and R32 based on their sum in the mixed refrigerant of HFO-1132(E), HFO-1123, R1234yf, and R32 is respectively represented by x, y, z, and a, in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R1234yf is (100-a) mass % and a straight line connecting a point (0.0, 100.0-a, 0.0) and a point (0.0, 0.0, 100.0-a) is the base, if 0<a11.1, coordinates (x,y,z) in the ternary composition diagram are on or below a straight line JK′ that connects point J (0.0049a2−0.9645a+47.1, −0.0049a2−0.0355a+52.9, 0.0) and point K′(0.0514a2−2.4353a+61.7, −0.0323a2+0.4122a+5.9, −0.0191a2+1.0231a+32.4); if 11.1<a18.2, coordinates are on a straight line JK′ that connects point J (0.0243a2−1.4161a+49.725, −0.0243a2+0.4161a+50.275, 0.0) and point K′(0.0341a2−2.1977a+61.187, −0.0236a2+0.34a+5.636, −0.0105a2+0.8577a+33.177); if 18.2<a26.7, coordinates are on or below a straight line JK′ that connects point J (0.0246a2−1.4476a+50.184, −0.0246a2+0.4476a+49.816, 0.0) and point K′ (0.0196a2−1.7863a+58.515, −0.0079a2−0.1136a+8.702, −0.0117a2+0.8999a+32.783); if 26.7<a36.7, coordinates are on or below a straight line JK′ that connects point J (0.0183a2−1.1399a+46.493, −0.0183a2+0.1399a+53.507, 0.0) and point K′ (−0.0051a2+0.0929a+25.95, 0.0, 0.0051a2−1.0929a+74.05); and if 36.7<a46.7, coordinates are on or below a straight line JK′ that connects point J (−0.0134a2+1.0956a+7.13, 0.0134a2-2.0956a+92.87, 0.0) and point K′ 0.1892a+29.443, 0.0, −0.8108a+70.557).


Actual points having a WCFF lower flammability form a curved line that connects point J and point K′ (on the straight line AB) in FIG. 3 and extends toward the HFO-1132(E) side. Accordingly, when coordinates are on or below the straight line JK′, WCFF lower flammability is achieved.


Three points corresponding to point J (Table 107) and point K′ (Table 108) were individually obtained in each of the following five ranges by calculation, and their approximate expressions were obtained.












TABLE 107







Item
1.1 ≥ R32 > 0
18.2 ≥ R32 ≥ 11.1
26.7 ≥ R32 ≥ 18.2



















R32
0
7.1
11.1
11.1
14.5
18.2
18.2
21.9
26.7


HFO-1132(E)
47.1
40.5
37
37.0
34.3
32.0
32.0
30.3
29.1


HFO-1123
52.9
52.4
51.9
51.9
51.2
49.8
49.8
47.8
44.2


R1234yf
0
0
0
0
0
0
0
0
0










R32
a
a
a


HFO-1132(E)
0.0049a2 − 0.9645a + 47.1
0.0243a2 − 1.4161a + 49.725
0.0246a2 − 1.4476a + 50.184


Approximate





expression





HFO-1123
−0.0049a2 − 0.0355a + 52.9
−0.0243a2 + 0.4161a + 50.275
−0.0246a2 + 0.4476a + 49.816


Approximate





expression





R1234yf
0
0
0


Approximate





expression












Item
36.7 ≥ R32 ≥ 26.7
47.8 ≥ R32 ≥ 36.7
















R32
26.7
29.3
36.7
36.7
44.1
47.8


HFO-1132(E)
29.1
28.8
29.3
29.3
29.4
28.9


HFO-1123
44.2
41.9
34.0
34.0
26.5
23.3


R1234yf
0
0
0
0
0
0









R32
a
a


HFO-1132(E)
0.0183a2 − 1.1399a + 46.493
−0.0134a2 + 1.0956a + 7.13


Approximate




expression




HFO-1123
−0.0183a2 + 0.1399a + 53.507
0.0134a2 − 2.0956a + 92.87


Approximate




expression




R1234yf
0
0


Approximate




expression



















TABLE 108







Item
1.1 ≥ R32 > 0
18.2 ≥ R32 ≥ 11.1
26.7 ≥ R32 ≥ 18.2



















R32
0
7.1
11.1
11.1
14.5
18.2
18.2
21.9
26.7


HFO-1132(E)
61.7
47.0
41.0
41.0
36.5
32.5
32.5
28.8
24.8


HFO-1123
5.9
7.2
6.5
6.5
5.6
4.0
4.0
2.4
0


R1234yf
32.4
38.7
41.4
41.4
43.4
45.3
45.3
46.9
48.5










R32
x
x
x


HFO-1132(E)
0.0514a2 − 2.4353a + 61.7
0.0341a2 − 2.1977a + 61.187
0.0196a2 − 1.7863a + 58.515


Approximate





expression





HFO-1123
−0.0323a2 + 0.4122a + 5.9
−0.0236a2 + 0.34a + 5.636
−0.0079a2 − 0.1136a + 8.702


Approximate





expression





R1234yf
−0.0191a2 + 1.0231a + 32.4
−0.0105a2 + 0.8577a + 33.177
−0.01 17a2 + 0.8999a + 32.783


Approximate





expression












Item
36.7 ≥ R32 ≥ 26.7
46.7 ≥ R32 ≥ 36.7
















R32
26.7
29.3
36.7
36.7
44.1
47.8


HFO-1132(E)
24.8
24.3
22.5
22.5
21.1
20.4


HFO-1123
0
0
0
0
0
0


R1234yf
48.5
46.4
40.8
40.8
34.8
31.8









R32
x
x


HFO-1132(E)
−0.0051 a2 + 0.0929a + 25.95
−1.892a + 29.443


Approximate




expression




HFO-1123
0
0


Approximate




expression




R1234yf
0.0051a2 − 1.0929a + 74.05
0.892a + 70.557


Approximate




expression










FIGS. 3 to 13 show compositions whose R32 content a (mass %) is 0 mass %, 7.1 mass %, 11.1 mass %, 14.5 mass %, 18.2 mass %, 21.9 mass %, 26.7 mass %, 29.3 mass %, 36.7 mass %, 44.1 mass %, and 47.8 mass %, respectively.


Points A, B, C, and D′ were obtained in the following manner according to approximate calculation.


Point A is a point where the content of HFO-1123 is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved. Three points corresponding to point A were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 109).












TABLE 109







Item
11.1 ≥ R32 > 0
18.2 ≥ R32 ≥ 11.1
26.7 ≥ R32 ≥ 18.2



















R32
0
7.1
11.1
11.1
14.5
18.2
18.2
21.9
26.7


HFO-1132(E)
68.6
55.3
48.4
48.4
42.8
37
37
31.5
24.8


HFO-1123
0
0
0
0
0
0
0
0
0


R1234yf
31.4
37.6
40.5
40.5
42.7
44.8
44.8
46.6
48.5










R32
a
a
a


HFO-1132(E)
0.0134a2 − 1.9681a + 68.6
0.0112a2 − 1.9337a + 68.484
0.0107a2 − 1.9142a + 68.305


Approximate





expression





HFO-1123
0
0
0


Approximate





expression





R1234yf
−0.0134a2 + 0.9681a + 31.4
−0.0112a2 + 0.9337a + 31.516
−0.0107a2 + 0.9142a + 31.695


Approximate





expression












Item
36.7 ≥ R32 ≥ 26.7
46.7 ≥ R32 ≥ 36.7
















R32
26.7
29.3
36.7
36.7
44.1
47.8


HFO-1132(E)
24.8
21.3
12.1
12.1
3.8
0


HFO-1123
0
0
0
0
0
0


R1234yf
48.5
49.4
51.2
51.2
52.1
52.2









R32
a
a


HFO-1132(E)
0.0103a2 − 1.9225a + 68.793
0.0085a2 − 1.8102a + 67.1


Approximate




expression




HFO-1123
0
0


Approximate




expression




R1234yf
−0.0103a2 + 0.9225a + 31..207
−0.0085a2 + 0.8102a + 32.9


Approximate




expression









Point B is a point where the content of HFO-1132(E) is 0 mass %, and a refrigerating capacity ratio of 85% relative to that of R410A is achieved.


Three points corresponding to point B were obtained in each of the following five ranges by calculation, and their approximate expressions were obtained (Table 110).












TABLE 110







Item
11.1 ≥ R32 > 0
18.2 ≥ R32 ≥ 11.1
26.7 ≥ R32 ≥ 18.2



















R32
0
7.1
11.1
11.1
14.5
18.2
18.2
21.9
26.7


HFO-1132(E)
0
0
0
0
0
0
0
0
0


HFO-1123
58.7
47.8
42.3
42.3
37.8
33.1
33.1
28.5
22.9


R1234yf
41.3
45.1
46.6
46.6
47.7
48.7
48.7
49.6
50.4










R32
a
a
a


HFO-1132(E)
0
0
0


Approximate





expression





HFO-1123
0.0144a2 − 1.6377a + 58.7
0.0075a2 − 1.5156a + 58.199
0.009a2 − 1.6045a + 59.318


Approximate





expression





R1234yf
−0.0144a2 + 0.6377a + 41.3
−0.0075a2 + 0.5156a + 41.801
−0.009a2 + 0.6045a + 40.682


Approximate





expression












Item
36.7 ≥ R32 ≥ 26.7
46.7 ≥ R32 ≥ 36.7
















R32
26.7
29.3
36.7
36.7
44.1
47.8


HFO-1132(E)
0
0
0
0
0
0


HFO-1123
22.9
19.9
11.7
11.8
3.9
0


R1234yf
50.4
50.8
51.6
51.5
52.0
52.2









R32
a
a


HFO-1132(E)
0
0


Approximate




expression




HFO-1123
0.0046a2 − 1.41a + 57.286
0.0012a2 − 1.1659a + 52.95


Approximate




expression




R1234yf
−0.0046a2 + 0.41a + 42.714
−0.0012a2 + 0.1659a + 47.05


Approximate




expression









Point D′ is a point where the content of HFO-1132(E) is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.


Three points corresponding to point D′ were obtained in each of the following by calculation, and their approximate expressions were obtained (Table 111).












TABLE 111







Item
11.1 ≥ R32 > 0





















R32
0
7.1
11.1



HFO-1132(E)
0
0
0



HFO-1123
75.4
83.4
88.9



R1234yf
24.6
9.5
0










R32
a



HFO-1132(E)
0



Approximate



expression



HFO-1123
 0.0224a2 + 0.968a + 75.4



Approximate



expression



R1234yf
−0.0224a2 − 1.968a + 24.6



Approximate



expression










Point C is a point where the content of R1234yf is 0 mass %, and a COP ratio of 95.5% relative to that of R410A is achieved.


Three points corresponding to point C were obtained in each of the following by calculation, and their approximate expressions were obtained (Table 112).












TABLE 112







Item
11.1 ≥ R32 > 0





















R32
0
7.1
11.1



HFO-1132(E)
32.9
18.4
0



HFO-1123
67.1
74.5
88.9



R1234yf
0
0
0










R32
a



HFO-1132(E)
−0.2304a2 − 0.4062a + 32.9



Approximate



expression



HFO-1123
 0.2304a2 − 0.5938a + 67.1



Approximate



expression



R1234yf
0



Approximate



expression










(5-4) Refrigerant D

The refrigerant D according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).


The refrigerant D according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant; i.e., a refrigerating capacity equivalent to that of R410A, a sufficiently low GWP, and a lower flammability (Class 2L) according to the ASHRAE standard.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:

    • point I (72.0, 0.0, 28.0),
    • point J (48.5, 18.3, 33.2),
    • point N (27.7, 18.2, 54.1), and
    • point E (58.3, 0.0, 41.7),


      or on these line segments (excluding the points on the line segment EI);


the line segment IJ is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0);


the line segment NE is represented by coordinates (0.012y2−1.9003y+58.3, y, −0.012y2+0.9003y+41.7); and


the line segments JN and E are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:

    • point M (52.6, 0.0, 47.4),
    • point M′ (39.2, 5.0, 55.8),
    • point N (27.7, 18.2, 54.1),
    • point V (11.0, 18.1, 70.9), and
    • point G (39.6, 0.0, 60.4),


      or on these line segments (excluding the points on the line segment GM);


the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4);


the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02);


the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4); and


the line segments NV and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:

    • point O (22.6, 36.8, 40.6),
    • point N (27.7, 18.2, 54.1), and
    • point U (3.9, 36.7, 59.4),


      or on these line segments;


the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488);


the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); and


the line segment UO is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:

    • point Q (44.6, 23.0, 32.4),
    • point R (25.5, 36.8, 37.7),
    • point T (8.6, 51.6, 39.8),
    • point L (28.9, 51.7, 19.4), and
    • point K (35.6, 36.8, 27.6),


      or on these line segments;


the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235);


the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874);


the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512);


the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324); and


the line segment TL is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:

    • point P (20.5, 51.7, 27.8),
    • point S (21.9, 39.7, 38.4), and
    • point T (8.6, 51.6, 39.8),


      or on these line segments;


the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9);


the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874); and


the line segment TP is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ac, cf, fd, and da that connect the following 4 points:

    • point a (71.1, 0.0, 28.9),
    • point c (36.5, 18.2, 45.3),
    • point f (47.6, 18.3, 34.1), and
    • point d (72.0, 0.0, 28.0),


      or on these line segments;


the line segment ac is represented by coordinates (0.0181y2−2.2288y+71.096, y, −0.0181y2+1.2288y+28.904);


the line segment fd is represented by coordinates (0.02y2−1.7y+72, y, −0.02y2+0.7y+28); and


the line segments cf and da are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 125 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ab, be, ed, and da that connect the following 4 points:

    • point a (71.1, 0.0, 28.9),
    • point b (42.6, 14.5, 42.9),
    • point e (51.4, 14.6, 34.0), and
    • point d (72.0, 0.0, 28.0),


      or on these line segments;


the line segment ab is represented by coordinates (0.0181y2−2.2288y+71.096, y, −0.0181y2+1.2288y+28.904);


the line segment ed is represented by coordinates (0.02y−1.7y+72, y, −0.02y2+0.7y+28); and


the line segments be and da are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 85% or more relative to R410A, a GWP of 100 or less, and a lower flammability (Class 2L) according to the ASHRAE standard.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments gi, ij, and jg that connect the following 3 points:

    • point g (77.5, 6.9, 15.6),
    • point i (55.1, 18.3, 26.6), and
    • point j (77.5. 18.4, 4.1),


      or on these line segments;


the line segment gi is represented by coordinates (0.02y2−2.4583y+93.396, y, −0.02y2+1.4583y+6.604); and


the line segments ij and jg are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.


The refrigerant D according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments gh, hk, and kg that connect the following 3 points:

    • point g (77.5, 6.9, 15.6),
    • point h (61.8, 14.6, 23.6), and
    • point k (77.5, 14.6, 7.9),


      or on these line segments;


the line segment gh is represented by coordinates (0.02y2−2.4583y+93.396, y, −0.02y2+1.4583y+6.604); and


the line segments hk and kg are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a refrigerating capacity ratio of 95% or more relative to R410A and a GWP of 100 or less, undergoes fewer or no changes such as polymerization or decomposition, and also has excellent stability.


The refrigerant D according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), R32, and R1234yf, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), R32, and R1234yf in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and still more preferably 99.9 mass % or more based on the entire refrigerant.


Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.


Examples of Refrigerant D

The present disclosure is described in more detail below with reference to Examples of refrigerant D. However, the refrigerant D is not limited to the Examples.


The composition of each mixed refrigerant of HFO-1132(E), R32, and R1234yf was defined as WCF. A leak simulation was performed using the NIST Standard Reference Database REFLEAK Version 4.0 under the conditions of Equipment, Storage, Shipping, Leak, and Recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.


A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC. Tables 113 to 115 show the results.

















TABLE 113







Comparative

Example

Example

Example




Example 13
Example
12
Example
14
Example
16


Item
Unit
I
11
J
13
K
15
L
























WCF
HFO-
Mass %
72
57.2
48.5
41.2
35.6
32
28.9



1132(E)











R32
Mass %
0
10
18.3
27.6
36.8
44.2
51.7



R1234yf
Mass %
28
32.8
33.2
31.2
27.6
23.8
19.4















Burning Velocity
cm/s
10
10
10
10
10
10
10


(WCF)























TABLE 114







Comparative

Example

Example





Example 14
Example
19
Example
21
Example


Item
Unit
M
18
W
20
N
22























WCF
HFO-1132(E)
Mass %
52.6
39.2
32.4
29.3
27.7
24.6



R32
Mass %
0.0
5.0
10.0
14.5
18.2
27.6



R1234yf
Mass %
47.4
55.8
57.6
56.2
54.1
47.8













Leak condition
Storage,
Storage,
Storage,
Storage,
Storage,
Storage,


that results
Shipping,
Shipping,
Shipping,
Shipping,
Shipping,
Shipping,


in WCFF
−40° C.,
−40° C.,
−40° C.,
−40° C.,
−40° C.,
−40° C.,



0% release,
0% release,
0% release,
0% release,
0% release,
0% release,



on the gas
on the gas
on the gas
on the gas
on the gas
on the gas



phase side
phase side
phase side
phase side
phase side
phase side















WCF
HFO-1132(E)
Mass %
72.0
57.8
48.7
43.6
40.6
34.9



R32
Mass %
0.0
9.5
17.9
24.2
28.7
38.1



R1234yf
Mass %
28.0
32.7
33.4
32.2
30.7
27.0














Burning Velocity
cm/s
8 or less
8 or less
8 or less
8 or less
8 or less
8 or less


(WCF)









Burning Velocity
cm/s
10
10
10
10
10
10


(WCFF)




















TABLE 115







Example

Example




23
Example
25


Item
Unit
O
24
P




















WCF
HFO-1132 (E)
Mass %
22.6
21.2
20.5



HFO-1123
Mass %
36.8
44.2
51.7



R1234yf
Mass %
40.6
34.6
27.8










Leak condition that results
Storage,
Storage,
Storage,


in WCFF
Shipping, −40° C.,
Shipping, −40° C.,
Shipping, −40° C.,















0% release,
0% release,
0% release,





on the gas
on the gas
on the gas





phase side
phase side
phase side


WCFF
HFO-1132 (E)
Mass %
31.4
29.2
27.1



HFO-1123
Mass %
45.7
51.1
56.4



R1234yf
Mass %
23.0
19.7
16.5











Burning Velocity
cm/s
8 or less
8 or less
8 or less


(WCF)


Burning Velocity
cm/s
10  
10  
10  


(WCFF)









The results indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in the ternary composition diagram shown in FIG. 14 in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are on the line segment that connects point I, point J, point K, and point L, or below these line segments, the refrigerant has a WCF lower flammability.


The results also indicate that when coordinates (x,y,z) in the ternary composition diagram shown in FIG. 14 are on the line segments that connect point M, point M′, point W, point J, point N, and point P, or below these line segments, the refrigerant has an ASHRAE lower flammability.


Mixed refrigerants were prepared by mixing HFO-1132(E), R32, and R1234yf in amounts (mass %) shown in Tables 116 to 144 based on the sum of HFO-1132(E), R32, and R1234yf. The coefficient of performance (COP) ratio and the refrigerating capacity ratio relative to R410 of the mixed refrigerants shown in Tables 116 to 144 were determined. The conditions for calculation were as described below.


Evaporating temperature: 5° C.


Condensation temperature: 45° C.


Degree of superheating: 5 K


Degree of subcooling: 5 K


Compressor efficiency: 70%


Tables 116 to 144 show these values together with the GWP of each mixed refrigerant.

















TABLE 116








Comparative
Comparative
Comparative
Comparative
Comparative
Comparative




Comparative
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7


Item
Unit
Example 1
A
B
A′
B′
A″
B″























HFO-1132(E)
Mass %
R410A
81.6
0.0
63.1
0.0
48.2
0.0


R32
Mass %

18.4
18.1
36.9
36.7
51.8
51.5


R1234yf
Mass %

0.0
81.9
0.0
63.3
0.0
48.5


GWP

2088
125
125
250
250
350
350


COP Ratio
% (relative to
100
98.7
103.6
98.7
102.3
99.2
102.2



R410A)









Refrigerating
% (relative to
100
105.3
62.5
109.9
77.5
112.1
87.3


Capacity Ratio
R410A)
























TABLE 117







Comparative

Comparative








Example 8
Comparative
Example 10

Example 2

Example 4


Item
Unit
C
Example 9
C′
Example 1
R
Example 3
T























HFO-1132(E)
Mass %
85.5
66.1
52.1
37.8
25.5
16.6
8.6


R32
Mass %
0.0
10.0
18.2
27.6
36.8
44.2
51.6


R1234yf
Mass %
14.5
23.9
29.7
34.6
37.7
39.2
39.8


GWP

1
69
125
188
250
300
350


COP Ratio
% (relative to
99.8
99.3
99.3
99.6
100.2
100.8
101.4



R410A)









Refrigerating
% (relative to
92.5
92.5
92.5
92.5
92.5
92.5
92.5


Capacity Ratio
R410A)

























TABLE 118







Comparative




Comparative






Example 11

Example 6

Example 8
Example 12

Example 10


Item
Unit
E
Example 5
N
Example 7
U
G
Example 9
V
























HFO-1132(E)
Mass %
58.3
40.5
27.7
14.9
3.9
39.6
22.8
11.0


R32
Mass %
0.0
10.0
18.2
27.6
36.7
0.0
10.0
18.1


R1234yf
Mass %
41.7
49.5
54.1
57.5
59.4
60.4
67.2
70.9


GWP

2
70
125
189
250
3
70
125


COP Ratio
% (relative to
100.3
100.3
100.7
101.2
101.9
101.4
101.8
102.3



R410A)










Refrigerating
% (relative to
80.0
80.0
80.0
80.0
80.0
70.0
70.0
70.0


Capacity Ratio
R410A)

























TABLE 119







Comparative











Example 13

Example 12

Example 14

Example 16
Example 17


Item
Unit
I
Example 11
J
Example 13
K
Example 15
L
Q
























HFO-1132(E)
Mass %
72.0
57.2
48.5
41.2
35.6
32.0
28.9
44.6


R32
Mass %
0.0
10.0
18.3
27.6
36.8
44.2
51.7
23.0


R1234yf
Mass %
28.0
32.8
33.2
31.2
27.6
23.8
19.4
32.4


GWP

2
69
125
188
250
300
350
157


COP Ratio
% (relative to











R410A)
99.9
99.5
99.4
99.5
99.6
99.8
100.1
99.4


Refrigerating
% (relative to
86.6
88.4
90.9
94.2
97.7
100.5
103.3
92.5


Capacity Ratio
R410A)































TABLE 120







Comparative









Example 14

Example 19

Example 21



Item
Unit
M
Example 18
W
Example 20
N
Example 22






















HFO-1132(E)
Mass %
52.6
39.2
32.4
29.3
27.7
24.5


R32
Mass %
0.0
5.0
10.0
14.5
18.2
27.6


R1234yf
Mass %
47.4
55.8
57.6
56.2
54.1
47.9


GWP

2
36
70
100
125
188


COP Ratio
% (relative to
100.5
100.9
100.9
100.8
100.7
100.4



R410A)








Refigerating
% (relative to
77.1
74.8
75.6
77.8
80.0
85.5


Capacity Ratio
R410A)





















TABLE 121







Example

Example
Example




23
Example
25
26


Item
Unit
O
24
P
S




















HFO-1132(E)
Mass %
22.6
21.2
20.5
21.9


R32
Mass %
36.8
44.2
51.7
39.7


R1234yf
Mass %
40.6
34.6
27.8
38.4


GWP

250
300
350
270


COP Ratio
% (relative
100.4
100.5
100.6
100.4



to R410A)


Refrigerating
% (relative
91.0
95.0
99.1
92.5


Capacity Ratio
to R410A)

























TABLE 122







Comparative
Comparative
Comparative
Comparative


Comparative
Comparative


Item
Unit
Example 15
Example 16
Example 17
Example 18
Example 27
Example 28
Example 19
Example 20
























HFO-1132(E)
Mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


R32
Mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


R1234yf
Mass %
85.0
75.0
65.0
55.0
45.0
35.0
25.0
15.0


GWP

37
37
37
36
36
36
35
35


COP Ratio
% (relative to
103.4
102.6
101.6
100.8
100.2
99.8
99.6
99.4



R410A)










Refrigerating
% (relative to
56.4
63.3
69.5
75.2
80.5
85.4
90.1
94.4


Capacity Ratio
R410A)

































TABLE 123







Comparative
Comparative

Comparative

Comparative
Comparative
Comparative


Item
Unit
Example 21
Example 22
Example 29
Example 23
Example 30
Example 24
Example 25
Example 26
























HFO-1132(E)
Mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


R32
Mass %
10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0


R1234yf
Mass %
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0


GWP

71
71
70
70
70
69
69
69


COP Ratio
% (relative to
103.1
102.1
101.1
100.4
99.8
99.5
99.2
99.1



R410A)










Refrigerating
% (relative to
61.8
68.3
74.3
79.7
84.9
89.7
94.2
98.4


Capacity Ratio
R410A)

























TABLE 124







Comparative

Comparative


Comparative
Comparative
Comparative


Item
Unit
Example 27
Example 31
Example 28
Example 32
Example 33
Example 29
Example 30
Example 31
























HFO-1132(E)
Mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


R32
Mass %
15.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


R1234yf
Mass %
75.0
65.0
55.0
45.0
35.0
25.0
15.0
5.0


GWP

104
104
104
103
103
103
103
102


COP Ratio
% (relative to
102.7
101.6
100.7
100.0
99.5
99.2
99.0
98.9



R410A)










Refrigerating
% (relative to
66.6
72.9
78.6
84.0
89.0
93.7
98.1
102.2


Capacity Ratio
R410A)

























TABLE 125







Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative


Item
Unit
Example 32
Example 33
Example 34
Example 35
Example 36
Example 37
Example 38
Example 39
























HFO-1132(E)
Mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
10.0


R32
Mass %
20.0
20.0
20.0
20.0
20.0
20.0
20.0
25.0


R1234yf
Mass %
70.0
60.0
50.0
40.0
30.0
20.0
10.0
65.0


GWP

138
138
137
137
137
136
136
171


COP Ratio
% (relative to
102.3
101.2
100.4
99.7
99.3
99.0
98.8
101.9



R410A)










Refrigerating
% (relative to
71.0
77.1
82.7
88.0
92.9
97.5
101.7
75.0


Capacity Ratio
R410A)

























TABLE 126








Comparative
Comparative
Comparative
Comparative
Comparative
Comparative



Item
Unit
Example 34
Example 40
Example 41
Example 42
Example 43
Example 44
Example 45
Example 35
























HFO-1132(E)
Mass %
20.0
30.0
40.0
50.0
60.0
70.0
10.0
20.0


R32
Mass %
25.0
25.0
25.0
25.0
25.0
25.0
30.0
30.0


R1234yf
Mass %
55.0
45.0
35.0
25.0
15.0
5.0
60.0
50.0


GWP

171
171
171
170
170
170
205
205


COP Ratio
% (relative to
100.9
100.1
99.6
99.2
98.9
98.7
101.6
100.7



R410A)










Refrigerating
% (relative to
81.0
86.6
91.7
96.5
101.0
105.2
78.9
84.8


Capacity Ratio
R410A)

































TABLE 127







Comparative
Comparative
Comparative
Comparative



Comparative


Item
Unit
Example 46
Example 47
Example 48
Example 49
Example 36
Example 37
Example 38
Example 50
























HFO-1132(E)
Mass %
30.0
40.0
50.0
60.0
10.0
20.0
30.0
40.0


R32
Mass %
30.0
30.0
30.0
30.0
35.0
35.0
35.0
35.0


R1234yf
Mass %
40.0
30.0
20.0
10.0
55.0
45.0
35.0
25.0


GWP

204
204
204
204
239
238
238
238


COP Ratio
% (relative to
100.0
99.5
99.1
98.8
101.4
100.6
99.9
99.4



R410A)










Refrigerating
% (relative to
90.2
95.3
100.0
104.4
82.5
88.3
93.7
98.6


Capacity Ratio
R410A)

























TABLE 128







Comparative
Comparative
Comparative
Comparative

Comparative
Comparative
Comparative


Item
Unit
Example 51
Example 52
Example 53
Example 54
Example 39
Example 55
Example 56
Example 57
























HFO-1132(E)
Mass %
50.0
60.0
10.0
20.0
30.0
40.0
50.0
10.0


R32
Mass %
35.0
35.0
40.0
40.0
40.0
40.0
40.0
45.0


R1234yf
Mass %
15.0
5.0
50.0
40.0
30.0
20.0
10.0
45.0


GWP

237
237
272
272
272
271
271
306


COP Ratio
% (relative to
99.0
98.8
101.3
100.6
99.9
99.4
99.0
101.3



R410A)










Refrigerating
% (relative to
103.2
107.5
86.0
91.7
96.9
101.8
106.3
89.3


Capacity Ratio
R410A)

































TABLE 129









Comparative
Comparative
Comparative

Comparative
Comparative


Item
Unit
Example 40
Example 41
Example 58
Example 59
Example 60
Example 42
Example 61
Example 62
























HFO-1132(E)
Mass %
20.0
30.0
40.0
50.0
10.0
20.0
30.0
40.0


R32
Mass %
45.0
45.0
45.0
45.0
50.0
50.0
50.0
50.0


R1234yf
Mass %
35.0
25.0
15.0
5.0
40.0
30.0
20.0
10.0


GWP

305
305
305
304
339
339
339
338


COP Ratio
% (relative to
100.6
100.0
99.5
99.1
101.3
100.6
100.0
99.5



R410A)










Refrigerating
% (relative to
94.9
100.0
104.7
109.2
92.4
97.8
102.9
107.5


Capacity Ratio
R410A)

























TABLE 130







Comparative
Comparative
Comparative
Comparative






Item
Unit
Example 63
Example 64
Example 65
Example 66
Example 43
Example 44
Example 45
Example 46
























HFO-1132(E)
Mass %
10.0
20.0
30.0
40.0
56.0
59.0
62.0
65.0


R32
Mass %
55.0
55.0
55.0
55.0
3.0
3.0
3.0
3.0


R1234yf
Mass %
35.0
25.0
15.0
5.0
41.0
38.0
35.0
32.0


GWP

373
372
372
372
22
22
22
22


COP Ratio
% (relative to
101.4
100.7
100.1
99.6
100.1
100.0
99.9
99.8



R410A)










Refrigerating
% (relative to
95.3
100.6
105.6
110.2
81.7
83.2
84.6
86.0


Capacity Ratio
R410A)

























TABLE 131





Item
Unit
Example 47
Example 48
Example 49
Example 50
Example 51
Example 52
Example 53
Example 54
























HFO-1132(E)
Mass %
49.0
52.0
55.0
58.0
61.0
43.0
46.0
49.0


R32
Mass %
6.0
6.0
6.0
6.0
6.0
9.0
9.0
9.0


R1234yf
Mass %
45.0
42.0
39.0
36.0
33.0
48.0
45.0
42.0


GWP

43
43
43
43
42
63
63
63


COP Ratio
% (relative to
100.2
100.0
99.9
99.8
99.7
100.3
100.1
99.9



R410A)










Refrigerating
% (relative to
80.9
82.4
83.9
85.4
86.8
80.4
82.0
83.5


Capacity Ratio
R410A)

































TABLE 132





Item
Unit
Example 55
Example 56
Example 57
Example 58
Example 59
Example 60
Example 61
Example 62
























HFO-1132(E)
Mass %
52.0
55.0
58.0
38.0
41.0
44.0
47.0
50.0


R32
Mass %
9.0
9.0
9.0
12.0
12.0
12.0
12.0
12.0


R1234yf
Mass %
39.0
36.0
33.0
50.0
47.0
44.0
41.0
38.0


GWP

63
63
63
83
83
83
83
83


COP Ratio
% (relative to
99.8
99.7
99.6
100.3
100.1
100.0
99.8
99.7



R410A)










Refrigerating
% (relative to
85.0
86.5
87.9
80.4
82.0
83.5
85.1
86.6


Capacity Ratio
R410A)

























TABLE 133





Item
Unit
Example 63
Example 64
Example 65
Example 66
Example 67
Example 68
Example 69
Example 70
























HFO-1132(E)
Mass %
53.0
33.0
36.0
39.0
42.0
45.0
48.0
51.0


R32
Mass %
12.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


R1234yf
Mass %
35.0
52.0
49.0
46.0
43.0
40.0
37.0
34.0


GWP

83
104
104
103
103
103
103
103


COP Ratio
% (relative to
99.6
100.5
100.3
100.1
99.9
99.7
99.6
99.5



R410A)










Refrigerating
% (relative to
88.0
80.3
81.9
83.5
85.0
86.5
88.0
89.5


Capacity Ratio
R410A)

































TABLE 134





Item
Unit
Example 71
Example 72
Example 73
Example 74
Example 75
Example 76
Example 77
Example 78
























HFO-1132(E)
Mass %
29.0
32.0
35.0
38.0
41.0
44.0
47.0
36.0


R32
Mass %
18.0
18.0
18.0
18.0
18.0
18.0
18.0
3.0


R1234yf
Mass %
53.0
50.0
47.0
44.0
41.0
38.0
35.0
61.0


GWP

124
124
124
124
124
123
123
23


COP Ratio
% (relative to
100.6
100.3
100.1
99.9
99.8
99.6
99.5
101.3



R410A)










Refrigerating
% (relative to
80.6
82.2
83.8
85.4
86.9
88.4
89.9
71.0


Capacity Ratio
R410A)

































TABLE 135





Item
Unit
Example 79
Example 80
Example 81
Example 82
Example 83
Example 84
Example 85
Example 86
























HFO-1132(E)
Mass %
39.0
42.0
30.0
33.0
36.0
26.0
29.0
32.0


R32
Mass %
3.0
3.0
6.0
6.0
6.0
9.0
9.0
9.0


R1234yf
Mass %
58.0
55.0
64.0
61.0
58.0
65.0
62.0
59.0


GWP

23
23
43
43
43
64
64
63


COP Ratio
% (relative to
101.1
100.9
101.5
101.3
101.0
101.6
101.3
101.1



R410A)










Refrigerating
% (relative to
72.7
74.4
70.5
72.2
73.9
71.0
72.8
74.5


Capacity Ratio
R410A)

























TABLE 136





Item
Unit
Example 87
Example 88
Example 89
Example 90
Example 91
Example 92
Example 93
Example 94
























HFO-1132(E)
Mass %
21.0
24.0
27.0
30.0
16.0
19.0
22.0
25.0


R32
Mass %
12.0
12.0
12.0
12.0
15.0
15.0
15.0
15.0


R1234yf
Mass %
67.0
64.0
61.0
58.0
69.0
66.0
63.0
60.0


GWP

84
84
84
84
104
104
104
104


COP Ratio
% (relative to
101.8
101.5
101.2
101.0
102.1
101.8
101.4
101.2



R410A)










Refrigerating
% (relative to
70.8
72.6
74.3
76.0
70.4
72.3
74.0
75.8


Capacity Ratio
R410A)

























TABLE 137





Item
Unit
Example 95
Example 96
Example 97
Example 98
Example 99
Example 100
Example 101
Example 102
























HFO-1132(E)
Mass %
28.0
12.0
15.0
18.0
21.0
24.0
27.0
25.0


R32
Mass %
15.0
18.0
18.0
18.0
18.0
18.0
18.0
21.0


R1234yf
Mass %
57.0
70.0
67.0
64.0
61.0
58.0
55.0
54.0


GWP

104
124
124
124
124
124
124
144


COP Ratio
% (relative to
100.9
102.2
101.9
101.6
101.3
101.0
100.7
100.7



R410A)










Refrigerating
% (relative to
77.5
70.5
72.4
74.2
76.0
77.7
79.4
80.7


Capacity Ratio
R410A)

























TABLE 138





Item
Unit
Example 103
Example 104
Example 105
Example 106
Example 107
Example 108
Example 109
Example 110
























HFO-1132(E)
Mass %
21.0
24.0
17.0
20.0
23.0
13.0
16.0
19.0


R32
Mass %
24.0
24.0
27.0
27.0
27.0
30.0
30.0
30.0


R1234yf
Mass %
55.0
52.0
56.0
53.0
50.0
57.0
54.0
51.0


GWP

164
164
185
185
184
205
205
205


COP Ratio
% (relative to
100.9
100.6
101.1
100.8
100.6
101.3
101.0
100.8



R410A)










Refrigerating
% (relative to
80.8
82.5
80.8
82.5
84.2
80.7
82.5
84.2


Capacity Ratio
R410A)

























TABLE 139





Item
Unit
Example 111
Example 112
Example 113
Example 114
Example 115
Example 116
Example 117
Example 118
























HFO-1132 (E)
Mass %
22.0
9.0
12.0
15.0
18.0
21.0
8.0
12.0


R32
Mass %
30.0
33.0
33.0
33.0
33.0
33.0
36.0
36.0


R1234yf
Mass %
48.0
58.0
55.0
52.0
49.0
46.0
56.0
52.0


GWP

205
225
225
225
225
225
245
245


COP Ratio
% (relative to
100.5
101.6
101.3
101.0
100.8
100.5
101.6
101.2



R410A)










Refrigerating
% (relative to
85.9
80.5
82.3
84.1
85.8
87.5
82.0
84.4


Capacity Ratio
R410A)

























TABLE 140





Item
UnIt
Example 119
Example 120
Example 121
Example 122
Example 123
Example 124
Example 125
Example 126
























HFO-1132(E)
Mass %
15.0
18.0
21.0
42.0
39.0
34.0
37.0
30.0


R32
Mass %
36.0
36.0
36.0
25.0
28.0
31.0
31.0
34.0


R1234yf
Mass %
49.0
46.0
43.0
33.0
33.0
35.0
32.0
36.0


GWP

245
245
245
170
191
211
211
231


COP Ratio
% (relative to
101.0
100.7
100.5
99.5
99.5
99.8
99.6
99.9



R410A)










Refrgerating
% (relative to
86.2
87.9
89.6
92.7
93.4
93.0
94.5
93.0


Capacity Ratio
R410A)

























TABLE 141





Item
Unit
Example 127
Example 128
Example 129
Example 130
Example 131
Example 132
Example 133
Example 134
























HFO-1132(E)
Mass %
33.0
36.0
24.0
27.0
30.0
33.0
23.0
26.0


R32
Mass %
34.0
34.0
37.0
37.0
37.0
37.0
40.0
40.0


R1234yf
Mass %
33.0
30.0
39.0
36.0
33.0
30.0
37.0
34.0


GWP

231
231
252
251
251
251
272
272


COP Ratio
% (relative to
99.8
99.6
100.3
100.1
99.9
99.8
100.4
100.2



R410A)










Refrigerating
% (relative to
94.5
96.0
91.9
93.4
95.0
96.5
93.3
94.9


Capacity Ratio
R410A)

























TABLE 142





Item
Unit
Example 135
Example 136
Example 137
Example 138
Example 139
Example 140
Example 141
Example 142
























HFO-1132(E)
Mass %
29.0
32.0
19.0
22.0
25.0
28.0
31.0
18.0


R32
Mass %
40.0
40.0
43.0
43.0
43.0
43.0
43.0
46.0


R1234yf
Mass %
31.0
28.0
38.0
35.0
32.0
29.0
26.0
36.0


GWP

272
271
292
292
292
292
292
312


COP Ratio
% (relative to
100.0
99.8
100.6
100.4
100.2
100.1
99.9
100.7



R410A)










Refrigerating
% (relative to
96.4
97.9
93.1
94.7
96.2
97.8
99.3
94.4


Capacity Ratio
R410A)

























TABLE 143





Item
Unit
Example 143
Example 144
Example 145
Example 146
Example 147
Example 148
Example 149
Example 150
























HFO-1132(E)
Mass %
21.0
23.0
26.0
29.0
13.0
16.0
19.0
22.0


R32
Mass %
46.0
46.0
46.0
46.0
49.0
49.0
49.0
49.0


R1234yf
Mass %
33.0
31.0
28.0
25.0
38.0
35.0
32.0
29.0


GWP

312
312
312
312
332
332
332
332


COP Ratio
% (relative to
100.5
100.4
100.2
100.0
101.1
100.9
100.7
100.5



R410A)










Refrigerating
% (relative to
96.0
97.0
98.6
100.1
93.5
95.1
96.7
98.3


Capacity Ratio
R410A)





















TABLE 144







Item
Unit
Example 151
Example 152





















HFO-1132(E)
Mass %
25.0
28.0



R32
Mass %
49.0
49.0



R1234yf
Mass %
26.0
23.0



GWP

332
332



COP Ratio
% (relative
100.3
100.1




to R410A)



Refrigerating
% (relative
99.8
101.3



Capacity Ratio
to R410A)










The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments IJ, JN, NE, and EI that connect the following 4 points:

    • point I (72.0, 0.0, 28.0),
    • point J (48.5, 18.3, 33.2),
    • point N (27.7, 18.2, 54.1), and
    • point E (58.3, 0.0, 41.7),


      or on these line segments (excluding the points on the line segment EI),


the line segment IJ is represented by coordinates (0.0236y2−1.7616y+72.0, y, −0.0236y2+0.7616y+28.0),


the line segment NE is represented by coordinates (0.012y−1.9003y+58.3, y, −0.012y2+0.9003y+41.7), and


the line segments JN and EI are straight lines, the refrigerant D has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 125 or less, and a WCF lower flammability.


The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments MM′, M′N, NV, VG, and GM that connect the following 5 points:

    • point M (52.6, 0.0, 47.4),
    • point M′ (39.2, 5.0, 55.8),
    • point N (27.7, 18.2, 54.1),
    • point V (11.0, 18.1, 70.9), and
    • point G (39.6, 0.0, 60.4),


      or on these line segments (excluding the points on the line segment GM),


the line segment MM′ is represented by coordinates (0.132y2−3.34y+52.6, y, −0.132y2+2.34y+47.4),


the line segment M′N is represented by coordinates (0.0596y2−2.2541y+48.98, y, −0.0596y2+1.2541y+51.02),


the line segment VG is represented by coordinates (0.0123y2−1.8033y+39.6, y, −0.0123y2+0.8033y+60.4), and


the line segments NV and GM are straight lines, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 70% or more relative to R410A, a GWP of 125 or less, and an ASHRAE lower flammability.


The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:

    • point O (22.6, 36.8, 40.6),
    • point N (27.7, 18.2, 54.1), and
    • point U (3.9, 36.7, 59.4),


      or on these line segments,


the line segment ON is represented by coordinates (0.0072y2−0.6701y+37.512, y, −0.0072y2−0.3299y+62.488),


the line segment NU is represented by coordinates (0.0083y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365), and


the line segment UO is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 80% or more relative to R410A, a GWP of 250 or less, and an ASHRAE lower flammability.


The results also indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments QR, RT, TL, LK, and KQ that connect the following 5 points:

    • point Q (44.6, 23.0, 32.4),
    • point R (25.5, 36.8, 37.7),
    • point T (8.6, 51.6, 39.8),
    • point L (28.9, 51.7, 19.4), and
    • point K (35.6, 36.8, 27.6),


      or on these line segments,


the line segment QR is represented by coordinates (0.0099y2−1.975y+84.765, y, −0.0099y2+0.975y+15.235),


the line segment RT is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874),


the line segment LK is represented by coordinates (0.0049y2−0.8842y+61.488, y, −0.0049y2−0.1158y+38.512),


the line segment KQ is represented by coordinates (0.0095y2−1.2222y+67.676, y, −0.0095y2+0.2222y+32.324), and


the line segment TL is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and a WCF lower flammability.


The results further indicate that under the condition that the mass % of HFO-1132(E), R32, and R1234yf based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:

    • point P (20.5, 51.7, 27.8),
    • point S (21.9, 39.7, 38.4), and
    • point T (8.6, 51.6, 39.8),


      or on these line segments,


the line segment PS is represented by coordinates (0.0064y2−0.7103y+40.1, y, −0.0064y2−0.2897y+59.9),


the line segment ST is represented by coordinates (0.0082y2−1.8683y+83.126, y, −0.0082y2+0.8683y+16.874), and


the line segment TP is a straight line, the refrigerant D according to the present disclosure has a refrigerating capacity ratio of 92.5% or more relative to R410A, a GWP of 350 or less, and an ASHRAE lower flammability.


(5-5) Refrigerant E

The refrigerant E according to the present disclosure is a mixed refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and difluoromethane (R32).


The refrigerant E according to the present disclosure has various properties that are desirable as an R410A-alternative refrigerant, i.e., a coefficient of performance equivalent to that of R410A and a sufficiently low GWP.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments IK, KB′, B′H, HR, RG, and GI that connect the following 6 points:

    • point I (72.0, 28.0, 0.0),
    • point K (48.4, 33.2, 18.4),
    • point B′ (0.0, 81.6, 18.4),
    • point H (0.0, 84.2, 15.8),
    • point R (23.1, 67.4, 9.5), and
    • point G (38.5, 61.5, 0.0),


      or on these line segments (excluding the points on the line segments B′H and GI);


the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.0, z),


the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments KB′ and GI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments J, JR, RG, and GI that connect the following 4 points:

    • point I (72.0, 28.0, 0.0),
    • point J (57.7, 32.8, 9.5),
    • point R (23.1, 67.4, 9.5), and
    • point G (38.5, 61.5, 0.0),


      or on these line segments (excluding the points on the line segment GI);


the line segment IJ is represented by coordinates (0.025z2−1.7429z+72.0, −0.025z2+0.7429z+28.0, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments JR and GI are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has WCF lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MP, PB′, B′H, HR, RG, and GM that connect the following 6 points:

    • point M (47.1, 52.9, 0.0),
    • point P (31.8, 49.8, 18.4),
    • point B′ (0.0, 81.6, 18.4),
    • point H (0.0, 84.2, 15.8),
    • point R (23.1, 67.4, 9.5), and
    • point G (38.5, 61.5, 0.0),


      or on these line segments (excluding the points on the line segments B′H and GM);


the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),


the line segment HR is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and


the line segments PB′ and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments MN, NR, RG, and GM that connect the following 4 points:

    • point M (47.1, 52.9, 0.0),
    • point N (38.5, 52.1, 9.5),
    • point R (23.1, 67.4, 9.5), and
    • point G (38.5, 61.5, 0.0),


      or on these line segments (excluding the points on the line segment GM);


the line segment MN is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z),


the line segment RG is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z),


the line segments NR and GM are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 93% or more relative to that of R410A, and a GWP of 65 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments PS, ST, and TP that connect the following 3 points:

    • point P (31.8, 49.8, 18.4),
    • point S (25.4, 56.2, 18.4), and
    • point T (34.8, 51.0, 14.2),


      or on these line segments;


the line segment ST is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z),


the line segment TP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and


the line segment PS is a straight line. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 94.5% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments QB″, B″D, DU, and UQ that connect the following 4 points:

    • point Q (28.6, 34.4, 37.0),
    • point B″ (0.0, 63.0, 37.0),
    • point D (0.0, 67.0, 33.0), and
    • point U (28.7, 41.2, 30.1),


      or on these line segments (excluding the points on the line segment B″D);


the line segment DU is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z),


the line segment UQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z), and


the line segments QB″ and B″D are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has ASHRAE lower flammability, a COP ratio of 96% or more relative to that of R410A, and a GWP of 250 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′e′, e′a′, and a′O that connect the following 5 points:

    • point O (100.0, 0.0, 0.0),
    • point c′ (56.7, 43.3, 0.0),
    • point d′ (52.2, 38.3, 9.5),
    • point e′ (41.8, 39.8, 18.4), and
    • point a′ (81.6, 0.0, 18.4),


      or on the line segments c′d′, d′e′, and e′a′ (excluding the points c′ and a′);


the line segment c′d′ is represented by coordinates (−0.0297z2−0.1915z+56.7, 0.0297z2+1.1915z+43.3, z),


the line segment d′e′ is represented by coordinates (−0.0535z2+0.3229z+53.957, 0.0535z2+0.6771z+46.043, z), and


the line segments Oc′, e′a′, and a′O are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 92.5% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, de, ea′, and a′O that connect the following 5 points:

    • point O (100.0, 0.0, 0.0),
    • point c (77.7, 22.3, 0.0),
    • point d (76.3, 14.2, 9.5),
    • point e (72.2, 9.4, 18.4), and
    • point a′ (81.6, 0.0, 18.4),


      or on the line segments cd, de, and ea′ (excluding the points c and a′);


the line segment cde is represented by coordinates (−0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z), and


the line segments Oc, ea′, and a′O are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 125 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc′, c′d′, d′a, and aO that connect the following 5 points:

    • point O (100.0, 0.0, 0.0),
    • point c′ (56.7, 43.3, 0.0),
    • point d′ (52.2, 38.3, 9.5), and
    • point a (90.5, 0.0, 9.5),


      or on the line segments c′d′ and d′a (excluding the points c′ and a);


the line segment c′d′ is represented by coordinates (−0.0297z2−0.1915z+56.7, 0.0297z2+1.1915z+43.3, z), and


the line segments Oc′, d′a, and aO are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 93.5% or more relative to that of R410A, and a GWP of 65 or less.


The refrigerant E according to the present disclosure is preferably a refrigerant wherein


when the mass % of HFO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass % are within the range of a figure surrounded by line segments Oc, cd, da, and aO that connect the following 4 points:

    • point O (100.0, 0.0, 0.0),
    • point c (77.7, 22.3, 0.0),
    • point d (76.3, 14.2, 9.5), and
    • point a (90.5, 0.0, 9.5),


      or on the line segments cd and da (excluding the points c and a);


the line segment cd is represented by coordinates (−0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z), and


the line segments Oc, da, and aO are straight lines. When the requirements above are satisfied, the refrigerant according to the present disclosure has a COP ratio of 95% or more relative to that of R410A, and a GWP of 65 or less.


The refrigerant E according to the present disclosure may further comprise other additional refrigerants in addition to HFO-1132(E), HFO-1123, and R32, as long as the above properties and effects are not impaired. In this respect, the refrigerant according to the present disclosure preferably comprises HFO-1132(E), HFO-1123, and R32 in a total amount of 99.5 mass % or more, more preferably 99.75 mass % or more, and even more preferably 99.9 mass % or more, based on the entire refrigerant.


Such additional refrigerants are not limited, and can be selected from a wide range of refrigerants. The mixed refrigerant may comprise a single additional refrigerant, or two or more additional refrigerants.


Examples of Refrigerant E

The present disclosure is described in more detail below with reference to Examples of refrigerant E. However, the refrigerant E is not limited to the Examples.


Mixed refrigerants were prepared by mixing HFO-1132(E), HFO-1123, and R32 at mass % based on their sum shown in Tables 145 and 146.


The composition of each mixture was defined as WCF. A leak simulation was performed using National Institute of Science and Technology (NIST) Standard Reference Data Base Refleak Version 4.0 under the conditions for equipment, storage, shipping, leak, and recharge according to the ASHRAE Standard 34-2013. The most flammable fraction was defined as WCFF.


For each mixed refrigerant, the burning velocity was measured according to the ANSI/ASHRAE Standard 34-2013. When the burning velocities of the WCF composition and the WCFF composition are 10 cm/s or less, the flammability of such a refrigerant is classified as Class 2L (lower flammability) in the ASHRAE flammability classification.


A burning velocity test was performed using the apparatus shown in FIG. 1 in the following manner. First, the mixed refrigerants used had a purity of 99.5% or more, and were degassed by repeating a cycle of freezing, pumping, and thawing until no traces of air were observed on the vacuum gauge. The burning velocity was measured by the closed method. The initial temperature was ambient temperature. Ignition was performed by generating an electric spark between the electrodes in the center of a sample cell. The duration of the discharge was 1.0 to 9.9 ms, and the ignition energy was typically about 0.1 to 1.0 J. The spread of the flame was visualized using schlieren photographs. A cylindrical container (inner diameter: 155 mm, length: 198 mm) equipped with two light transmission acrylic windows was used as the sample cell, and a xenon lamp was used as the light source. Schlieren images of the flame were recorded by a high-speed digital video camera at a frame rate of 600 fps and stored on a PC.


Tables 145 and 146 show the results.














TABLE 145





Item
Unit
I
J
K
L





















WCF
HFO-1132(E)
mass %
72.0
57.7
48.4
35.5



HFO-1123
mass %
28.0
32.8
33.2
27.5



R32
mass %
0.0
9.5
18.4
37.0












Burning velocity (WCF)
cm/s
10
10
10
10























TABLE 146





Item
Unit
M
N
T
P
U
Q























WCF
HFO-
mass
47.1
38.5
34.8
31.8
28.7
28.6



1132(E)
%









HFO-1123
mass
52.9
52.1
51.0
49.8
41.2
34.4




%









R32
mass
0.0
9.5
14.2
18.4
30.1
37.0




%



















Leak condition that
Storage,
Storage,
Storage,
Storage,
Storage,
Storage,


results in WCFF
Shipping,
Shipping,
Shipping,
Shipping,
Shipping,
Shipping,


















−40° C.,
−40° C.,
−40° C.,
−40° C.,
−40° C.,
−40° C.,





92%,
92%,
92%,
92%,
92%,
92%,





release,
release,
release,
release,
release,
release,





on the liquid
on the liquid
on the liquid
on the
on the
on the liquid





phase side
phase side
phase side
liquid
liquid
phase side








phase side
phase side



WCFF
HFO-
mass
72.0
58.9
51.5
44.6
31.4
27.1



1132(E)
%









HFO-1123
mass
28.0
32.4
33.1
32.6
23.2
18.3




%









R32
mass
0.0
8.7
15.4
22.8
45.4
54.6




%




















Burning velocity
cm/s
8 or less
8 or less
8 or less
8 or less
8 or less
8 or less


(WCF)









Burning velocity
cm/s
10
10
10
10
10
10


(WCFF)
















The results in Table 1 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments IK and KL that connect the following 3 points:

    • point I (72.0, 28.0, 0.0),
    • point K (48.4, 33.2, 18.4), and
    • point L (35.5, 27.5, 37.0);


      the line segment IK is represented by coordinates (0.025z2−1.7429z+72.00, −0.025z2+0.7429z+28.00, z), and


      the line segment KL is represented by coordinates (0.0098z2−1.238z+67.852, −0.0098z2+0.238z+32.148, z),


      it can be determined that the refrigerant has WCF lower flammability.


For the points on the line segment IK, an approximate curve (x=0.025z2-1.7429z+72.00) was obtained from three points, i.e., I (72.0, 28.0, 0.0), J (57.7, 32.8, 9.5), and K (48.4, 33.2, 18.4) by using the least-square method to determine coordinates (x=0.025z2−1.7429z+72.00, y=100−z−x=−0.00922z2+0.2114z+32.443, z).


Likewise, for the points on the line segment KL, an approximate curve was determined from three points, i.e., K (48.4, 33.2, 18.4), Example 10 (41.1, 31.2, 27.7), and L (35.5, 27.5, 37.0) by using the least-square method to determine coordinates.


The results in Table 146 indicate that in a ternary composition diagram of a mixed refrigerant of HFO-1132(E), HFO-1123, and R32 in which their sum is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, the point (0.0, 100.0, 0.0) is on the left side, and the point (0.0, 0.0, 100.0) is on the right side, when coordinates (x,y,z) are on or below line segments MP and PQ that connect the following 3 points:

    • point M (47.1, 52.9, 0.0),
    • point P (31.8, 49.8, 18.4), and
    • point Q (28.6, 34.4, 37.0),


      it can be determined that the refrigerant has ASHRAE lower flammability.


In the above, the line segment MP is represented by coordinates (0.0083z2−0.984z+47.1, −0.0083z2−0.016z+52.9, z), and the line segment PQ is represented by coordinates (0.0135z2−0.9181z+44.133, −0.0135z2−0.0819z+55.867, z).


For the points on the line segment MP, an approximate curve was obtained from three points, i.e., points M, N, and P, by using the least-square method to determine coordinates. For the points on the line segment PQ, an approximate curve was obtained from three points, i.e., points P, U, and Q, by using the least-square method to determine coordinates.


The GWP of compositions each comprising a mixture of R410A (R32=50%/R125=50%) was evaluated based on the values stated in the Intergovernmental Panel on Climate Change (IPCC), fourth report. The GWP of HFO-1132(E), which was not stated therein, was assumed to be 1 from HFO-1132a (GWP=1 or less) and HFO-1123 (GWP=0.3, described in WO2015/141678). The refrigerating capacity of compositions each comprising R410A and a mixture of HFO-1132(E) and HFO-1123 was determined by performing theoretical refrigeration cycle calculations for the mixed refrigerants using the National Institute of Science and Technology (NIST) and Reference Fluid Thermodynamic and Transport Properties Database (Refprop 9.0) under the following conditions.


The COP ratio and the refrigerating capacity (which may be referred to as “cooling capacity” or “capacity”) ratio relative to those of R410 of the mixed refrigerants were determined. The conditions for calculation were as described below.


Evaporating temperature: 5° C.


Condensation temperature: 45° C.


Degree of superheating: 5K


Degree of subcooling: 5K


Compressor efficiency: 70%


Tables 147 to 166 show these values together with the GWP of each mixed refrigerant.

















TABLE 147








Comparative
Comparative
Comparative
Comparative
Comparative
Comparative




Comparative
Example
Example
Example
Example
Example
Example




Example
2
3
4
5
6
7


Item
Unit
1
A
B
A′
B′
A″
B″























HFO-
mass %
R410A
90.5
0.0
81.6
0.0
63.0
0.0


1132(E)










HFO-1123
mass %

0.0
90.5
0.0
81.6
0.0
63.0


R32
mass %

9.5
9.5
18.4
18.4
37.0
37.0


GWP

2088 
65
65
125
125
250
250


COP ratio
%
100
99.1
92.0
98.7
93.4
98.7
96.1



(relative










to










R410A)









Refrigerating
%
100
102.2
111.6
105.3
113.7
110.0
115.4


capacity
(relative









ratio
to










R410A)























TABLE 148








Comparative



Comparative




Comparative
Example
Comparative


Example




Example 8
9
Example
Example 1

11


Item
Unit
O
C
10
U
Example 2
D






















HFO-1132(E)
mass %
100.0
50.0
41.1
28.7
15.2
0.0


HFO-1123
mass %
0.0
31.6
34.6
41.2
52.7
67.0


R32
mass %
0.0
18.4
24.3
30.1
32.1
33.0


GWP

1
125
165
204
217
228


COP ratio
% (relative
99.7
96.0
96.0
96.0
96.0
96.0



to R410A)








Refrigerating
% (relative
98.3
109.9
111.7
113.5
114.8
115.4


capacity ratio
to R410A)






















TABLE 149







Comparative








Example



Comparative




12
Comparative
Example 3
Example 4
Example 14


Item
Unit
E
Example 13
T
S
F





















HFO-1132(E)
mass %
53.4
43.4
34.8
25.4
0.0


HFO-1123
mass %
46.6
47.1
51.0
56.2
74.1


R32
mass %
0.0
9.5
14.2
18.4
25.9


GWP

1
65
97
125
176


COP ratio
% (relative to
94.5
94.5
94.5
94.5
94.5



R410A)







Refrigerating
% (relative to
105.6
109.2
110.8
112.3
114.8


capacity ratio
R410A)






















TABLE 150







Comparative








Example



Comparative




15

Example 6

Example 16


Item
Unit
G
Example 5
R
Example 7
H





















HFO-1132(E)
mass %
38.5
31.5
23.1
16.9
0.0


HFO-1123
mass %
61.5
63.5
67.4
71.1
84.2


R32
mass %
0.0
5.0
9.5
12.0
15.8


GWP

1
35
65
82
107


COP ratio
% (relative to
93.0
93.0
93.0
93.0
93.0



R410A)







Refrigerating
% (relative to
107.0
109.1
110.9
111.9
113.2


capacity ratio
R410A)






















TABLE 151







Comparative



Comparative




Example 17
Example 8
Example 9
Comparative
Example 19


Item
Unit
I
J
K
Example 18
L





















HFO-1132(E)
mass %
72.0
57.7
48.4
41.1
35.5


HFO-1123
mass %
28.0
32.8
33.2
31.2
27.5


R32
mass %
0.0
9.5
18.4
27.7
37.0


GWP

1
65
125
188
250


COP ratio
% (relative to
96.6
95.8
95.9
96.4
97.1



R410A)







Refrigerating
% (relative to
103.1
107.4
110.1
112.1
113.2


capacity ratio
R410A)





















TABLE 152







Comparative
Example
Example
Example




Example 20
10
11
12


Item
Unit
M
N
P
Q




















HFO-1132(E)
mass %
47.1
38.5
31.8
28.6


HFO-1123
mass %
52.9
52.1
49.8
34.4


R32
mass %
0.0
9.5
18.4
37.0


GWP

1
65
125
250


COP ratio
% (relative
93.9
94.1
94.7
96.9



to R410A)


Refrigerating
% (relative
106.2
109.7
112.0
114.1


capacity ratio
to R410A)

























TABLE 153







Comparative
Comparative
Comparative



Comparative
Comparative


Item
Unit
Example 22
Example 23
Example 24
Example 14
Example 15
Example 16
Example 25
Example 26
























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0


HFO-1123
mass %
85.0
75.0
65.0
55.0
45.0
35.0
25.0
15.0


R32
mass %
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0


GWP

35
35
35
35
35
35
35
35


COP ratio
% relative to
91.7
92.2
92.9
93.7
94.6
95.6
96.7
97.7



R410A)










Refrigerating
% (relative to
110.1
109.8
109.2
108.4
107.4
106.1
104.7
103.1


capacity ratio
R410A)

























TABLE 154







Comparative
Comparative
Comparative



Comparative
Comparative


Item
Unit
Example 27
Example 28
Example 29
Example 17
Example 18
Example 19
Example 30
Example 31
























HFO-1132(E)
mass %
90.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0


HFO-1123
mass %
5.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0


R32
mass %
5.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0


GWP

35
68
68
68
68
68
68
68


COP ratio
% (relative
98.8
92.4
92.9
93.5
94.3
95.1
96.1
97.0



to R410A)










Refrigerating
% (relative
01.4
111.7
111.3
110.6
109.6
108.5
107.2
105.7


capacity ratio
to R410A)

























TABLE 155







Comparative





Comparative
Comparative


Item
Unit
Example 32
Example 20
Example 21
Example 22
Example 23
Example 24
Example 33
Example 34
























HFO-1132(E)
mass %
80.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0


HFO-1123
mass %
10.0
75.0
65.0
55.0
45.0
35.0
25.0
15.0


R32
mass %
10.0
15.0
15.0
15.0
15.0
15.0
15.0
15.0


GWP

68
102
102
102
102
102
102
102


COP ratio
% (relative
98.0
93.1
93.6
94.2
94.9
95.6
96.5
97.4



to R410A)










Refrigerating
% (relative
104.1
112.9
112.4
111.6
110.6
109.4
108.1
106.6


capacity ratio
to R410A)

























TABLE 156







Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative


Item
Unit
Example 35
Example 36
Example 37
Example 38
Example 39
Example 40
Example 41
Example 42
























HFO-1132(E)
mass %
80.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0


HFO-1123
mass %
5.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0


R32
mass %
15.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0


GWP

102
136
136
136
136
136
136
136


COP ratio
% (relative
98.3
93.9
94.3
94.8
95.4
96.2
97.0
97.8



to R410A)










Refrigerating
% (relative
105.0
113.8
113.2
112.4
111.4
110.2
108.8
107.3


capacity ratio
to R410A)

























TABLE 157







Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative


Item
Unit
Example 43
Example 44
Example 45
Example 46
Example 47
Example 48
Example 49
Example 50
























HFO-1132(E)
mass %
10.0
20.0
30.0
40.0
50.0
60.0
70.0
10.0


HFO-1123
mass %
65.0
55.0
45.0
35.0
25.0
15.0
5.0
60.0


R32
mass %
25.0
25.0
25.0
25.0
25.0
25.0
25.0
30.0


GWP

170
170
170
170
170
170
170
203


COP ratio
% (relative
94.6
94.9
95.4
96.0
96.7
97.4
98.2
95.3



to R410A)










Refrigerating
% (relative
114.4
113.8
113.0
111.9
110.7
109.4
107.9
114.8


capacity ratio
to R410A)

























TABLE 158







Comparative
Comparative
Comparative
Comparative
Comparative
Example
Example
Comparative


Item
Unit
Example 51
Example 52
Example 53
Example 54
Example 55
25
26
Example 56
























HFO-1132(E)
mass %
20.0
30.0
40.0
50.0
60.0
10.0
20.0
30.0


HFO-1123
mass %
50.0
40.0
30.0
20.0
10.0
55.0
45.0
35.0


R32
mass %
30.0
30.0
30.0
30.0
30.0
35.0
35.0
35.0


GWP

203
203
203
203
203
237
237
237


COP ratio
% (relative
95.6
96.0
96.6
97.2
97.9
96.0
96.3
96.6



to R410A)










Refrigerating
% (relative
114.2
113.4
112.4
111.2
109.8
115.1
114.5
113.6


capacity ratio
to R410A)

























TABLE 159







Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative
Comparative


Item
Unit
Example 57
Example 58
Example 59
Example 60
Example 61
Example 62
Example 63
Example 64
























HFO-1132(E)
mass %
40.0
50.0
60.0
10.0
20.0
30.0
40.0
50.0


HFO-1123
mass %
25.0
15.0
5.0
50.0
40.0
30.0
20.0
10.0


R32
mass %
35.0
35.0
35.0
40.0
40.0
40.0
40.0
40.0


GWP

237
237
237
271
271
271
271
271


COP ratio
% (relative
97.1
97.7
98.3
96.6
96.9
97.2
97.7
98.2



to R410A)










Refrigerating
% (relative
112.6
111.5
110.2
115.1
114.6
113.8
112.8
111.7


capacity ratio
to R410A)

























TABLE 160





Item
Unit
Example 27
Example 28
Example 29
Example 30
Example 31
Example 32
Example 33
Example 34
























HFO-1132(E)
mass %
38.0
40.0
42.0
44.0
35.0
37.0
39.0
41.0


HFO-1123
mass %
60.0
58.0
56.0
54.0
61.0
59.0
57.0
55.0


R32
mass %
2.0
2.0
2.0
2.0
4.0
4.0
4.0
4.0


GWP

14
14
14
14
28
28
28
28


COP ratio
% (relative
93.2
93.4
93.6
93.7
93.2
93.3
93.5
93.7



to R410A)










Refrigerating
% (relative
107.7
107.5
107.3
107.2
108.6
108.4
108.2
108.0


capacity ratio
to R410A)

























TABLE 161





Item
Unit
Example 35
Example 36
Example 37
Example 38
Example 39
Example 40
Example 41
Example 42
























HFO-1132(E)
mass %
43.0
31.0
33.0
35.0
37.0
39.0
41.0
27.0


HFO-1123
mass %
53.0
63.0
61.0
59.0
57.0
55.0
53.0
65.0


R32
mass %
4.0
6.0
6.0
6.0
6.0
6.0
6.0
8.0


GWP

28
41
41
41
41
41
41
55


COP ratio
% (relative
93.9
93.1
93.2
93.4
93.6
93.7
93.9
93.0



to R410A)










Refrigerating
% (relative
107.8
109.5
109.3
109.1
109.0
108.8
108.6
110.3


capacity ratio
to R410A)

























TABLE 162





Item
Unit
Example 43
Example 44
Example 45
Example 46
Example 47
Example 48
Example 49
Example 50
























HFO-1132(E)
mass %
29.0
31.0
33.0
35.0
37.0
39.0
32.0
32.0


HFO-1123
mass %
63.0
61.0
59.0
57.0
55.0
53.0
51.0
50.0


R32
mass %
8.0
8.0
8.0
8.0
8.0
8.0
17.0
18.0


GWP

55
55
55
55
55
55
116
122


COP ratio
% (relative
93.2
93.3
93.5
93.6
93.8
94.0
94.5
94.7



to R410A)










Refrigerating
% (relative
110.1
110.0
109.8
109.6
109.5
109.3
111.8
111.9


capacity ratio
to R410A)

























TABLE 163





Item
Unit
Example 51
Example 52
Example 53
Example 54
Example 55
Example 56
Example 57
Example 58
























HFO-1132(E)
mass %
30.0
27.0
21.0
23.0
25.0
27.0
11.0
13.0


HFO-1123
mass %
52.0
42.0
46.0
44.0
42.0
40.0
54.0
52.0


R32
mass %
18.0
31.0
33.0
33.0
33.0
33.0
35.0
35.0


GWP

122
210
223
223
223
223
237
237


COP ratio
% (relative
94.5
96.0
96.0
96.1
96.2
96.3
96.0
96.0



to R410A)










Refrigerating
% (relative
112.1
113.7
114.3
114.2
114.0
113.8
115.0
114.9


capacity ratio
to R410A)

























TABLE 164





Item
Unit
Example 59
Example 60
Example 61
Example 62
Example 63
Example 64
Example 65
Example 66
























HFO-1132(E)
mass %
15.0
17.0
19.0
21.0
23.0
25.0
27.0
11.0


HFO-1123
mass %
50.0
48.0
46.0
44.0
42.0
40.0
38.0
52.0


R32
mass %
35.0
35.0
35.0
35.0
35.0
35.0
35.0
37.0


GWP

237
237
237
237
237
237
237
250


COP ratio
% (relative
96.1
96.2
96.2
96.3
96.4
96.4
96.5
96.2



to R410A)










Refrigerating
% (relative
114.8
114.7
114.5
114.4
114.2
114.1
113.9
115.1


capacity ratio
to R410A)

























TABLE 165





Item
Unit
Example 67
Example 68
Example 69
Example 70
Example 71
Example 72
Example 73
Example 74
























HFO-1132(E)
mass %
13.0
15.0
17.0
15.0
17.0
19.0
21.0
23.0


HFO-1123
mass %
50.0
48.0
46.0
50.0
48.0
46.0
44.0
42.0


R32
mass %
37.0
37.0
37.0
0.0
0.0
0.0
0.0
0.0


GWP

250
250
250
237
237
237
237
237


COP ratio
% (relative
96.3
96.4
96.4
96.1
96.2
96.2
96.3
96.4



to R410A)










Refrigerating
% (relative
115.0
114.9
114.7
114.8
114.7
114.5
114.4
114.2


capacity ratio
to R410A)

























TABLE 166





Item
Unit
Example 75
Example 76
Example 77
Example 78
Example 79
Example 80
Example 81
Example 82
























HFO-1132(E)
mass %
25.0
27.0
11.0
19.0
21.0
23.0
25.0
27.0


HFO-1123
mass %
40.0
38.0
52.0
44.0
42.0
40.0
38.0
36.0


R32
mass %
0.0
0.0
0.0
37.0
37.0
37.0
37.0
37.0


GWP

237
237
250
250
250
250
250
250


COP ratio
% (relative
96.4
96.5
96.2
96.5
96.5
96.6
96.7
96.8



to R410A)










Refrigerating
% (relative
114.1
113.9
115.1
114.6
114.5
114.3
114.1
114.0


capacity ratio
to R410A)









The above results indicate that under the condition that the mass % of FO-1132(E), HFO-1123, and R32 based on their sum is respectively represented by x, y, and z, when coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), HFO-1123, and R32 is 100 mass %, a line segment connecting a point (0.0, 100.0, 0.0) and a point (0.0, 0.0, 100.0) is the base, and the point (0.0, 100.0, 0.0) is on the left side are within the range of a figure surrounded by line segments that connect the following 4 points:

    • point O (100.0, 0.0, 0.0),
    • point A″ (63.0, 0.0, 37.0),
    • point B″ (0.0, 63.0, 37.0), and
    • point (0.0, 100.0, 0.0),


      or on these line segments,


      the refrigerant has a GWP of 250 or less.


The results also indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments that connect the following 4 points:

    • point O (100.0, 0.0, 0.0),
    • point A′ (81.6, 0.0, 18.4),
    • point B′ (0.0, 81.6, 18.4), and
    • point (0.0, 100.0, 0.0),


      or on these line segments,


      the refrigerant has a GWP of 125 or less.


The results also indicate that when coordinates (x,y,z) are within the range of a figure surrounded by line segments that connect the following 4 points:

    • point O (100.0, 0.0, 0.0),
    • point A (90.5, 0.0, 9.5),
    • point B (0.0, 90.5, 9.5), and
    • point (0.0, 100.0, 0.0),


      or on these line segments,


      the refrigerant has a GWP of 65 or less.


The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:

    • point C (50.0, 31.6, 18.4),
    • point U (28.7, 41.2, 30.1), and
    • point D (52.2, 38.3, 9.5),


      or on these line segments,


      the refrigerant has a COP ratio of 96% or more relative to that of R410A.


In the above, the line segment CU is represented by coordinates (−0.0538z2+0.7888z+53.701, 0.0538z2−1.7888z+46.299, z), and the line segment UD is represented by coordinates (−3.4962z2+210.71z−3146.1, 3.4962z2−211.71z+3246.1, z).


The points on the line segment CU are determined from three points, i.e., point C, Comparative Example 10, and point U, by using the least-square method.


The points on the line segment UD are determined from three points, i.e., point U, Example 2, and point D, by using the least-square method.


The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:

    • point E (55.2, 44.8, 0.0),
    • point T (34.8, 51.0, 14.2), and
    • point F (0.0, 76.7, 23.3),


      or on these line segments,


      the refrigerant has a COP ratio of 94.5% or more relative to that of R410A.


In the above, the line segment ET is represented by coordinates (−0.0547z2 0.5327z+53.4, 0.0547z2−0.4673z+46.6, z), and the line segment TF is represented by coordinates (−0.0982z2+0.9622z+40.931, 0.0982z2−1.9622z+59.069, z).


The points on the line segment ET are determined from three points, i.e., point E, Example 2, and point T, by using the least-square method.


The points on the line segment TF are determined from three points, i.e., points T, S, and F, by using the least-square method.


The results also indicate that when coordinates (x,y,z) are on the left side of line segments that connect the following 3 points:

    • point G (0.0, 76.7, 23.3),
    • point R (21.0, 69.5, 9.5), and
    • point H (0.0, 85.9, 14.1),


      or on these line segments,


      the refrigerant has a COP ratio of 93% or more relative to that of R410A.


In the above, the line segment GR is represented by coordinates (−0.0491z2−1.1544z+38.5, 0.0491z2+0.1544z+61.5, z), and the line segment RH is represented by coordinates (−0.3123z2+4.234z+11.06, 0.3123z2−5.234z+88.94, z).


The points on the line segment GR are determined from three points, i.e., point G, Example 5, and point R, by using the least-square method.


The points on the line segment RH are determined from three points, i.e., point R, Example 7, and point H, by using the least-square method.


In contrast, as shown in, for example, Comparative Examples 8, 9, 13, 15, 17, and 18, when R32 is not contained, the concentrations of HFO-1132(E) and HFO-1123, which have a double bond, become relatively high; this undesirably leads to deterioration, such as decomposition, or polymerization in the refrigerant compound.


(6) First Embodiment

The following describes, with reference to the drawings, a heat load treatment system 100, which is a refrigeration apparatus according to a first embodiment. The following embodiments, which are provided as specific examples, should not be construed as limiting the technical scope and may be altered as appropriate within a range not departing from the spirit thereof. Words such as up, down, left, right, forward (frontside), and rearward (backside) may be hereinafter used to refer to directions. Unless specified otherwise, these directions correspond to directions denoted by arrows in the drawings. The words relevant to the directions are merely used to facilitate the understanding of the embodiments and should not be construed as limiting the ideas presented in the present disclosure.


(6-1) Overall Configuration


FIG. 16 is a schematic configuration diagram of the heat load treatment system 100. The heat load treatment system 100 is a system for treating a heat load in an installation environment. In the present embodiment, the heat load treatment system 100 is an air conditioning system that air-conditions a target space.


The heat load treatment system 100 includes mainly a plurality of heat-source-side units 10 (four heat-source-side units 10 in the example concerned), a heat exchanger unit 30, a plurality of use-side units 60 (four use-side units 60 in the example concerned), a plurality of liquid-side connection pipes LP (four liquid-side connection pipes LP in the example concerned), a plurality of gas-side connection pipes GP (four gas-side connection pipes GP in the example concerned), a first heat-medium connection pipe H1, a second heat-medium connection pipe H2, a refrigerant leakage sensor 70, and a controller 80, which controls the operation of the heat load treatment system 100.


In the heat load treatment system 100, a refrigerant circuit RC, through which refrigerant circulates, is formed in such a manner that each of the heat-source-side units 10 is connected to the heat exchanger unit 30 via the corresponding one of the liquid-side connection pipes LP and the corresponding one of the gas-side connection pipes GP. The plurality of heat-source-side units 10 are arranged in parallel, and a plurality of refrigerant circuits RC (four refrigerant circuits RC in the example concerned) are formed in the heat load treatment system 100 accordingly. In other words, the heat load treatment system 100 includes the plurality of refrigerant circuits RC, each of which is constructed of the corresponding one of the plurality of heat-source-side units 10 and the heat exchanger unit 30. The heat load treatment system 100 performs a vapor compression refrigeration cycle in each refrigerant circuit RC.


In the present embodiment, refrigerant sealed in the refrigerant circuits RC is a refrigerant mixture containing 1,2-difluoroethylene and may be any one of the refrigerants A to E mentioned above.


In the heat load treatment system 100, a heat medium circuit HC, through which a heat medium circulates, is formed in such a manner that the heat exchanger unit 30 and the use-side units 60 are connected to each other via the first heat-medium connection pipe H1 and the second heat-medium connection pipe H2. In other words, the heat exchanger unit 30 and the use-side units 60 constitute the heat medium circuit HC in the heat load treatment system 100. When being driven, a pump 36 of the heat exchanger unit 30 causes the heat medium to circulate through the heat medium circuit HC.


In the present embodiment, the heat medium sealed in the heat medium circuit HC is, for example, a liquid medium such as water or brine. Examples of brine include aqueous sodium chloride solution, aqueous calcium chloride solution, aqueous ethylene glycol solution, and aqueous propylene glycol solution. The liquid medium is not limited to these examples and may be selected as appropriate. Specifically, brine is used as the heat medium in the present embodiment.


(6-2) Details on Configuration

(6-2-1) Heat-Source-Side Unit


In the present embodiment, the heat load treatment system 100 includes four heat-source-side units 10 (see FIG. 16). The four heat-source-side units 10 cool or heat refrigerant, which is in turn used by the heat exchanger unit 30 to cool or heat the liquid medium. The number of the heat-source-side units 10 is not limited to particular values such as four, which is merely given as an example. One, two, three, or five or more heat-source-side units 10 may be included. The internal configuration of one of the four heat-source-side units 10 is illustrated in FIG. 16, in which the internal configuration of the remaining three heat-source-side units 10 is omitted. Each of the heat-source-side units 10 that are not illustrated in full has the same configuration as the heat-source-side unit 10 that will be described below.


The heat-source-side units 10 are units that use air as a heat source to cool or heat refrigerant. The heat-source-side units 10 are individually connected to the heat exchanger unit 30 via the respective liquid-side connection pipes LP and the respective gas-side connection pipes GP. In other words, the individual heat-source-side units 10 together with the heat exchanger unit 30 are constituent components of the corresponding refrigerant circuits RC. That is, the plurality of refrigerant circuits RC (four refrigerant circuits RC in the example concerned) are formed in the heat load treatment system 100 in such a manner that the respective heat-source-side units 10 (four heat-source-side units 10 in the example concerned) are individually connected to the heat exchanger unit 30. The refrigerant circuits RC are separated from each other and do not communicate with each other.


Although the installation site of the heat-source-side units 10 is not limited, each of the heat-source-side unit 10 may be installed on a roof or in a space around a building. The heat-source-side unit 10 is connected to the heat exchanger unit 30 via the liquid-side connection pipe LP and the gas-side connection pipe GP to form part of the refrigerant circuit RC.


The heat-source-side unit 10 includes mainly, as devices constituting the refrigerant circuit RC, a plurality of refrigerant pipes (a first pipe P1 to an eleventh pipe P11), a compressor 11, an accumulator 12, a four-way switching valve 13, a heat-source-side heat exchanger 14, a subcooler 15, a heat-source-side first control valve 16, a heat-source-side second control valve 17, a liquid-side shutoff valve 18, and a gas-side shutoff valve 19.


The first pipe P1 forms a connection between the gas-side shutoff valve 19 and a first port of the four-way switching valve 13. The second pipe P2 forms a connection between an inlet port of the accumulator 12 and a second port of the four-way switching valve 13. The third pipe P3 forms a connection between an outlet port of the accumulator 12 and an intake port of the compressor 11. The fourth pipe P4 forms a connection between a discharge port of the compressor 11 and a third port of the four-way switching valve 13. The fifth pipe P5 forms a connection between a fourth port of the four-way switching valve 13 and a gas-side inlet-outlet port of the heat-source-side heat exchanger 14. The sixth pipe P6 forms a connection between a liquid-side inlet-outlet port of the heat-source-side heat exchanger 14 and one end of the heat-source-side first control valve 16. The seventh pipe P7 forms a connection between the other end of the heat-source-side first control valve 16 and one end of a main channel 151 in the subcooler 15. The eighth pipe P8 forms a connection between the other end of the main channel 151 in the subcooler 15 and one end of the liquid-side shutoff valve 18.


The ninth pipe P9 forms a connection between one end of the heat-source-side second control valve 17 and a portion of the sixth pipe P6 between its two ends. The tenth pipe P10 forms a connection between the other end of the heat-source-side second control valve 17 and one end of a subchannel 152 in the subcooler 15. The eleventh pipe P11 forms a connection between the other end of the subchannel 152 in the subcooler 15 and an injection port of the compressor 11.


Each of these refrigerant pipes (the pipes P1 to P11) may be practically constructed of a single pipe or a plurality of pipes connected to each other via a joint.


The compressor 11 is a device that compresses low-pressure refrigerant in the refrigeration cycle to a high pressure. In the present embodiment, the compressor 11 has a closed structure in which a rotary-type or scroll-type positive-displacement compression element is driven and rotated by a compressor motor (not illustrated). The operating frequency of the compressor motor may be controlled by an inverter. The capacity of the compressor 11 is thus controllable. Alternatively, the compressor 11 may be a compressor with fixed capacity.


The accumulator 12 is a container provided to eliminate or reduce the possibility that an excessive amount of liquid refrigerant will be sucked into the compressor 11. The accumulator 12 has a predetermined volumetric capacity required to accommodate refrigerant charged into the refrigerant circuit RC.


The four-way switching valve 13 is a channel-switching mechanism for redirecting a flow of refrigerant in the refrigerant circuit RC. The four-way switching valve 13 enables switching between the normal cycle state and the reverse cycle state. When the four-way switching valve 13 is switched to the normal cycle state, the first port (the first pipe P1) communicates with the second port (the second pipe P2), and the third port (the fourth pipe P4) communicates with the fourth port (the fifth pipe P5) (see solid lines in the four-way switching valve 13 illustrated in FIG. 16). When the four-way switching valve 13 is switched to the reverse cycle state, the first port (the first pipe P1) communicates with the third port (the forth pipe P4), and the second port (the second pipe P2) communicates with the fourth port (the fifth pipe P5) (see broken lines in the four-way switching valve 13 illustrated in FIG. 16).


The heat-source-side heat exchanger 14 is a heat exchanger that functions as a refrigerant condenser (or radiator) or a refrigerant evaporator. The heat-source-side heat exchanger 14 functions as a refrigerant condenser during normal cycle operation (operation in which the four-way switching valve 13 is in the normal cycle state). The heat-source-side heat exchanger 14 functions as a refrigerant evaporator during reverse cycle operation (operation in which the four-way switching valve 13 is in the reverse cycle state). The heat-source-side heat exchanger 14 includes a plurality of heat transfer tubes and a heat transfer fin (not illustrated). The heat-source-side heat exchanger 14 is configured to enable exchange of heat between refrigerant in the heat transfer tubes and air flowing around the heat transfer tubes or around the heat transfer fin (heat-source-side airflow, which will be described later).


The subcooler 15 is a heat exchanger that transforms incoming refrigerant into liquid refrigerant in a subcooled state. The subcooler 15 is, for example, a double-tube heat exchanger, and the main channel 151 and the subchannel 152 are formed in the subcooler 15. The subcooler 15 is configured to enable exchange of heat between refrigerant flowing through the main channel 151 and refrigerant flowing through the subchannel 152.


The heat-source-side first control valve 16 is an electronic expansion valve whose opening degree is controllable, such that the pressure of incoming refrigerant may be reduced in accordance with the opening degree or the flow rate of incoming refrigerant may be regulated in accordance with the opening degree. The heat-source-side first control valve 16 is capable of switching between the opened state and the closed state. The heat-source-side first control valve 16 is disposed between the heat-source-side heat exchanger 14 and the subcooler 15 (the main channel 151).


The heat-source-side second control valve 17 is an electronic expansion valve whose opening degree is controllable, such that the pressure of incoming refrigerant may be reduced in accordance with the opening degree or the flow rate of incoming refrigerant may be regulated in accordance with the opening degree. The heat-source-side second control valve 17 is capable of switching between the opened state and the closed state. The heat-source-side second control valve 17 is disposed between the heat-source-side heat exchanger 14 and the subcooler 15 (the subchannel 152).


The liquid-side shutoff valve 18 is a manual valve disposed in the portion where the eighth pipe P8 is connected to the liquid-side connection pipe LP. One end of the liquid-side shutoff valve 18 is connected to the eighth pipe P8, and the other end of the liquid-side shutoff valve 18 is connected to the liquid-side connection pipe LP.


The gas-side shutoff valve 19 is a manual valve disposed in the portion where the first pipe P1 is connected to the gas-side connection pipe GP. One end of the gas-side shutoff valve 19 is connected to the first pipe P1, and the other end of the gas-side shutoff valve 19 is connected to the gas-side connection pipe GP.


The heat-source-side unit 10 also includes a heat-source-side fan 20, which generates heat-source-side airflow flowing through the heat-source-side heat exchanger 14. The heat-source-side fan 20 is a fan that supplies the heat-source-side heat exchanger 14 with the heat-source-side airflow, which is a cooling source or a heating source for refrigerant flowing through the heat-source-side heat exchanger 14. The heat-source-side fan 20 includes, as a drive source, a heat-source-side fan motor (not illustrated), which executes on-off control and regulates the revolution frequency as circumstances demand.


In addition, the heat-source-side unit 10 includes a plurality of heat-source-side sensors S1 (see FIG. 18) to sense the state (the pressure or temperature in particular) of refrigerant in the refrigerant circuit RC. Each heat-source-side sensor S1 is a pressure sensor or a temperature sensor such as a thermistor or a thermocouple. A first temperature sensor 21, which senses the temperature (suction temperature) of refrigerant on the intake side of the compressor 11 (refrigerant in the third pipe P3), and/or a second temperature sensor 22, which senses the temperature (discharge temperature) of refrigerant on the discharge side of the compressor 11 (refrigerant in the fourth pipe P4) may be included as the heat-source-side sensor S1. A third temperature sensor 23, which senses the temperature of refrigerant on the liquid side of the heat-source-side heat exchanger 14 (refrigerant in the sixth pipe P6), a fourth temperature sensor 24, which senses the temperature of refrigerant in the eighth pipe P8, and/or a fifth temperature sensor 25, which senses the temperature of refrigerant in the eleventh pipe P11 may be included as the heat-source-side sensor S1. A first pressure sensor 27, which senses the pressure (intake pressure) of refrigerant on the intake side of the compressor 11 (refrigerant in the second pipe P2), and/or a second pressure sensor 28, which senses the pressure (discharge pressure) on the discharge side of the compressor 11 (refrigerant in the fourth pipe P4) may be included as the heat-source-side sensor S1.


The heat-source-side unit 10 also includes a heat-source-side unit control unit 29, which controls the operation and states of the devices included in the heat-source-side unit 10. For example, various electric circuits, a microprocessor, and a microcomputer including a memory chip that stores programs to be executed by the microprocessor are included in the heat-source-side unit control unit 29, which can thus perform its functions. The heat-source-side unit control unit 29 is electrically connected to the devices (11, 13, 16, 17, 20) and the heat-source-side sensors S1 of the heat-source-side unit 10 to perform signal input and output. The heat-source-side unit control unit 29 is electrically connected through a communication line to a heat exchanger unit control unit 49 (which will be described later) of the heat exchanger unit 30 to transmit and receive control signals.


(6-2-2) Heat Exchanger Unit


The heat exchanger unit 30 is a device in which a heat medium is cooled and/or heated by exchanging heat with refrigerant. In the present embodiment, cooling of the heat medium and heating of the heat medium are performed in the heat exchanger unit 30 in such a manner that heat is exchanged between the heat medium and refrigerant. The heat medium cooled or heated by the liquid refrigerant in the heat exchanger unit 30 is transferred to the use-side units 60.


The heat exchanger unit 30 is a unit in which a heat medium that is to be transferred to the use-side units 60 is cooled or heated by exchanging heat with the refrigerant. Although the installation site of the heat exchanger unit 30 is not limited, the heat exchanger unit 30 may be installed indoors (e.g., in an equipment/device room). As constituent devices of the refrigerant circuits RC, refrigerant pipes (refrigerant pipes Pa, Pb, Pc, and Pd), expansion valves 31, and on-off valves 32 are included in the heat exchanger unit 30. The number of the refrigerant pipes is the same as the number of the heat-source-side units 10 (the refrigerant circuits RC); that is, the number of the refrigerant pipes is equal to four in the example concerned. The same holds for the number of the expansion valves 31 and the number of the on-off valves 32. As a constituent device of the refrigerant circuits RC and of the heat medium circuit HC, a heat exchanger 33 is included in the heat exchanger unit 30.


The refrigerant pipe Pa forms a connection between the liquid-side connection pipe LP and one end of the expansion valve 31. The refrigerant pipe Pb forms a connection between the other end of the expansion valve 31 and a liquid-side refrigerant inlet-outlet port of the heat exchanger 33. The refrigerant pipe Pc forms a connection between a gas-side refrigerant inlet-outlet port of the heat exchanger 33 and one end of the on-off valve 32. The refrigerant pipe Pd forms a connection between the other end of the on-off valve 32 and the gas-side connection pipe GP. Each of these refrigerant pipes (the pipes Pa to Pd) may be practically constructed of a single pipe or a plurality of pipes connected to each other via a joint.


The expansion valve 31 is an electronic expansion valve whose opening degree is controllable, such that the pressure of incoming refrigerant may be reduced in accordance with the opening degree or the flow rate of incoming refrigerant may be regulated in accordance with the opening degree. The expansion valve 31 is capable of switching between the opened state and the closed state. The expansion valve 31 is disposed between the heat exchanger 33 and the liquid-side connection pipe LP.


The on-off valve 32 is a control valve capable of switching between the opened state and the closed state. The on-off valve 32 in the closed state interrupts refrigerant. The on-off valve 32 is disposed between the heat exchanger 33 and the gas-side connection pipe GP.


A plurality of paths (refrigerant paths RP) for refrigerant flowing through the refrigerant circuits RC are formed in heat exchanger 33. In the heat exchanger 33, the refrigerant paths RP do not communicate with each other. On this account, each refrigerant path RP has a liquid-side inlet-outlet port and a gas-side inlet-outlet port. The number of liquid-side inlet-outlet ports in the heat exchanger 33 is the same as the number of refrigerant paths RP; that is, the number of liquid-side inlet-outlet ports in the heat exchanger 33 is equal to four in the example concerned. The same holds for the number of gas-side inlet-outlet ports in the heat exchanger 33. A path (heat medium path HP) for the heat medium flowing through the heat medium circuit HC is also formed in the heat exchanger 33.


More specifically, a first heat exchanger 34 and a second heat exchanger 35 are included as the heat exchanger 33. The first heat exchanger 34 and the second heat exchanger 35 are discrete devices. Two separate refrigerant paths RP are formed in each of the first heat exchanger 34 and the second heat exchanger 35. The first heat exchanger 34 and the second heat exchanger 35 are configured as follows: one end of each refrigerant path RP is connected to the refrigerant pipe Pb of the corresponding one of the refrigerant circuits RC, and the other end of each refrigerant path RP is connected to the refrigerant pipe Pc of the corresponding one of the refrigerant circuits RC. In the first heat exchanger 34, one end of the heat medium path HP is connected to a heat medium pipe Hb, which will be described later, and the other end of the heat medium path HP is connected to a heat medium pipe Hc, which will be described later. In the second heat exchanger 35, one end of the heat medium path HP is connected to Hc, which will be described later, and the other end of the heat medium path HP is connected to a heat medium pipe Hd, which will be described later. In the heat medium circuit HC, the heat medium path HP of the first heat exchanger 34 and the heat medium path HP of the second heat exchanger 35 are arranged in series. Each of the first heat exchanger 34 and the second heat exchanger 35 is configured to enable exchange of heat between refrigerant flowing through the refrigerant paths RP (the refrigerant circuits RC) and the heat medium flowing through the heat medium path HP (the heat medium circuit HC).


As a constituent device of the heat medium circuit HC, heat medium pipes (heat medium pipes Ha, Hb, Hc, and Hd) and the pump 36 are also included in the heat exchanger unit 30.


One end of the heat medium pipe Ha is connected to the first heat-medium connection pipe H1, and the other end of the heat medium pipe Ha is connected to an intake-side port of the pump 36. One end of the heat medium pipe Hb is connected to a discharge-side port of the pump 36, and the other end of the heat medium pipe Hb is connected to one end of the heat medium path HP of the first heat exchanger 34. One end of the heat medium pipe He is connected to the other end of the heat medium path HP of the first heat exchanger 34, and the other end of the heat medium pipe He is connected to one end of the heat medium path HP of the second heat exchanger 35. One end of the heat medium pipe Hd is connected to the other end of the heat medium path HP of the second heat exchanger 35, and the other end of the heat medium pipe Hd is connected to the second heat-medium connection pipe H2. Each of these heat medium pipes (the pipes Ha to Hd) may be practically constructed of a single pipe or a plurality of pipes connected to each other via a joint.


The pump 36 is disposed in the heat medium circuit HC. During operation, the pump 36 sucks in and discharges the heat medium. The pump 36 includes a motor that is a drive source. The motor is inverter-controlled, and the revolution frequency is regulated accordingly. The discharge flow rate of the pump 36 is thus variable. The heat exchanger unit 30 may include a plurality of pumps 36 connected in series or parallel in the heat medium circuit HC. The pump 36 may be a metering pump.


The heat exchanger unit 30 includes a plurality of heat exchanger unit sensors S2 (see FIG. 18) to sense the state (the pressure or temperature in particular) of refrigerant in the refrigerant circuits RC. Each heat exchanger unit sensor S2 is a pressure sensor or a temperature sensor such as a thermistor or a thermocouple. A sixth temperature sensor 41, which senses the temperature of refrigerant on the liquid side of the heat exchanger 33 (refrigerant in the refrigerant pipe Pb on the refrigerant path RP), and/or a seventh temperature sensor 42, which senses the temperature of refrigerant on the gas-side of the heat exchanger 33 (refrigerant in the refrigerant pipe Pc on the refrigerant path RP) may be included as the heat exchanger unit sensor S2. A third pressure sensor 43, which senses the pressure of refrigerant on the liquid side of the heat exchanger 33 (refrigerant in the refrigerant pipe Pb on the refrigerant path RP), and/or a fourth pressure sensor 44, which senses the pressure on the gas-side of the heat exchanger 33 (refrigerant in the refrigerant pipe Pc on the refrigerant path RP) may be included as the heat exchanger unit sensor S2.


The heat exchanger unit 30 includes an exhaust fan unit to enable the heat exchanger unit 30 to discharge leakage refrigerant at the time of occurrence of refrigerant leakage in the heat exchanger unit 30 (the refrigerant circuit RC). The exhaust fan unit includes an exhaust fan 46. The exhaust fan 46 is driven along with a drive source (e.g., a fan motor). When being driven, the exhaust fan 46 generates a first airflow AF1, which flows out of the heat exchanger unit 30. The exhaust fan 46 is not limited to a particular type of fan and is, for example, a sirocco fan or a propeller fan.


The heat exchanger unit 30 also includes a cooling fan 48. The cooling fan 48 is driven along with a drive source (e.g., a fan motor). When being driven, the cooling fan 48 generates a second airflow AF2 to cool electric components (heating components) disposed in the heat exchanger unit 30. The cooling fan 48 is disposed in such a manner that the second airflow AF2 flows around the heating components to perform heat exchange and then flows out of the heat exchanger unit 30. The cooling fan 48 is not limited to a particular type of fan and is, for example, a sirocco fan or a propeller fan.


The heat exchanger unit 30 also includes a heat exchanger unit control unit 49, which controls the operation and states of the devices included in the heat exchanger unit 30. For example, a microprocessor, a microcomputer including a memory chip that stores programs to be executed by the microprocessor, and various electric components are included in the heat exchanger unit control unit 49, which can thus perform its functions. The heat exchanger unit control unit 49 is electrically connected to the devices and the heat exchanger unit sensors S2 of the heat exchanger unit 30 to perform signal input and output. The heat exchanger unit control unit 49 is electrically connected through a communication line to a heat-source-side unit control unit 29, control units (not illustrated) disposed in the corresponding use-side units 60, or a remote control (not illustrated) to transmit and receive control signals. The electric components included in the heat exchanger unit control unit 49 are cooled by the second airflow AF2 generated by the cooling fan 48.


(6-2-3) Use-Side Unit


Each use-side unit 60 is equipment that uses the heat medium cooled or heated in the heat exchanger unit 30. The individual use-side units 60 are connected to the heat exchanger unit 30 via, for example, the first heat-medium connection pipe H1 and the second heat-medium connection pipe H2. The individual use-side units 60 and the heat exchanger unit 30 constitute the heat medium circuit HC.


In the present embodiment, each use-side unit 60 is an air handling unit or a fan coil unit that performs air conditioning through exchange of heat between the heat medium cooled or heated in the heat exchanger unit 30 and air.


Only one use-side unit 60 is illustrated in FIG. 16. Nevertheless, the heat load treatment system 100 may include a plurality of use-side units, and the heat medium cooled or heated in the heat exchanger unit 30 may branch out to be transferred to the individual use-side units. The use-side units that may be included in the heat load treatment system 100 may be of the same type. Alternatively, more than one type of equipment may be included as the use-side units.


(6-2-4) Liquid-Side Connection Pipe and Gas-Side Connection Pipe


The liquid-side connection pipes LP and the gas-side connection pipes GP form refrigerant paths in such a manner as to connect the heat exchanger unit 30 to the corresponding heat-source-side units 10. The liquid-side connection pipes LP and the gas-side connection pipes GP are installed on-site. Each of the liquid-side connection pipes LP and the gas-side connection pipes GP may be practically constructed of a single pipe or a plurality of pipes connected to each other via a joint.


(6-2-5) First Heat-Medium Connection Pipe and Second Heat-Medium Connection Pipe


The first heat-medium connection pipe H1 and the second heat-medium connection pipe H2 form heating medium paths in such a manner as to connect the heat exchanger unit 30 to the corresponding use-side units 60. The first heat-medium connection pipe H1 and the second heat-medium connection pipe H2 are installed on-site. Each of the first heat-medium connection pipe H1 and the second heat-medium connection pipe H2 may be practically constructed of a single pipe or a plurality of pipes connected to each other via a joint.


(6-2-6) Refrigerant Leakage Sensor


The refrigerant leakage sensor 70 is a sensor for sensing leakage of refrigerant in the space in which the heat exchanger unit 30 is installed (an equipment/device room R, which will be described later). More specifically, the refrigerant leakage sensor 70 is configured to sense leakage refrigerant in the heat exchanger unit 30. In the example concerned, the refrigerant leakage sensor 70 is a well-known general-purpose product suited to the type of refrigerant sealed in the refrigerant circuits RC. The refrigerant leakage sensor 70 is disposed in the space in which the heat exchanger unit 30 is installed. In the present embodiment, the refrigerant leakage sensor 70 is disposed in the heat exchanger unit 30.


The refrigerant leakage sensor 70 continuously or intermittently outputs, to the controller 80, electrical signals (refrigerant-leakage-sensor detection signals) corresponding to detection values. More specifically, the refrigerant-leakage-sensor detection signals output by the refrigerant leakage sensor 70 vary in voltage depending on the concentration of refrigerant sensed by the refrigerant leakage sensor 70. In other words, the refrigerant-leakage-sensor detection signals are output to the controller 80 in a manner so as to enable not only a determination on whether leakage of refrigerant has occurred in the refrigerant circuit RC but also a determination of the concentration of leakage refrigerant in the space in which the refrigerant leakage sensor 70 is installed, or more specifically, the concentration of refrigerant sensed by the refrigerant leakage sensor 70.


(6-2-7) Controller


The controller 80 illustrated in FIG. 18 is a computer that controls the states of the individual devices to control the operation of the heat load treatment system 100. In the present embodiment, the controller 80 is configured in such a manner that the heat-source-side unit control unit 29, the heat exchanger unit control unit 49, and devices connected to these units (e.g., control units disposed in the corresponding use-side units and a remote control) are connected to each other through communication lines. In the present embodiment, the heat-source-side unit control unit 29, the heat exchanger unit control unit 49, and the devices connected to these units cooperate to serve as the controller 80.


(6-3) Installation Layout of Heat Load Treatment System


FIG. 17 is a schematic diagram illustrating an installation layout of the heat load treatment system 100. Although the installation site of the heat load treatment system 100 is not limited, the heat load treatment system 100 is installed in, for example, a building, a commercial facility, or a plant. In the present embodiment, the heat load treatment system 100 is installed in a building B1 as illustrated in FIG. 17. The building B1 has a plurality of floors. The number of floors or rooms in the building B1 may be changed as appropriate.


The building B1 includes the equipment/device room R. The equipment/device room R is a space in which electric equipment, such as a switchboard and a generator, or cooling/heating devices, such as a boiler, are installed. The equipment/device room R is an accessible space in which people can stay. The equipment/device room R is, for example, a basement in which people can walk. In the present embodiment, the equipment/device room R is located on the lowermost floor of the building B1. The building B1 includes a plurality of living spaces SP, each of which is provided for activities of the occupants. In the present embodiment, the living spaces SP are located on the respective floors above the equipment/device room R.


Referring to FIG. 17, the heat-source-side unit 10 is installed on the rooftop of the building B1. The heat exchanger unit 30 is installed in the equipment/device room R. On this account, the liquid-side connection pipe LP and the gas-side connection pipe GP extend in a vertical direction between the rooftop and the equipment/device room R.


Referring to FIG. 17, the individual use-side units 60 are disposed in the living spaces SP. On this account, the first heat-medium connection pipe H1 and the second heat-medium connection pipe H2 extend in a vertical direction through the living spaces SP and the equipment/device room R.


The building B1 is equipped with a ventilating apparatus 200, which provides ventilation (forced ventilation or natural ventilation) in the equipment/device room R. The ventilating apparatus 200 is installed in the equipment/device room R. Specifically, a ventilating fan 210 is installed as the ventilating apparatus 200 in the equipment/device room R. The ventilating fan 210 is connected to a plurality of ventilating ducts D. When being driven, the ventilating fan 210 ventilates the equipment/device room R in such a manner that air (room air RA) in the equipment/device room R is discharged as exhaust air EA to the external space and air (outside air OA) in the external space is supplied as supply air SA to the equipment/device room R. The ventilating fan 210 is thus regarded as the ventilating apparatus that provides ventilation in the equipment/device room R. The operation (e.g., on-off or the revolution frequency) of the ventilating fan 210 may be controlled by the controller 80. The ventilating fan 210 is controlled in such a manner as to switch, as appropriate, between an intermittent operation mode in which the ventilating fan 210 operates intermittently and a continuous operation mode in which the ventilating fan 210 operates continuously.


In the equipment/device room R, an open-close mechanism 220 is also installed as the ventilating apparatus 200. The open-close mechanism 220 is a mechanism capable of switching between an opened state in which the equipment/device room R communicates with another space (e.g., the external space) and a closed state in which the equipment/device room R is shielded. That is, the open-close mechanism 220 opens or closes a vent through which the equipment/device room R communicates with another space. The open-close mechanism 220 is, for example, a door, a hatch, a window, or a shutter, the opening and closing of which are controllable. The open-close mechanism 220 is electrically connected to the controller 80 through an adapter 80b (see FIG. 18). The state (the opened state or the closed state) of the ventilating fan 210 is controlled by the controller 80.


(6-4) Features

The refrigerant mixture that is any one of the refrigerants A to E mentioned above is used as refrigerant sealed in the refrigerant circuits RC serving as a first cycle in the heat load treatment system 100 according to the present embodiment, where the efficiency of heat exchange in the heat exchanger unit 30 is enhanced accordingly.


(7) Second Embodiment


FIG. 19 is a diagram illustrating a refrigerant circuit included in a two-stage refrigeration apparatus 500, which is a refrigeration apparatus according to the present embodiment. The two-stage refrigeration apparatus 500 includes a first cycle 510, which is a high-stage-side refrigeration cycle on the high temperature side, and a second cycle 520, which is a low-stage-side refrigeration cycle on the low temperature side. The first cycle 510 and the second cycle 520 are thermally connected to each other through a cascade condenser 531. Constituent elements of the first cycle 510 and the constituent elements of the second cycle 520 are accommodated in an outdoor unit 501 or a cooling unit 502, which will be described later.


With consideration given to possible refrigerant leakage, carbon dioxide (CO2), which does not have a significant impact on global warming, is used as refrigerant sealed in the second cycle 520. Refrigerant sealed in the first cycle 510 is a refrigerant mixture containing 1,2-difluoroethylene and may be any one of the refrigerants A to E mentioned above. The low-temperature-side refrigerant sealed in the second cycle 520 is referred to as a second refrigerant, and the high-temperature-side refrigerant sealed in the first cycle 510 is referred to as a first refrigerant.


The first cycle 510 is a refrigeration cycle through which the first refrigerant circulates. A refrigerant circuit is formed in the first cycle 510 in such a manner that a first compressor 511, a first condenser 512, a first expansion valve 513, and a first evaporator 514 are serially connected to each other via a refrigerant pipe. The refrigerant circuit provided in the first cycle 510 is herein referred to as a first refrigerant circuit.


The second cycle 520 is a refrigeration cycle through which the second refrigerant circulates. A refrigerant circuit is formed in the second cycle 520 in such a manner that a second compressor 521, a second upstream-side condenser 522, a second downstream-side condenser 523, a liquid receiver 525, a second downstream-side expansion valve 526, and a second evaporator 527 are serially connected to each other via a refrigerant pipe. The second cycle 520 includes a second upstream-side expansion valve 524, which is disposed between the second downstream-side condenser 523 and the liquid receiver 525. The refrigerant circuit provided in the second cycle 520 is herein referred to as a second refrigerant circuit.


The two-stage refrigeration apparatus 500 includes the cascade condenser 531 mentioned above. The cascade condenser 531 is configured in such a manner that the first evaporator 514 and the second downstream-side condenser 523 are coupled to each other to enable exchange of heat between refrigerant flowing through the first evaporator 514 and refrigerant flowing through the second downstream-side condenser 523. The cascade condenser 531 is thus regarded as a refrigerant heat exchanger. With the cascade condenser 531 being provided, the second refrigerant circuit and the first refrigerant circuit constitute a multistage configuration.


The first compressor 511 sucks in the first refrigerant flowing through the first refrigerant circuit, compresses the first refrigerant to transform it into high-temperature, high-pressure gas refrigerant, and then discharges the gas refrigerant. In the present embodiment, the first compressor 511 is a compressor of the type that is capable of adjusting the refrigerant discharge amount through control of the revolution frequency by an inverter circuit.


The first condenser 512 causes, for example, air or brine to exchange heat with refrigerant flowing through the first refrigerant circuit, and in turn, the refrigerant is condensed into a liquid. In the present embodiment, the first condenser 512 enables exchange of heat between outside air and refrigerant. The two-stage refrigeration apparatus 500 includes a first condenser fan 512a. The first condenser fan 512a blows outside air into the first condenser 512 to promote heat exchange in the first condenser 512. The airflow rate of the first condenser fan 512a is adjustable.


The first expansion valve 513 decompresses and expands the first refrigerant flowing through the first refrigerant circuit and is, for example, an electronic expansion valve.


In the first evaporator 514, refrigerant flowing through the first refrigerant circuit evaporates and gasifies as a result of heat exchange. In the present embodiment, the first evaporator 514 includes, for example, a heat transfer tube that allows, in the cascade condenser 531, passage of refrigerant flowing through the first refrigerant circuit. In the cascade condenser 531, heat is exchanged between the first refrigerant flowing through the first evaporator 514 and the second refrigerant flowing through the second refrigerant circuit.


The second compressor 521 sucks in the second refrigerant flowing through the second refrigerant circuit, compresses the second refrigerant to transform it into high-temperature, high-pressure gas refrigerant, and then discharges the gas refrigerant. In the present embodiment, the second compressor 521 is, for example, a compressor of the type that is capable of adjusting the refrigerant discharge amount through control of the revolution frequency by an inverter circuit.


The second upstream-side condenser 522 causes, for example, air or brain to exchange heat with refrigerant flowing through the first refrigerant circuit, and in turn, the refrigerant is condensed into a liquid. In the present embodiment, the second upstream-side condenser 522 enables exchange of heat between outside air and refrigerant. The two-stage refrigeration apparatus 500 includes a second condenser fan 522a. The second condenser fan 522a blows outside air into the second upstream-side condenser 522 to promote heat exchange in the second upstream-side condenser 522. The second condenser fan 522a is a fan whose airflow rate is adjustable.


In the second downstream-side condenser 523, the refrigerant condensed into a liquid in the second upstream-side condenser 522 is further transformed into supercooled refrigerant. In the present embodiment, the second downstream-side condenser 523 includes, for example, a heat transfer tube that allows, in the cascade condenser 531, passage of the second refrigerant flowing through the second refrigerant circuit. In the cascade condenser 531, heat is exchanged between the second refrigerant flowing through the second downstream-side condenser 523 and the first refrigerant flowing through the first refrigerant circuit.


The second upstream-side expansion valve 524 decompresses and expands the second refrigerant flowing through the second refrigerant circuit, and the second upstream-side expansion valve 524 in the example concerned is an electronic expansion valve.


The liquid receiver 525 is disposed downstream of the second downstream-side condenser 523 and the second upstream-side expansion valve 524. The liquid receiver 525 stores refrigerant temporarily.


The second downstream-side expansion valve 526 decompresses and expands the second refrigerant flowing through the second refrigerant circuit and is an electronic expansion valve.


In the second evaporator 527, the first refrigerant flowing through the first refrigerant circuit evaporates and gasifies as a result of heat exchange. Exchange of heat between a cooling target and the refrigerant in the second evaporator 527 results in direct or indirect cooling of the cooling target.


Constituent elements of the two-stage refrigeration apparatus 500 mentioned above are accommodated in the outdoor unit 501 or the cooling unit 502. The cooling unit 502 is used as, for example, a refrigerator-freezer showcase or a unit cooler. The first compressor 511, the first condenser 512, the first expansion valve 513, the first evaporator 514, the second compressor 521, the second upstream-side condenser 522, the second downstream-side condenser 523, the second upstream-side expansion valve 524, the liquid receiver 525, a supercooled refrigerant pipe 528, a vapor refrigerant pipe 529, a capillary tube 528a, and a check valve 529a in the present embodiment are accommodated in the outdoor unit 501. The second downstream-side expansion valve 526 and the second evaporator 527 are accommodated in the cooling unit 502. The outdoor unit 501 and the cooling unit 502 are connected to each other via two pipes, namely, a liquid pipe 551 and a gas pipe 552.


With the two-stage refrigeration apparatus 500 being configured as described above, the following describes, in accordance with the flow of refrigerants flowing through the respective refrigerant circuits, the way in which the constituent devices work during normal cooling operation for cooling a cooling target, namely, air.


Referring to FIG. 19, the first cycle 510 works as follows. The first compressor 511 sucks in the first refrigerant, compresses the first refrigerant to transform it into high-temperature, high-pressure gas refrigerant, and then discharges the gas refrigerant. After being discharged, the first refrigerant flows into the first condenser 512. In the first condenser 512, the outside air supplied by the first condenser fan 512a exchanges heat with the first refrigerant in the form of gas refrigerant, and the first refrigerant is in turn condensed into a liquid. After being condensed into a liquid, the first refrigerant flows through the first expansion valve 513. The first refrigerant condensed into a liquid is decompressed by the first expansion valve 513. After being decompressed, the first refrigerant flows into the first evaporator 514 included in the cascade condenser 531. In the first evaporator 514, the first refrigerant evaporates and gasifies by exchanging heat with the second refrigerant flowing through the second downstream-side condenser 523. After the evaporation and gasification, the first refrigerant is sucked into the first compressor 511.


Referring to FIG. 1, the second cycle 520 works as follows. The second compressor 521 sucks in the second refrigerant, compresses the second refrigerant to transform it into high-temperature, high-pressure gas refrigerant, and then discharges the gas refrigerant. After being discharged, the second refrigerant flows into the second upstream-side condenser 522. In the second upstream-side condenser 522, the outside air supplied by the second condenser fan 522a exchanges heat with the second refrigerant, which is in turn condensed and flows into the second downstream-side condenser 523 included in the cascade condenser 531. In the second downstream-side condenser 523, the first refrigerant is supercooled by exchanging heat with the first refrigerant flowing through the first evaporator 514. The supercooled second refrigerant flows through the second upstream-side expansion valve 524. The supercooled second refrigerant is decompressed by the second upstream-side expansion valve 524 to an intermediate pressure. The second refrigerant decompressed to the intermediate pressure flows through the liquid receiver 525 and is then decompressed to a low pressure while flowing through the second downstream-side expansion valve 526. The second refrigerant decompressed to the low pressure flows into the second evaporator 527. The second evaporator 527 operates a second evaporator fan 527a so that air in a refrigerated warehouse exchanges heat with the second refrigerant, which in turn evaporates and gasifies. After the evaporation and gasification, the second refrigerant is sucked into the second compressor 521.


The refrigerant mixture that is any one of the refrigerants A to E mentioned above is used as the first refrigerant sealed in the first cycle 510 of the two-stage refrigeration apparatus 500 according to the present embodiment, where the efficiency of heat exchange in the cascade condenser 531 is enhanced accordingly. Using, as the first refrigerant, the refrigerant mixture that is any one of the refrigerant A to E can help achieve a global warming potential (GWP) lower than the GWP achievable through the use of R32.


(7-1) First Modification of Second Embodiment

In the embodiment above, the refrigerant mixture that is any one of the refrigerants A to E mentioned above is used as the first refrigerant sealed in the first cycle 510, and carbon dioxide is used as the second refrigerant sealed in the second cycle 520. As with the first refrigerant, the second refrigerant may be the refrigerant mixture that is any one of the refrigerants A to E mentioned above. In the example concerned, the first cycle 510 and the second cycle 520 are coupled to each other via the cascade condenser 531 to constitute the two-stage refrigeration apparatus 500. The amount of refrigerant charged into the cycle (the second cycle 520) extending through the cooling unit 502 may be smaller in the apparatus having this configuration than in a one-stage apparatus. This feature enables a reduction in costs associated with safeguards against possible refrigerant leakage in the cooling unit 502.


(7-2) Second Modification of Second Embodiment

In the embodiment above, the refrigerant mixture that is any one of the refrigerants A to E mentioned above is used as the first refrigerant sealed in the first cycle 510, and carbon dioxide is used as the second refrigerant sealed in the second cycle 520. Alternatively, R32 may be used as the first refrigerant, and the refrigerant mixture that is any one of the refrigerants A to E mentioned above may be used as the second refrigerant. Such a refrigerant mixture typically involves a pressure-resistance design value that is lower than the pressure-resistance design value necessitated in the case of using carbon dioxide (CO2), and the level of pressure resistance required of pipes and components constituting the second cycle 520 may be lowered accordingly.


(8) Third Embodiment
(8-1) Overall Configuration


FIG. 20 illustrates an air-conditioning hot water supply system 600, which is a refrigeration apparatus according to a third embodiment. FIG. 20 is a circuit configuration diagram of the air-conditioning hot water supply system 600. The air-conditioning hot water supply system 600 includes an air conditioning apparatus 610 and a hot water supply apparatus 620. The hot water supply apparatus 620 is connected with a hot-water-supply hot water circuit 640.


(8-2) Details on Configuration

(8-2-1) Air Conditioning Apparatus


The air conditioning apparatus 610 includes an air-conditioning refrigerant circuit 615, with a compressor 611, an outdoor heat exchanger 612, an expansion valve 613, and an indoor heat exchanger 614 being arranged in such a manner as to be connected to the air-conditioning refrigerant circuit 615. Specifically, the discharge side of the compressor 611 is connected with a first port P1 of a four-way switching valve 616. A gas-side end of the outdoor heat exchanger 612 is connected with a second port P2 of the four-way switching valve 616. A liquid-side end of the outdoor heat exchanger 612 is connected to a liquid-side end of the indoor heat exchanger 614 via the expansion valve 613. A gas-side end of the indoor heat exchanger 614 is connected to a third port P3 of the four-way switching valve 616. A fourth port P4 of the four-way switching valve 616 is connected to the suction side of the compressor 611.


The four-way switching valve 616 allows switching between a first communication state and a second communication state. In the first communication state (denoted by broken lines in the drawing), the first port P1 communicates with the second port P2, and the third port P3 communicates with the fourth port P4. In the second communication state (denoted by solid lines), the first port P1 communicates with the third port P3, and the second port P2 communicates with the fourth port P4. The direction in which refrigerant circulates may be reversed in accordance with the switching operation of the four-way switching valve 616.


In the third embodiment, the air-conditioning refrigerant circuit 615 is charged with refrigerant for the vapor compression refrigeration cycle. The refrigerant is a refrigerant mixture containing 1,2-difluoroethylene and may be any one of the refrigerants A to E mentioned above.


(8-2-2) Hot Water Supply Apparatus


The hot water supply apparatus 620 includes a hot-water-supply refrigerant circuit 625. The hot-water-supply refrigerant circuit 625 includes a compressor 621, a first heat exchanger 622, an expansion valve 623, and a second heat exchanger 624, which are serially connected to each other. The hot-water-supply refrigerant circuit 625 is charged with refrigerant, which is a carbon dioxide refrigerant. The devices constituting the hot-water-supply refrigerant circuit 625 and accommodated in a casing are incorporated into the hot water supply apparatus 620 to constitute a water supply unit.


The first heat exchanger 622 is a water-refrigerant heat exchanger, which is a combination of a heat absorbing unit 622a and a heat radiating unit 622b. The heat radiating unit 622b of the first heat exchanger 622 is connected to the hot-water-supply refrigerant circuit 625, and the heat absorbing unit 622a of the first heat exchanger 622 is connected to the hot-water-supply hot water circuit 640, in which water heating is performed to generate hot water. In the first heat exchanger 622, water heating is performed to generate hot water in the hot-water-supply hot water circuit 640 in such a manner that heat is exchanged between water in the hot-water-supply hot water circuit 640 and the carbon dioxide refrigerant in the hot-water-supply refrigerant circuit 625.


The hot-water-supply hot water circuit 640 is connected with a circulating pump 641, the heat absorbing unit 622a of the first heat exchanger 622, and a hot water storage tank 642. The hot-water-supply hot water circuit 640 provides water-hot water circulation, where water receives heat from the carbon dioxide refrigerant in the first heat exchanger 622 and the generated hot water is then stored in the hot water storage tank 642. For water supply and drainage to and from the hot water storage tank 642, the hot-water-supply hot water circuit 640 is connected with a water supply pipe 643 leading to the hot water storage tank 642 and a hot water outflow pipe 644 leading from the hot water storage tank 642.


The second heat exchanger 624 is a cascade heat exchanger and is a combination of a heat absorbing unit 624a and a heat radiating unit 624b. The heat absorbing unit 624a is connected to the hot-water-supply refrigerant circuit 625, and the heat radiating unit 624b is connected to the air-conditioning refrigerant circuit 615. With the second heat exchanger 624 being a cascade heat exchanger, the air-conditioning refrigerant circuit 615 is in charge of operation on the low-stage (low-temperature) side of the two-stage heat pump cycle, and the hot-water-supply refrigerant circuit 625 is in charge of operation on the high-stage (high-temperature) side of the two-stage heat pump cycle.


The second heat exchanger 624 and the indoor heat exchanger 614 in the air-conditioning refrigerant circuit 615, which is the low-stage side of the two-stage heat pump cycle, are connected in parallel. A three-way switching valve 650 allows switching between the state in which refrigerant in the air-conditioning refrigerant circuit 615 flows through the second heat exchanger 624 and the state in which the refrigerant flows through the indoor heat exchanger 614. In other words, the air-conditioning refrigerant circuit 615, which is the low-stage side of the two-stage heat pump cycle, is capable of switching between a first operation and a second operation. During the first operation, refrigerant circulates between the outdoor heat exchanger 612 and the indoor heat exchanger 614. During the second operation, refrigerant circulates between the outdoor heat exchanger 612 and the second heat exchanger 624.


(8-3) Operation and Working of Air-Conditioning Hot Water Supply System


The following describes the operation and working of the air-conditioning hot water supply system 600.


Air conditioning operation that is the first operation may be performed in such a way as to switch between cooling operation and heating operation. During the cooling operation, the four-way switching valve 616 is set into the first communication state on the broken lines, and the three-way switching valve 650 is set into a first communication state on a broken line. In this setup, refrigerant discharged by the compressor 611 flows through the four-way switching valve 616, enters the outdoor heat exchanger 612 and is condensed in the outdoor heat exchanger 612 by transferring heat to outside air. The refrigerant is expanded in the expansion valve 613 and then enters the indoor heat exchanger 614, where the refrigerant evaporates by absorbing heat from room air. Consequently, the room air is cooled. The refrigerant then flows through the four-way switching valve 616 and is sucked into the compressor 611. The room is cooled by repeated cycles of a compression stroke, a condensation stroke, an expansion stroke, and an evaporation stroke while the refrigerant circulates as described above.


During the heating operation, the four-way switching valve 616 is set into the second communication state on the solid lines, and the three-way switching valve 650 is set into the first communication state on the broken line. In this setup, refrigerant discharged by the compressor 611 flows through the four-way switching valve 616 and the three-way switching valve 650, enters the indoor heat exchanger 614, and is condensed in the indoor heat exchanger 614 by transferring heat to room air. Consequently, the room air is heated. The refrigerant is expanded in the expansion valve 613 and then enters the outdoor heat exchanger 612, where the refrigerant evaporates by absorbing heat from outside air. The refrigerant then flows through the four-way switching valve 616 and is sucked into the compressor 611. The room is heated while the refrigerant circulates as described above.


Meanwhile, hot water storage operation that is the second operation is performed in the middle of the night when air conditioning is not needed. During this operation, the four-way switching valve 616 in the air-conditioning refrigerant circuit 615 is set into the second communication state on the solid lines as in the heating operation, and the three-way switching valve 650 in the air-conditioning refrigerant circuit 615 is set into a second communication state on a solid line as opposed to the state into which the three-way switching valve 650 is set during air conditioning operation. The compressor 621 in the hot-water-supply refrigerant circuit 625 and the circulating pump 641 in the hot-water-supply hot water circuit 640 are also operated.


In this setup, the air-conditioning refrigerant circuit 615 works as follows: refrigerant discharged by the compressor 611 flows through the four-way switching valve 616 and the three-way switching valve 650 and then enters the heat radiating unit 624b of the second heat exchanger 624. In the heat radiating unit 624b, refrigerant flowing through the air-conditioning refrigerant circuit 615 is condensed by transferring heat to the carbon dioxide refrigerant in the hot-water-supply refrigerant circuit 625. Consequently, the carbon dioxide refrigerant is heated. The refrigerant in the air-conditioning refrigerant circuit 615 is then expanded in the expansion valve 613, evaporates in the outdoor heat exchanger 612, flows through the four-way switching valve 616, and is sucked into the compressor 611. The refrigerant in the air-conditioning refrigerant circuit 615 circulates as described above to undergo repeated cycles of a compression stroke, a condensation stroke, an expansion stroke, and an evaporation stroke.


The carbon dioxide refrigerant in the hot-water-supply refrigerant circuit 625 undergoes a compression stroke in the compressor 621, a heat radiation stroke in the heat radiating unit 622b of the first heat exchanger 622, an expansion stroke in the expansion valve 623, and a heat absorption stroke in the heat absorbing unit 624a of the second heat exchanger 624 in the stated order. In the second heat exchanger 624, the carbon dioxide refrigerant absorbs heat from the refrigerant flowing through the air-conditioning refrigerant circuit 615. In the first heat exchanger 622, the carbon dioxide refrigerant transforms the warmth to water in the hot-water-supply hot water circuit 640.


In the hot-water-supply hot water circuit 640, the circulating pump 641 supplies water in the hot water storage tank 642 to the heat absorbing unit 622a of the first heat exchanger 622, where the water is heated (hot water is generated). The hot water generated by the application of heat is sent back to the hot water storage tank 642 and continues to circulate through the hot-water-supply hot water circuit 640 until a predetermined thermal storage temperature is reached. As mentioned above, the hot water storage operation is performed in the middle of the night. Meanwhile, hot water supply operation for letting out hot water from the hot water storage tank 642 is performed during daytime or nighttime hours. During the hot water supply operation, the hot-water-supply refrigerant circuit 625 is nonoperational, and the indoor heat exchanger 614 in the air-conditioning refrigerant circuit 615 may be used to perform the cooling operation or the heating operation.


(8-4) Features of Air-Conditioning Hot Water Supply System

The air-conditioning hot water supply system 600 according to the third embodiment includes the hot water supply apparatus 620, which is a unit-type apparatus. This apparatus includes a cascade heat exchanger as the second heat exchanger 624 on the heat source side of the hot-water-supply refrigerant circuit 625, in which carbon dioxide is used as refrigerant. The second heat exchanger 624 is connected to the air-conditioning refrigerant circuit 615, which is a low-stage-side refrigerant circuit. This configuration enables two-stage heat pump cycle operation. The refrigerant used in the air-conditioning refrigerant circuit 615 is a refrigerant mixture containing 1,2-difluoroethylene and is any one of the refrigerants A to E mentioned above. These features enhance the efficiency of heat exchange in the second heat exchanger 624.


(8-5) Modification of Third Embodiment

In the embodiment above, the refrigerant mixture that is any one of the refrigerants A to E mentioned above is used as the first refrigerant sealed in the air-conditioning refrigerant circuit 615, which is the first cycle, and carbon dioxide is used as the second refrigerant sealed in the hot-water-supply refrigerant circuit 625, which is the second cycle. It is preferred that a refrigerant whose saturation pressure at a predetermined temperature is lower than the saturation pressure of the first refrigerant at the predetermined temperature be used as the second refrigerant sealed in the hot-water-supply refrigerant 625. For example, it is preferred that R134a be sealed in the hot-water-supply refrigerant circuit 625.


While the embodiments of the present disclosure have been described herein above, it is to be appreciated that various changes in form and detail may be made without departing from the spirit and scope of the present disclosure presently or hereafter claimed.


REFERENCE SIGNS LIST






    • 11 compressor (first compressor)


    • 14 heat-source-side heat exchanger (first radiator)


    • 31 expansion valve (first expansion mechanism)


    • 33 heat exchanger


    • 60 use-side unit (second heat absorber)


    • 100 heat load treatment system (refrigeration apparatus)


    • 500 two-stage refrigeration apparatus (refrigeration apparatus)


    • 510 first cycle


    • 511 first compressor


    • 512 first condenser (first radiator)


    • 513 first expansion valve (first expansion mechanism)


    • 514 first evaporator (first heat absorber)


    • 520 second cycle


    • 521 second compressor


    • 523 second downstream-side condenser (second radiator)


    • 524 second upstream-side expansion valve (second expansion mechanism)


    • 526 second downstream-side expansion valve (second expansion mechanism)


    • 527 second evaporator (second heat absorber)


    • 531 cascade condenser (heat exchanger)

    • HC heat medium circuit (second cycle)

    • HP heat medium path in heat exchanger (second radiator)

    • RC refrigerant circuit (first cycle)

    • RP refrigerant path in heat exchanger (first heat absorber)


    • 600 air-conditioning hot water supply system (refrigeration apparatus)


    • 611 compressor (first compressor)


    • 612 outdoor heat exchanger (first heat absorber)


    • 613 expansion valve (first expansion mechanism)


    • 615 air-conditioning refrigerant circuit (first cycle)


    • 621 compressor (second compressor)


    • 622
      b heat radiating unit (second radiator)


    • 623 expansion valve (second expansion mechanism)


    • 624 second heat exchanger (heat exchanger)


    • 624
      a heat absorbing unit (second heat absorber)


    • 624
      b heat radiating unit (first radiator)


    • 625 hot-water-supply refrigerant circuit (second cycle)





CITATION LIST
Patent Literature



  • PTL 1: International Publication No. 2014/045400


Claims
  • 1. A refrigeration apparatus comprising: a first cycle including a first compressor, a first radiator, a first expansion mechanism, and a first heat absorber that are arranged in such a manner as to be connected to the first cycle, a first refrigerant circulating through the first cycle; anda second cycle including a second compressor, a second radiator, a second expansion mechanism, and a second heat absorber that are arranged in such a manner as to be connected to the second cycle, a second refrigerant circulating through the second cycle, whereinthe first heat absorber and the second radiator constitute a heat exchanger in which heat is exchanged between the first refrigerant flowing through the first heat absorber and the second refrigerant flowing through the second radiator, andat least one of the first refrigerant and the second refrigerant is a refrigerant mixture comprising trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf),when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant mixture is respectively represented by x, y and z, coordinates (x,y,z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments ON, NU, and UO that connect the following 3 points:point O (22.6, 36.8, 40.6),point N (27.7, 18.2, 54.1), andpoint U (3.9, 36.7, 59.4),or on these line segments;the line segment ON is represented by coordinates (0.0072 y2−0.6701y+37.512, y, −0.0072 y2−0.3299y+62.488);the line segment NU is represented by coordinates (0.0083 y2−1.7403y+56.635, y, −0.0083y2+0.7403y+43.365); andthe line segment UO is a straight line.
  • 2. The refrigeration apparatus according to claim 1, wherein the second cycle further includes a second compressor and a second expansion mechanism that are arranged in such a manner as to be connected to the second cycle,the first refrigerant flowing through the first radiator of the first cycle releases heat into outside air,the first refrigerant is the refrigerant mixture, andthe second refrigerant is carbon dioxide.
  • 3. The refrigeration apparatus according to claim 1, wherein the second cycle further includes a second compressor and a second expansion mechanism that are arranged in such a manner as to be connected to the second cycle,the first refrigerant flowing through the first radiator of the first cycle releases heat into outside air,the first refrigerant is the refrigerant mixture, andthe second refrigerant is the refrigerant mixture.
  • 4. The refrigeration apparatus according to claim 1, wherein the second cycle further includes a second compressor and a second expansion mechanism that are arranged in such a manner as to be connected to the second cycle,the first refrigerant flowing through the first radiator of the first cycle releases heat into outside air,the first refrigerant is R32, andthe second refrigerant is the refrigerant mixture.
  • 5. The refrigeration apparatus according to claim 1, wherein the first refrigerant flowing through the first radiator of the first cycle (RC) releases heat into outside air,the first refrigerant is the refrigerant mixture, andthe second refrigerant is a liquid medium.
Priority Claims (6)
Number Date Country Kind
2017-242183 Dec 2017 JP national
2017-242185 Dec 2017 JP national
2017-242186 Dec 2017 JP national
2017-242187 Dec 2017 JP national
PCT/JP2018/037483 Oct 2018 WO international
PCT/JP2018/038748 Oct 2018 WO international
US Referenced Citations (113)
Number Name Date Kind
5185092 Fukuda et al. Feb 1993 A
5344069 Narikiyo Sep 1994 A
5851968 Schnur Dec 1998 A
6591631 Taira Jul 2003 B1
6667285 Kawahara et al. Dec 2003 B1
8358040 Komuro et al. Jan 2013 B2
10131827 Fukushima et al. Nov 2018 B2
10883745 Higashiiue et al. Jan 2021 B2
20020140309 Yanashima et al. Oct 2002 A1
20020193262 Kaimai et al. Dec 2002 A1
20040011062 Taira Jan 2004 A1
20060000224 Matsuoka Jan 2006 A1
20070209373 Taira et al. Sep 2007 A1
20080184723 Sato et al. Aug 2008 A1
20080184731 Sienel et al. Aug 2008 A1
20080188173 Chen et al. Aug 2008 A1
20090241569 Okada et al. Oct 2009 A1
20090260382 Takeichi et al. Oct 2009 A1
20100067264 Ohashi et al. Mar 2010 A1
20100082162 Mundy et al. Apr 2010 A1
20100122545 Minor et al. May 2010 A1
20110108756 Tsuchiya et al. May 2011 A1
20110167848 Wakashima et al. Jul 2011 A1
20110253927 Minor et al. Oct 2011 A1
20120260679 Huerta-Ochoa Oct 2012 A1
20140070132 Fukushima Mar 2014 A1
20140077123 Fukushima Mar 2014 A1
20140291411 Tamaki et al. Oct 2014 A1
20140314606 Maeyama et al. Oct 2014 A1
20140373569 Tsuboe et al. Dec 2014 A1
20150001981 Hattori et al. Jan 2015 A1
20150075203 Mochizuki et al. Mar 2015 A1
20150096321 Kawano et al. Apr 2015 A1
20150143841 Kawano et al. May 2015 A1
20150171775 Cho et al. Jun 2015 A1
20150256038 Nigo et al. Sep 2015 A1
20150362199 Yumoto et al. Dec 2015 A1
20150376486 Hashimoto et al. Dec 2015 A1
20160018135 Yuzawa et al. Jan 2016 A1
20160047579 Yan et al. Feb 2016 A1
20160075927 Fukushima Mar 2016 A1
20160131378 Hinokuma et al. May 2016 A1
20160276886 Baba et al. Sep 2016 A1
20160333241 Fukushima et al. Nov 2016 A1
20160333243 Fukushima et al. Nov 2016 A1
20160340565 Tasaka et al. Nov 2016 A1
20160348933 Takeuchi et al. Dec 2016 A1
20160355719 Fukushima et al. Dec 2016 A1
20170002245 Fukushima Jan 2017 A1
20170058172 Fukushima et al. Mar 2017 A1
20170058173 Fukushima Mar 2017 A1
20170058174 Fukushima et al. Mar 2017 A1
20170121581 Horiike et al. May 2017 A1
20170138642 Ueno et al. May 2017 A1
20170166831 Matsumoto Jun 2017 A1
20170248328 Eskew et al. Aug 2017 A1
20170328586 Maeyama Nov 2017 A1
20170336085 Yasuo et al. Nov 2017 A1
20170338707 Shono et al. Nov 2017 A1
20180094844 Suzuki Apr 2018 A1
20180051198 Okamoto et al. May 2018 A1
20180138763 Nakamura et al. May 2018 A1
20180156217 Sakima et al. Jun 2018 A1
20180156511 Chikami et al. Jun 2018 A1
20180254676 Nigo et al. Sep 2018 A1
20180299175 Hayamizu et al. Oct 2018 A1
20180320942 Hayamizu et al. Nov 2018 A1
20180328596 Hatanaka et al. Nov 2018 A1
20180331436 Hayamizu et al. Nov 2018 A1
20180358861 Hayamizu et al. Dec 2018 A1
20180363965 Hayamizu et al. Dec 2018 A1
20190063773 Nagahashi et al. Feb 2019 A1
20190068015 Yabe et al. Feb 2019 A1
20190309963 Zaki et al. Oct 2019 A1
20200079985 Okamoto et al. Mar 2020 A1
20200321816 Watanabe Oct 2020 A1
20200325375 Kumakura et al. Oct 2020 A1
20200325376 Kumakura et al. Oct 2020 A1
20200325377 Kumakura et al. Oct 2020 A1
20200326100 Ukibune et al. Oct 2020 A1
20200326101 Itano et al. Oct 2020 A1
20200326102 Kumakura et al. Oct 2020 A1
20200326103 Kumakura et al. Oct 2020 A1
20200326105 Kumakura et al. Oct 2020 A1
20200326109 Kumakura et al. Oct 2020 A1
20200326110 Asano et al. Oct 2020 A1
20200332164 Itano et al. Oct 2020 A1
20200332166 Kumakura et al. Oct 2020 A1
20200333041 Itano et al. Oct 2020 A1
20200333054 Asano et al. Oct 2020 A1
20200347283 Itano et al. Nov 2020 A1
20200363085 Itano et al. Nov 2020 A1
20200363105 Kumakura et al. Nov 2020 A1
20200363106 Itano et al. Nov 2020 A1
20200363112 Ohtsuka et al. Nov 2020 A1
20200369934 Itano et al. Nov 2020 A1
20200385620 Itano et al. Dec 2020 A1
20200385621 Itano et al. Dec 2020 A1
20200385622 Itano et al. Dec 2020 A1
20200392387 Ohtsuka et al. Dec 2020 A1
20200392388 Itano et al. Dec 2020 A1
20200393178 Kumakura et al. Dec 2020 A1
20210018191 Itano et al. Jan 2021 A1
20210135520 Shimokawa et al. May 2021 A1
20210163804 Kumakura et al. Jun 2021 A1
20210189209 Yotdumoto et al. Jun 2021 A1
20210222040 Fukushima et al. Jul 2021 A1
20210355359 Ohkubo et al. Nov 2021 A1
20220214085 Kumakura Jul 2022 A1
20220389299 Itano Dec 2022 A1
20220404070 Ohtsuka Dec 2022 A1
20230002659 Itano Jan 2023 A1
20230110292 Itano Apr 2023 A1
Foreign Referenced Citations (252)
Number Date Country
2001284508 Mar 2002 AU
1288132 Mar 2001 CN
1447491 Oct 2003 CN
1455855 Nov 2003 CN
1723373 Jan 2006 CN
1987264 Jun 2007 CN
101235815 Aug 2008 CN
101441012 May 2009 CN
102401519 Apr 2012 CN
103562338 Feb 2014 CN
203704143 Jul 2014 CN
103975204 Aug 2014 CN
104094069 Oct 2014 CN
104456760 Mar 2015 CN
104578493 Apr 2015 CN
204534884 Aug 2015 CN
104903661 Sep 2015 CN
104937350 Sep 2015 CN
204648544 Sep 2015 CN
105102905 Nov 2015 CN
204943959 Jan 2016 CN
205261858 May 2016 CN
106029821 Oct 2016 CN
106030222 Oct 2016 CN
106062159 Oct 2016 CN
106085363 Oct 2016 CN
106103992 Nov 2016 CN
106133110 Nov 2016 CN
106414653 Feb 2017 CN
106414654 Feb 2017 CN
106415152 Feb 2017 CN
106574802 Apr 2017 CN
106661477 May 2017 CN
106839496 Jun 2017 CN
107110570 Aug 2017 CN
107112830 Aug 2017 CN
107429957 Dec 2017 CN
107614980 Jan 2018 CN
107925285 Apr 2018 CN
108139112 Jun 2018 CN
108431414 Aug 2018 CN
108469126 Aug 2018 CN
1 231 255 Aug 2002 EP
1 246 348 Oct 2002 EP
1 326 057 Jul 2003 EP
1 632 732 Mar 2006 EP
1 953 388 Aug 2008 EP
2 423 609 Feb 2012 EP
2 620 736 Jul 2013 EP
2 711 405 Mar 2014 EP
2 789 933 Oct 2014 EP
2 840 335 Feb 2015 EP
2 853 826 Apr 2015 EP
2 918 953 Sep 2015 EP
2 952 828 Dec 2015 EP
2 980 508 Feb 2016 EP
3 012 555 Apr 2016 EP
3 012 557 Apr 2016 EP
3 070 417 Sep 2016 EP
3 101 082 Dec 2016 EP
3 109 302 Dec 2016 EP
3 115 716 Jan 2017 EP
3 121 242 Jan 2017 EP
3 128 259 Feb 2017 EP
3 147 595 Mar 2017 EP
3 153 559 Apr 2017 EP
3 153 561 Apr 2017 EP
3 170 881 May 2017 EP
3 222 934 Sep 2017 EP
3 249 309 Nov 2017 EP
3 299 731 Mar 2018 EP
3 358 272 Aug 2018 EP
3 358 278 Aug 2018 EP
3 399 189 Nov 2018 EP
3 795 925 Mar 2021 EP
2530915 Apr 2016 GB
51-90115 Jul 1976 JP
52-13025 Apr 1977 JP
57-198968 Dec 1982 JP
59-39790 Mar 1984 JP
62-69066 Mar 1987 JP
63-69066 Mar 1987 JP
2-4163 Jan 1990 JP
5-264070 Oct 1993 JP
5-272823 Oct 1993 JP
7-19627 Jan 1995 JP
7-190571 Jul 1995 JP
8-200273 Aug 1996 JP
10-46170 Feb 1998 JP
10-300292 Nov 1998 JP
10-309050 Nov 1998 JP
10-318564 Dec 1998 JP
11-206001 Jul 1999 JP
11-256358 Sep 1999 JP
2000161805 Jun 2000 JP
2000-220877 Aug 2000 JP
2000-234767 Aug 2000 JP
2000-304302 Nov 2000 JP
2001-82755 Mar 2001 JP
201-139972 May 2001 JP
2002-54888 Feb 2002 JP
2002-89978 Mar 2002 JP
2002-257366 Sep 2002 JP
2002-272043 Sep 2002 JP
2002-286286 Oct 2002 JP
2002-318028 Oct 2002 JP
2003-18776 Jan 2003 JP
2003-83614 Mar 2003 JP
2003-174794 Jun 2003 JP
2004-28035 Jan 2004 JP
2004-132647 Apr 2004 JP
2004-215406 Jul 2004 JP
2004-251535 Sep 2004 JP
2004-361036 Dec 2004 JP
2005-61711 Mar 2005 JP
2005-241045 Sep 2005 JP
2005-288502 Oct 2005 JP
2006-46737 Feb 2006 JP
2006-162197 Jun 2006 JP
2006-211824 Aug 2006 JP
2006-313027 Nov 2006 JP
2008-39305 Feb 2008 JP
2008-54488 Mar 2008 JP
2008-190377 Aug 2008 JP
2008-245384 Oct 2008 JP
2008-286422 Nov 2008 JP
2009-63216 Mar 2009 JP
2009-92274 Apr 2009 JP
2009-92289 Apr 2009 JP
2009-121654 Jun 2009 JP
2009-150620 Jul 2009 JP
2009-243793 Oct 2009 JP
2009-299975 Dec 2009 JP
2010-28985 Feb 2010 JP
2010-103346 May 2010 JP
2010-119190 May 2010 JP
2010-164222 Jul 2010 JP
2010-230242 Oct 2010 JP
2011-4449 Jan 2011 JP
2011-43304 Mar 2011 JP
2011-52884 Mar 2011 JP
2011-94841 May 2011 JP
2011-135638 Jul 2011 JP
2011-202738 Oct 2011 JP
2011-252636 Dec 2011 JP
2012-42169 Mar 2012 JP
2012-112617 Jun 2012 JP
2012-132637 Jul 2012 JP
2012-151969 Aug 2012 JP
2013-124848 Jun 2013 JP
2013-126281 Jun 2013 JP
2013-139990 Jul 2013 JP
2013-155892 Aug 2013 JP
2013-155921 Aug 2013 JP
2013-172615 Sep 2013 JP
2013-200090 Oct 2013 JP
2013-221671 Oct 2013 JP
2014-70840 Apr 2014 JP
2014-75971 Apr 2014 JP
2014-89004 May 2014 JP
2014-129543 Jul 2014 JP
2014-152999 Aug 2014 JP
2014-167381 Sep 2014 JP
2015-23721 Feb 2015 JP
2015-55455 Mar 2015 JP
2015-82875 Apr 2015 JP
201578789 Apr 2015 JP
2015-111012 Jun 2015 JP
2015-114082 Jun 2015 JP
2015-145765 Aug 2015 JP
2015-158282 Sep 2015 JP
2015-218909 Dec 2015 JP
2015-218912 Dec 2015 JP
2015-229767 Dec 2015 JP
2016-1062 Jan 2016 JP
2016-11423 Jan 2016 JP
2016-56340 Apr 2016 JP
2016-125808 Jul 2016 JP
2016-133256 Jul 2016 JP
2016-172869 Sep 2016 JP
2016-174461 Sep 2016 JP
2017-36861 Feb 2017 JP
2017-46430 Mar 2017 JP
2017-53285 Mar 2017 JP
2017-67373 Apr 2017 JP
2017-67428 Apr 2017 JP
2017-122549 Jul 2017 JP
2017-145975 Aug 2017 JP
2017-192190 Oct 2017 JP
2018-25377 Feb 2018 JP
6524995 Jun 2019 JP
2001-0029975 Apr 2001 KR
10-2001-0064286 Jul 2001 KR
2003-0028838 Apr 2003 KR
10-0939609 Oct 2003 KR
10-2004-0075737 Aug 2004 KR
10-2005-0044931 May 2005 KR
10-2013-0111186 Oct 2013 KR
10-2015-0067654 Jun 2015 KR
10-2017-0034887 Mar 2017 KR
2013 156 380 Jun 2015 RU
20030103482 Feb 2003 TW
0136571 May 2001 WO
0223100 Mar 2002 WO
2009-069679 Jun 2009 WO
2009093345 Jul 2009 WO
2012157764 Nov 2012 WO
2012157765 Nov 2012 WO
2013084301 Jun 2013 WO
2013146103 Oct 2013 WO
2013146208 Oct 2013 WO
2013151043 Oct 2013 WO
2014045400 Mar 2014 WO
2014118945 Aug 2014 WO
2014119149 Aug 2014 WO
2014156190 Oct 2014 WO
2014203353 Dec 2014 WO
2014203354 Dec 2014 WO
2015071967 May 2015 WO
2015125763 Aug 2015 WO
2015125884 Aug 2015 WO
2015115252 Aug 2015 WO
2015136981 Sep 2015 WO
2015140827 Sep 2015 WO
2015141678 Sep 2015 WO
2015186557 Dec 2015 WO
2015186670 Dec 2015 WO
2016009884 Jan 2016 WO
2016017460 Feb 2016 WO
2016103711 Jun 2016 WO
2016104418 Jun 2016 WO
2016117443 Jul 2016 WO
2016157538 Oct 2016 WO
2016182030 Nov 2016 WO
2016190232 Dec 2016 WO
2017038489 Mar 2017 WO
2017056789 Apr 2017 WO
2017057004 Apr 2017 WO
2017115636 Jul 2017 WO
2017122517 Jul 2017 WO
2017145826 Aug 2017 WO
2017195248 Nov 2017 WO
2019123782 Jun 2019 WO
2019123804 Jun 2019 WO
2019123805 Jun 2019 WO
2019123806 Jun 2019 WO
2019123807 Jun 2019 WO
2019124400 Jun 2019 WO
2019124401 Jun 2019 WO
2019124402 Jun 2019 WO
2019124403 Jun 2019 WO
2019124404 Jun 2019 WO
Non-Patent Literature Citations (73)
Entry
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/045978.
International Search Report dated Mar. 19, 2019 in International Application No. PCT/JP2018/045978.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046532.
International Search Report dated Feb. 12, 2019 in International Application No. PCT/JP2018/046532.
International Preliminary on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/042027.
International Search Report dated Feb. 12, 2019 in International Application No. PCT/JP2018/042027.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/042032.
International Search Report dated Feb. 19, 2019 in International Application No. PCT/JP2018/042032.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046666.
International Search Report dated Apr. 2, 2019 in International Application No. PCT/JP2018/046666.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/045336.
International Search Report dated Feb. 19, 2019 in International Application No. PCT/JP2018/045336.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/045557.
International Search Report dated Mar. 12, 2019 in International Application No. PCT/JP2018/045557.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046426.
International Search Report dated Feb. 19, 2019 in International Application No. PCT/JP2018/046426.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046427.
International Search Report dated Feb. 19, 2019 in International Application No. PCT/JP2018/046427.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046428.
International Search Report dated Mar. 19, 2019 in International Application No. PCT/JP2018/046428.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046581.
International Search Report dated Mar. 5, 2019 in International Application No. PCT/JP2018/046581.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046630.
International Search Report issued Mar. 5, 2019 in International Application No. PCT/JP2018/046630.
International Search Report dated Mar. 5, 2019 in International Application No. PCT/JP2018/046582.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046631.
International Search Report dated Mar. 5, 2019 in International Application No. PCT/JP2018/046631.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046627.
International Search Report dated Mar. 19, 2019 in International Application No. PCT/JP2018/046627.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046628.
International Search Report dated Mar. 19, 2019 in International Application No. PCT/JP2018/046628.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/045979.
International Search Report dated Mar. 12, 2019 in International Application No. PCT/JP2018/045979.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046434.
International Search Report dated Feb. 19, 2019 in International Application No. PCT/JP2018/046434.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/045290.
International Search Report dated Jan. 22, 2019 in International Application No. PCT/JP2018/045290.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/045288.
International Search Report dated jan. 22, 2019 in International Application No. PCT/JP2018/045288.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/045289.
International Search Report dated Jan. 22, 2019 in International Application No. PCT/JP2018/045289.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046639.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046642.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/038746.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046643.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/038748.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046640.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046644.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/038749.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/037483.
International Search Report dated Feb. 19, 2019 in International Application No. PCT/JP2018/045335.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application no. PCT/JP2018/045335.
International Search Report dated Feb. 19, 2019 in International Application No. PCT/JP2018/046435.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046435.
International Search Report dated Mar. 19, 2019 in International (PCT) Application No. PCT/JP2018/046530.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046530.
International Search Report dated Feb. 12, 2019 in International (PCT) Application No. PCT/JP2018/046533.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046533.
Hirahara et al., “Latest trend of alternative refrigerant: LCCP-analogy for HFO-1234yf Air Conditioners using a Simulation with R134a Properties”, Refrigeration, Jan. 15, 2010, vol. 85, No. 987, pp. 15-20, with partial translation.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/038747.
International Search Report dated Mar. 12, 2019 in International (PCT) Application No. PCT/JP2018/046639.
International Search Report dated Mar. 12, 2019 in International (PCT) Application No. PCT/JP2018/046642.
International Search Report dated Dec. 18, 2018 in International (PCT) Application No. PCT/JP2018/038746.
International Search Report dated Mar. 19, 2019 in International (PCT) Application No. PCT/JP2018/046643.
International Search Report dated Dec. 18, 2018 in International (PCT) Application No. PCT/JP2018/038748.
International Search Report dated Mar. 12, 2019 in International (PCT) Application No. PCT/JP2018/046640.
International Search Report dated Mar. 19, 2019 in International (PCT) Application No. PCT/JP2018/046644.
International Search Report dated Dec. 18, 2018 in International (PCT) Application No. PCT/JP2018/038749.
International Search Report dated Dec. 18, 2018 in International (PCT) Application No. PCT/JP2018/037483.
International Search Report dated Dec. 18, 2018 in International (PCT) Application No. PCT/JP2018/038747.
Summary, Collection of Papers of the 2nd Symposium on New Technologies of Refrigeration and Air Conditioning, 2nd Edition, Ding Guoliang, Ed., published by Shanghai Jiatong University Press, 2003, with Concise Explanation.
International Search Report dated Mar. 19, 2019 in International Application No. PCT/JP2018/046531.
International Preliminary Report on Patentability dated Jun. 23, 2020 in International Application No. PCT/JP2018/046531.
Related Publications (1)
Number Date Country
20200326109 A1 Oct 2020 US
Continuation in Parts (1)
Number Date Country
Parent 16955218 US
Child 16913589 US